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Abstract Interest in understanding long-term coastal morphodynamics has recently increased as climate

change impacts become perceptible and accelerated. Multiscale, behavior-oriented and process-based

models, or hybrids of the two, are typically applied with deterministic approaches which require consider-

able computational effort. In order to reduce the computational cost of modeling large spatial and temporal

scales, input reduction and morphological acceleration techniques have been developed. Here we intro-

duce a general framework for reducing dimensionality of wave-driver inputs to morphodynamic models.

The proposed framework seeks to account for dependencies with global atmospheric circulation fields and

deals simultaneously with seasonality, interannual variability, long-term trends, and autocorrelation of wave

height, wave period, and wave direction. The model is also able to reproduce future wave climate time

series accounting for possible changes in the global climate system. An application of long-term shoreline

evolution is presented by comparing the performance of the real and the simulated wave climate using a

one-line model.

1 Introduction

Over millennia, Earths’ climate has been continuously oscillating. These changes are reflected in the ocean’s

extent (sea-level), contents (distribution of heat and salt), and behavior (wave climate and circulation pat-

terns); and consequently their impacts to the coast. Approximately 10% of the world population lives in the

coastal zone below 10 m elevation [Nicholls and Cazenave, 2010], and it is thought that climate cycles have

motivated humans to relocate throughout history [Griggs, 2013]. The latest IPCC [2013] report confirms that

climate change is unequivocal, as evidenced by unprecedented, over decades to millennia: warming of the

atmosphere and the ocean, diminishing ice sheets and rising sea levels. Motivated by anticipated changes

in sea level and wave climate, coastal researchers have increased their interest in understanding long-term

morphodynamic evolution [Elko et al., 2014]. Nevertheless, understanding and modeling long-term behavior

remains a significant challenge. Many modeling techniques exist to simulate long-term coastal change.

Process-based numerical models tend to induce discretization errors and typically require high computa-

tional efforts. In order to reduce computational cost, several acceleration techniques have been developed

including model reduction, input reduction, and behavior-oriented techniques [de Vriend et al.,

1993a,1993b]. In this paper, we provide a novel input reduction technique for wave-driven, long-term mor-

phodynamic modeling. Many input reduction techniques exist, like the Multiple Representative Wave

(MRW) approach [Steijn, 1992], and the Simple Representative Wave (SRW) approach [Chesher and Miles,

1992], which seek to reconstruct the measured wave forcing. Southgate [1995] demonstrated the impor-

tance of accounting for the wave chronology. Chonwattana et al. [2005] proposed an improved method

that conserves wave energy flux. Recently, Walstra et al. [2013] show how to maintain the frequency of

occurrence and the chronology of the original wave time series. To simulate the long-term effects of tide,

Latteux [1995] introduced an approach to represent the whole tidal cycle using only a small number of tidal

constituents. Several input-reduction techniques are integral to the long-term morphology models pro-

posed by Roelvink [2006]. Examples of the application of these techniques include Lesser [2009] and the

hybrid model of [Zhang et al., 2004]. As an alternative to deterministic long-term predictions, Callaghan

et al. [2008, 2013] proposed use of probabilistic techniques.
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In order to incorporate climate change, large-scale and long-term morphodynamics studies require accurate

forcing definition in terms of wave-driver behavior and evolution [Kaergaard and Fredsoe, 2013]. In this

paper, we focus on methods to provide a reduced wave input time series, which is often considered the

main driver of coastal evolution. The method maintains the chronology of the wave conditions, a key com-

ponent in morphodynamics [de Vriend et al., 1993a; Walstra et al., 2013], but also in estimating the probabil-

ity of structural failure of offshore platforms [Salvadori et al., 2014] and vertical breakwaters [G�oda, 2010].

Even for different drivers than waves, e.g., wind, methods that retain the temporal evolution of the forcing

can be crucial, like in the computation of fatigue loads in wind turbines [Thomsen and Sørensen, 1999]. Fur-

thermore, in a changing climate, we need to understand any climate-controlled driver dependencies. The

main goal of this research is to introduce a general framework for reducing dimensionality of wave input,

taking into account global atmospheric circulation fields and dealing simultaneously with seasonality, inter-

annual variability, long-term trends, and autocorrelation of wave height, wave period, and wave direction.

Evolution in these dependencies will result in changes in the wave climate driver behavior.

In this paper, the multiscale climate emulator for long-term morphodynamics (MUSCLE-morpho) is pre-

sented. The paper is organized as a sequence of successive steps to be performed (see Figure 1). Below, sec-

tion 2 describes the location where the model is applied and the data used in the model. Next, section 3

explains the initialization of the MUSCLE-morpho model and section 4 presents the validation of the model

and an example of application for long-term mophological evolution. Finally, the conclusions of this paper

are presented in section 5.

2. Data

The proposed methods are applied to the Northwest coast of Spain (lon5 9.258W and lat5 43.58N, WGS84

global reference coordinate system). The North Atlantic coast experiences significant wave heights ranging

from 1–8 m, mean periods of 6–12 s, and mean direction from the Northwest at approximately 2808–3008.

Although we focus here on the North Atlantic, the methods presented are applicable to a wide range of

geographic settings.

2.1. Predictor Characterization

Surface winds are the primary driver of ocean waves. However, in global circulation models, near-surface

wind fields are not as well reproduced as sea-level pressure fields [Caires et al., 2006]. Furthermore, wind

Figure 1. Diagram of the model fitting and simulation.
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fields can be diagnosed from sea-level pressure fields. Specifically, the geostrophic wind direction is well-

represented by isobars and geostrophic wind speed is proportional to pressure gradients. Therefore, sea-

level pressure fields and the square of sea-level pressure gradients define the wave predictor indices. This

approach is in line with the downscaling statistical predictor used by Wang et al. [2012], Casas-Prat et al.

[2014], and Camus et al. [2014a]. In this work, we use the Sea Level Pressure (SLP) fields of the NCEP/NCAR

reanalysis-I [Kalnay et al., 1996] from the National Center for Environmental Prediction-National Center for

Atmospheric Research. The SLP data from NCEP-NCAR reanalysis-I used in this work consist of 6 hourly fields

on a 2.58 by 2.58 grid.

2.2. Predictand Characterization

Historical data on the local wave climate predictand are required in the MUSCLE-morpho model. The histori-

cal wave information used in this work is the ocean wave reanalysis database Global Ocean Waves (GOW)

[Reguero et al., 2012]. Here we use waves from a GOW regional simulation over the European Atlantic area,

which spans from 27.258N to 57.258N and 208W to 378E with a spatial resolution of 0.258. The European

Atlantic domain is forced with wind fields from SeaWind I, a dynamic atmospheric downscaling from NCEP-

NCAR reanalysis-I [Menendez et al., 2013]. This model provides hourly sea-state parameters (significant wave

height, mean period, peak period, and mean wave direction) from 1948 to 2014. Because of inhomogene-

ities in NCEP/NCAR reanalysis prior to 1957 [Kistler et al., 2001], the time period covered by this research is

from 1960 to 2013. Data from 1960 to 1989 (30 years) is selected to perform the model fit, and data from

1990 to 2013 (24 years) covers the validation period.

3. Model Fit

Below we describe the procedure for establishing a reduced-dimensionality, multivariate sea-state time

series. The procedure attempts to take into account dependencies from global atmospheric circulation

fields and deals simultaneously with seasonality, interannual variability, long-term trends, and autocorrela-

tion of the trivariate sea state parameters (wave height, period, and direction). As shown in Figure 1, the

procedure is divided into two phases, one concerning the definition of the predictor, and the other con-

cerning the definition of the predictand and its relationship to the predictor.

3.1. Predictor Fit

In section 2.1, SLP fields and square SLP gradients have been defined as the predictor of the wave data for

the study site. The predictor data is processed in two steps, described below.

3.1.1. Step 1: ESTELA Method

To extract the recent and past atmospheric conditions with daily resolution (daily mean SLP fields and square

SLP gradients) over the North Atlantic basin, the ESTELA method of P�erez et al. [2014a, 2014b] is applied. The

ESTELA method evaluates the source and travel time of wave energy reaching a local area. Thus, following

the methodology proposed by Camus et al. [2014b], a dynamic predictor is defined by a local component

which represents short-wave-period seas and a regional one which represents long-period swell. A local area

(green rectangle in Figure 2) covering latitude from 40�N to 50�N and longitude from 20�W to 5�W with 1

day of temporal coverage (the same as the wave record) and a regional area covering latitude from 35�N to

70�N and longitude from 60�W to 5�W with 4 days of temporal coverage (the wave record day and three pre-

vious days) are defined to extract the recent and past atmospheric conditions with daily resolution (daily

mean SLP fields and square SLP gradients) in these areas over the North Atlantic basin.

3.1.2. Step 2: Principal Component Analysis

A Principal Component Analysis (PCA) is then applied to the SLP fields to obtain the dominant spatial vari-

ability patterns (EOFs) and their corresponding temporal coefficients (PCs). To reduce the dimensionality of

the temporal SLP fields while preserving the maximum variance of the sample data, the first 36 modes from

the PCA analysis (explaining 95% of the variance) are selected as the predictor of the wave data in the

Atlantic basin. As an example, the covariate associated to the first mode is mathematically expressed as

PC1(t), where t is time. The PCs are the covariates for both models fitted below.

Figure 2 shows the first four EOFs and the corresponding PCs (PC1(t), PC2(t), PC3(t) and PC4(t)) of the predic-

tor, the PCs are standarized and the EOFs multiplied by the corresponding standard deviation for easy com-

parison. The EOFs are defined by the anomalies of SLP and squared SLP gradients in the generation and

local areas. The SLP anomalies are represented by contour lines, with positive anomalies in red and negative
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anomalies in blue. Note that in the case of the regional area, the land points are not considered in the pre-

dictor definition, but they are considered in the local area.

3.2. Predictand Fit

The homogeneous, continuous, and calibrated time series of multivariate wave climate described in section

2.2 representing the predictand in the MUSCLE-morpho model is transformed into a Continuous-time Mar-

kov chain [Norris, 1997a,1997b] in three steps.

3.2.1. Step 1: Sea State Classification

In the first step of the predictand fit, the multivariate continuous time series is categorized into discrete sea

states by classification techniques. Following Camus et al. [2011], the K-means algorithm technique (KMA) is

applied to multivariate time series of wave height, period, and direction. The maximum dissimilarity algo-

rithm (MDA) is applied as a centroid initialization technique to force the KMA technique to correctly

describe the diversity of the wave climate [Camus et al., 2011]. This method is applied to the GOW multivari-

ate data set from 1960 to 1989, to obtain N5 16 sea states clusters. We note that 16 clusters are selected

(i) for the sake of simplicity, (ii) to facilitate implementation, fit, and interpretation of the model results and

(iii) to reduce computational effort. The classification produced by the KMA algorithm applied to the predic-

tand data is shown in Figure 3. The black and colored points represent the centroids and classes of the pre-

dictand data, respectively.

Figure 2. The first four empirical orthogonal functions (EOFs) and principal components (PCs) of the predictor (SLP). The SLP anomalies are represented by contour lines, with positive

anomalies in red and the negative anomalies in blue. The anomalies of the squared SLP gradients are represented with blue-white-red scale. The green point represents the study site,

and the green polygon represents the local area for the predictor.
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3.2.2. Step 2: Time Series Reduction

Once the classification is obtained, each hourly record of wave height, period, and direction belongs to one

of the 16 clusters namely, Sea States (SS). Subsequently, the hourly data are categorized in terms of event

sequence and duration. The event sequence time series represents the evolution (ordering) in time of the SSs.

Figure 3. (a) Multivariate classification and time series of (b) wave height, (c) period, and (d) direction reduced in terms of cluster sequencing and duration. The different colored bins

represent the different clusters. The width of the bins represents the duration within each cluster, and the height of the bin represents the minimum and maximum value taken for each

variable of the multivariate wave climate.
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The duration time series represents the persistence of each SS. The projection of the multidimensional initial

data (regardless of the size) into event sequence and duration time series using classification techniques

seeks to preserve the (i) probability of being within a particular SS for a duration d and (ii) the probability of

changing between one SS ni to another nj. In step 3, models for both duration and event sequence are

obtained including any global atmospheric pattern, seasonality, interannual variability, long-term trends,

and autocorrelation relationships in their definition. An integer value between n5 1 and n5 16 is arbitrarily

assigned to each SS, as in Figure 3, resulting in (i) the sequence of SS, which is modeled with a time-

dependent logistic model, and (ii) the sequence of persistence for each SS, which is modeled with a time-

dependent exponential distribution. This procedure reduces the multivariate time series to a bidimensional

data set in SS sequence and persistence space as shown in Figure 4.

3.2.3. Step 3a: Persistence Model

In this section, we describe the procedure to obtain the persistence model. We fit a regression model

for each SS cluster based on a time-dependent Exponential Distribution (ED). The lone scale parameter

rt, is obtained using pseudo-optimal selection techniques following M�ınguez et al. [2010]. SS persistence

records are assumed to be independent random variables. The persistence Dt of each cluster nj at time t

follows an ED with a time-dependent scale parameter rt, and a probability density function (PDF)

given by:

gðdt; rtÞ5
1

rt
e
2

dt
rt (1)

Note that Dt is the random variable associated with the persistence of a particular cluster at time t and dt is

a particular value or data of the corresponding random variable. To introduce seasonality, long-term trends

and the influence of different covariates (predictor indices defined in section 3.1), the model proposed by

Men�endez et al. [2009] and M�ınguez et al. [2010] is formulated for the scale parameter as follows:

log ðrtÞ5a01
X

Pr

i51

½a2i21cos ðixtÞ1a2isin ðixtÞ�1aLT t1
X

Qr

k51

acok PCkðtÞ (2)

where t is given in years, log ðrtÞ ensures positivity of the scale parameter (rt> 0), a0 is the mean value, ai

are the harmonic amplitudes, x52p=T is the angular frequency, T is a period of one year, and Pr is the num-

ber of sinusoidal harmonics to be considered within the year, aLT and acok are the coefficients of the long-

term trends and covariates, respectively, Qr is the number of covariates considered, and PCk(t) is the value

of covariate k at time t.

The parameters are estimated maximizing the likelihood function and the optimal combination of parame-

ters is obtained minimizing the Akaike Information Criteria (see details in M�ınguez et al. [2010]). (Supporting

information Table S1file shows the optimal coefficients obtained for each SS.)

Figure 4. Reduction of the multivariate time series into a continuous-time Markov chain as proposed by Norris [1997a,1997b].
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3.2.4. Step 3b: Sequence Model

Step 3b consist of modeling the SS sequence using an autoregressive logistic model (ALR) that allows the

simulation of synthetic sequences of SSs while taking into account different covariates such as seasonality,

predictor indices (PCk(t) defined in section 3.1) and autoregressive terms. Appropriately modeling SS

sequence is important because it is known that sea conditions at any given point in time depend on the

previous conditions and may be affected by atmospheric behavior of both the present and previous days.

Moreover, the qualitative response of the ALR model is useful when working with classified data. Further

information related to the theoretical foundation and covariate implementation can be found in Guanche

et al. [2013]. Here, the fitting process is described briefly.

Let Yt; t51; . . . ;N be the observations of SS at time t, with the following possible outcomes Yt 2 f1; . . . ; nssg

related to each SS. Considering Xt; t51; . . . ;N to be a time-dependent row vector of covariates with dimen-

sions ð13ncÞ (i.e., seasonal cycle, principal components PCk(t) of synoptic circulation, long-term trend, etc.),

the autoregressive logistic model is stated as follows:

Prob ðYt5ijYt21; . . . ; Yt2e; XtÞ5

5

expðb0;i1b1;icosxt1b2;isinxt1
X

npc

j51

bPCj;i PCjðtÞ1bLTi t1
X

e

j51

Yt2jcj;iÞ

X

nss

k51

expðb0;k1b1;kcosxt1b2;ksinxt1
X

npc

j51

bPCj;kPCjðtÞ1bLTk t1
X

e

j51

Yt2jcj;kÞ

;

8i51; . . . ; nss

(3)

where t is given in years, b0,i correspond to annual mean values, and b1,i and b2,i are the harmonic amplitudes.

PCj(t) are row vectors of the npc different covariates, and bPCj;i is the corresponding parameter vector. bLTi repre-

sents the long-term trend effects. Y t– j is the SS of the previous j-states, cj,i is the parameter associated with

previous j-state, and the order e corresponds to the number of previous states that influence the actual SS.

Parameter estimation is performed using the maximum likelihood estimator, which requires the definition

of the likelihood function. The criteria to choose the final model, i.e., the order of the auto-regressive com-

ponents, seasonality, number of predictor indices, etc., are based on statistical significance, in particular, the

likelihood ratio (LR) statistic (see details in Guanche et al. [2013]).

The model includes terms representing harmonics, covariates, and a second-order Markov Chain. (The coef-

ficients for the different terms in (3) are presented for each SS in supporting information Table S2 file.)

4. Model Simulation/Validation

Once the fitting process is completed, the model allows for the simulation of categorical synthetic time series of

SSs (like a continuous-time Markov chain; Norris [1997a,1997b]). Note that the model can be performed as: (i) an

input reduction technique, allowing for the generation of synthetic series of SSs representative of past wave cli-

mate characteristics. (ii) A model of future SS time series including changes in global climate system, and thus

changes in magnitude, frequency, persistence, and event sequence of the wave climate. Figure 1 shows the

procedure to simulate nominal synthetic series of SSs in the two cases above. We describe these methods in

the following two sections, one for the predictor simulation and the other for the predictand simulation.

4.1. Predictor Simulation

While the purpose of this research is not to define a new methodology for simulating predictor variables, it is

important to mention the works in this field of Guanche et al. [2013] for inferring daily covariate indices from

monthly sea level pressure fields, P�erez et al. [2014, 2015] for computing future regional multimodel projections

of surface variables driven by the atmospheric circulation (from the different global climate models, GCMs) based

on weather types and statistical downscaling. For reducing uncertainty in temporal series of SS predictions, histor-

ical SLP fields, preprocessed as in section 3.1, are used as predictor covariates in the simulation model.

4.2. Predictand Simulation

Step 1 of the predictand simulation procedure involves selecting a SS cluster at time ti. This is computed, by

first obtaining occurrence probabilities of each cluster Y from the ALR model at time ti with nc covariates

(simulated PCs) considered and e previous SSs. Formally, the categorical distribution that is the generalization of
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Figure 5. Monthly probability of occurrence of each SS for the validation period, for the (top) historical and (bottom) synthetic series. Interannual variations along years are also shown

in this plot, as those presented in the group 10. In the synthetic series, the variability is smoothed because it represents the mean value of the 100 simulations.

Figure 6. Daily probability of occurrence of each SS for an average year over the validation period for the (top) historical and (bottom) synthetic series. The variability presented in the

simulated series differs from the historical one because it represents the mean value of the 100 simulations.
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the Bernoulli distribution for a qualitative

random variable is obtained at time ti

from the ALR model. The parameters

specifying the probabilities of each pos-

sible outcome are constrained only by

the fact that each probability must be

in the range 0 to 1, and all must sum

to 1. Thereby the corresponding SS at

time ti from the cumulative probabilities

of the categorical distribution is selected

applying a simple Monte Carlo (MC)

method. Step 2 models the persistence

in the current SS ni. The scale parameter

of the ED at time ti for cluster ni is

obtained accordingly to (2) with Qr

covariates. This allows the generation of

probabilities based on an Exponential

Distribution (ED), used in Step 3 for

obtaining the persistence di of cluster ni

at time ti. The persistence value di is

again obtained by correlating cumula-

tive ED probability of persistence with a

random number in [0,1] from a simple

Monte Carlo (MC) method. In Step 4, the

synthetic time series of SSs is con-

structed from the cluster and persistence

values obtained in the previous steps,

and a new time instance ti115ti1di is

calculated. These steps (1–4) are

repeated until the synthetic time series

of intended length is completed.

Here, the procedure described above is

applied for the years 1990–2013 to vali-

date the methodology. The simulation

(see Figure 1) is repeated 100 times and

95% confidence intervals are given with

results. The initialization of each simula-

tion requires the assumption of a number

of previous SSs for the Autoregressive

term of the ALR model. In this case, the

previous e5 2 SSs have been taken

because of the highest autoregressive

term in the best sequence model has

order 2.

4.3. Validation

In this section, results are discussed to validate the prediction capabilities of the model for the Northwest

coast of Spain. This validation is performed by comparing the results of the simulations with historical data.

In this validation, we compare: (i) probability of occurrence of each SS, (ii) probability of transfer between

SSs, (iii) mean wave energy flux, (iv) mean wave energy flux direction and (v) modeled shoreline evolution.

Additionally, several temporal scales (i) concerning the interannual, (ii) seasonal, and (iii) daily behavior are

analyzed. The agreement between the simulated and historical data is computed with the correlation coeffi-

cient (q), the root mean square error (RMS), and the bias.

Figure 7. Comparison between historical (x axis) and simulated (y axis) (top) total

occurrence probability of each cluster and (bottom) monthly occurrence probabil-

ity for each cluster. Green dots represent mean values, and blue ones represent

95% confidence intervals.
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4.3.1. Maintaining the Probability of Occurrence

In long-term morphodynamic simulations, the characterization of the wave climate is critically important. Thus

any synthetic seriesmust reproduce ‘‘events’’ similar to historical ones. In terms of categorical series, the probability

Figure 8. Comparison between (left) historical and (right) simulated total transition probabilities between clusters.

Figure 9. Monthly transition probability between clusters. (top, left) Matrix corresponds with January, and (bottom right) with December. The month increases from left to right and top

to bottom (January, February, March; April, May, June; July, August, September; October, November, December). The historical matrices are plotted on the left side and the simulated

matrices are plotted on the right side. Each matrix is defined following the cluster grouping as in Figure 8.
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of occurrence of each SS must be equal.

Figure 5 shows that seasonality is well

reproduced over several years and Figure

6 demonstrates that the model is able to

reproduce the seasonality over an aver-

age year with daily resolution.

Figure 7 illustrates the total occurrence

probability of each cluster in the vali-

dation period (1990-2013) and reveals

that the historical and simulated tem-

poral series are consistent. The correla-

tion coefficient between observed and

simulated occurrence probability (q) is

greater than 0.95, with a confidence

interval CI < 60:005, an unbiased pop-

ulation and RMS error lower than 2%.

4.3.2. Transition Probabilities

A key factor for wave input in long-term

morphodynamics is the sequence of the

different ‘‘events.’’ Including patterns of

wave chronology allows consideration of

beach memory. Thus, the transition

probability between SSs must be simu-

lated properly.

Figure 8 compares the transition probabilities between clusters in a matrix layout, the correlation

coefficient between observed and simulated transition probabilities q obtained exceeds 0.97 (CI

<60:0015) and the RMS is lower than 3.0%. Figure 9 compares the observed and modeled monthly

transition matrices. Here, q exceeds 0.85 (CI < 60:015), the population is unbiased and the RMS is

lower than 9%. Note that the diagonals in the matrices are empty. The probability of transition

between the same SSs is zero and the persistence in the same group is obtained with the persistence

model, e.g., equation (1).

Figure 10 illustrates the observed versus simulated total transition probabilities between clusters in the vali-

dation period (1990–2013). The correlation coefficient (q) exceeds 0.95, with a low confidence interval

CI < 60:005, an unbiased population and a RMS error lower than 2%.

4.3.3. Mean Energy Flux and Mean Energy Flux Direction

In this section, the wave energy flux (intensity and direction) are validated because of their importance in

sediment transport calculations, as shown by Mil-Homens et al. [2013] and van Rijn [2014]. Furthermore, the

transport of energy by ocean surface waves is crucial for the development of devices capturing wave power

and in the estimation of the cost-efficiency of wave energy farms [Reguero et al., 2015].

In our work, the Energy Flux (EF) is obtained from the wave spectral parameters using the expression:

EF5
qg2

64p
T210H

2
s (4)

where T210 is the energy period that is related with the spectral mean period, T01, using T2105
m21

m0
5aT01.

Here, a is assumed to be 0.538 [Reguero et al., 2015] and T01 � T02.

As shown in Figures 11 and 12, the MUSCLE-morpho model correctly reproduces the total wave EF and the

mean EF direction at seasonal scale and interannual scale, respectively. This result confirms that the

MUSCLE-morpho emulator is able to reproduce the time-varying evolution of wave energy flux.

4.3.4. Morphological Application

Finally, we apply wave climate time series developed by MUSCLE-morpho to simulations of long-term mor-

phodynamics. We perform comparisons of morphodynamic simulations using the nonlinear, implicit one-

line model of Vitousek and Barnard [2015] and compare results produced with the real wave climate to the

Figure 10. Comparison between historical (x axis) and simulated (y axis), total

transition probabilities between clusters. Green dots represent mean values and

blue ones represents 95% confidence intervals.
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simulated wave climate. Due to the implicit time-stepping procedure, the model is numerically stable for

arbitrarily large time steps and, thus, is ideally suited to long-term simulations of shoreline change. The per-

formance of the implicit model using input reduction is also compared against an explicit one-line model

that simulates the complete time series.

Conservation of sediment in the alongshore direction neglecting cross-shore transport is the basis for the

one-line shoreline model. The governing equation of the one-line model is given by

Figure 11. Comparison between historical (bars) and simulated (lines) (top) monthly mean energy flux and (bottom) monthly mean

energy flux direction. Solid lines represent mean values, and dashed lines represent 95% confidence intervals.
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@Y

@t
52

1

Dc

@Q

@X
; (5)

where Y is the cross-shore coordinate of the shoreline position, X is the alongshore coordinate, Dc is the

depth of closure, Q is the longshore sediment transport rate, and t is time [Larson and Kraus, 1997]. Many

one-line models are subject to a well-known physical instability in the presence of high angle waves [Ashton

and Murray, 2006]. To reduce this instability, we split the typical alongshore sediment transport formula into

nonlinear and linear transports according to

Q5Q0 hqsin ð2aÞ2ð12hqÞ2
dy

dx

� �

; (6)

Figure 12. Comparison between historical (bars) and simulated (lines) (top) monthly mean energy flux through years and (bottom)

monthly mean energy flux direction. Solid lines represent mean values, and dashed lines represent 95% confidence intervals.
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where Q0 represents the magnitude of the longshore transport rate, a5awave2ashoreline represents the angle

between the incident waves and the shoreline and the hq parameter weights the relative impact of the lin-

ear and nonlinear terms. Note that as waves become normally-incident, the linear and nonlinear transport

terms in equation (6) become identical. The longshore transport rate Q0, is given by the Shore Protection

Manual [SPM, 1984], Q05
q
16
HbCg;b

K
ðqs2qÞ�k, where q is the density of water, Hb is the breaking wave height,

Cg,b is the group velocity of the wave at breaking, K is an empirical constant, qs is the sediment density, and

k is the porosity of the sediment. Here we assume q5 1025 kg/m3, qs5 2650 kg/m3, k5 0.4, and

K5 0.0098.

We perform our numerical experiments along an idealized coastline of L5 2 km long with a shoreline orien-

tation of ashoreline5200� from the North (nautical convention), similar to the actual beaches in our study site

(section 2). Boundary conditions are no flux (Q5 0) at the lateral boundaries, consequently embayed beach

rotation driven by longshore sediment transport is essentially simulated. The model is run with hq5 0.7 and

N5 80 shoreline transects with �x525 m grid spacing. The depth of closure is assumed to be Dc5 15.5 m

following Birkemeier [1985].

The temporal discretization of the numerical method is varied for different model runs. We compare four

different models, two using historical hindcast waves (as described in section 2.2, hereinafter referred to as

Real) and two using the simulated waves obtained in section 4.2 for the period 1996–2006: (1) the first

experiment, REX, simulates the Real wave time series (hourly hindcast) using the EXplicit model with a fixed

time step of 50 s, (2) the second experiment, RIM, simulates the Real wave time series (hourly hindcast)

using the IMplicit model with a fixed time step of 1 h, (3) the third experiment, SIM, simulates the Synthetic

wave time series using the IMplicit model with a fixed time step of 1 h, (4) the fourth experiment, SIMA, sim-

ulates the Synthetic wave time series using the IMplicit model with a variable time step used to demon-

strate MUSCLE-morpho’s ability to ‘‘Accelerate’’ the morphodynamic simulations. Acceleration of each time

step is related to the persistence of the wave climate given by the duration of the SS. Table 1 summarizes

the features and execution times of the different numerical experiments described above.

Note that the variable time step in SIMA is linked with the relative energetic of various wave conditions,

being higher with lower energy conditions and lower with higher energy conditions as determined by the

persistence of the different SS clusters. Table 2 shows the minimum, mean, and maximum values of the

Courant number in the different experiments. The implicit model allows significantly higher Courant num-

bers compared to the explicit model, and the synthetic time series enable the implicit model to develop its

full potential in terms of efficiency.

Figure 13 illustrates one decade of shoreline evolution for the idealized coastal stretch for the four experi-

ments, each reproducing the seasonal and interannual variability of the shoreline position. Results are

Table 1. Run Times (Minutes: Seconds) for the Implicit and Explicit Models With the Simulated and Real Waves (SIMA, SIM, RIM, REX)

Runtimes (Each Run)

Time Series Model Time Step Runs Mean Max Min Speed Up

SIMA Simulated Implicit Variable 100 00:9.30 00:9.87 00:8.81 �28

SIM Simulated Implicit 1 h 100 01:42.85 01:48.06 01:38.70 �2.5

RIM Real Implicit 1 h 1 01:40.88 01:40.88 01:40.88 �2.5

REX Real Explicit 50 s 1 04:12.84 04:12.84 04:12.84 1

Table 2. Time Steps and Courant Numbers for the Implicit and Explicit Models With the Simulated and Real Waves

(SIMA, SIM, RIM, REX)

Courant Numbers

Time Series Model Time Steps Runs Min Mean Max

SIMA Simulated Implicit 4,544–5,068 100 0.37 55.13 2347.2

SIM Simulated Implicit 96,432 100 0.37 2.89 38.05

RIM Real Implicit 96,432 1 0.01 2.60 73.09

REX Real Explicit 6,943,033 1 0.00 0.04 1.00
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shown at 250m spaced transects 1 to 7, from x5 – 750 m to x5 750 m, with the domain ranging from x5 –

1000 m to x5 1000 m.

The comparison between (1) REX and (2) RIM shows the performance of the explicit method against the

implicit method (Figure 13). The implicit method reduces the execution time by a factor of three while

maintaining the behavior of the shoreline evolution. Comparing (1) REX or (2) RIM against (3) SIM, validates

that the input-reduced time series given by MUSCLE-morpho produces consistent long-term morphological

behavior. Figure 13 demonstrates that the synthetic time series retains the seasonal and interannual

response of the shoreline over a decade. The comparison between (3) SIM and (4) SIMA in Table 1 demon-

strates that using the MUSCLE-morpho synthetic time series reduces the computational time by several

orders of magnitude, even in a relatively simple one-line modeling framework.

This numerical experiment demonstrates that the model is ready to reproduce the morphological evolution

over a range of different time scales (seasonal, interannual, and beyond). The methods presented here are

ideally suited to ensemble prediction, and thus provide a basis for a highly efficient probabilistic shoreline

change modeling framework. In this particular application, we have forced the model to follow the historical

evolution of the daily SLP fields. Further research will be needed to couple this model with a stochastic

model for time series of daily SLP fields [Guanche et al., 2013].

5. Conclusions

The MUSCLE-morpho model allows for the generation of synthetic time series of the multivariate wave cli-

mate accounting for past characteristics. The approach can generate long-term multivariate time series of

sea state parameters (wave height, period, and direction) taking into account many scales of variability (sea-

sonal, interannual) that affect long-term (decadal and beyond) morphodynamics. The MUSCLE-morpho

Figure 13. Shoreline evolution over a decade. For the simulated waves, the mean value of 100 simulations (solid line) and 95% confidence intervals (colored area) are represented.
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model can also be used to generate future wave climate time series and account for possible changes in

the global climate system by means of changes in the covariates (e.g., SLP fields). This method can also cap-

ture long-term changes in persistence and event sequence of the wave climate. Efficient prediction of the

long-term wave climate is vital to modeling long-term morphodynamics. Furthermore, probabilistic,

ensemble-prediction methods will become increasingly important as we further develop the range of possi-

ble climate change scenarios. The MUSCLE-morpho modeling system, described here, represents an input

reduction tool to drive the next generation of morphodynamic models.
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