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Abstract— Recently, hyperspectral image classification based 

on deep learning has achieved considerable attention. Many CNN 

classification methods have emerged and exhibited superior 

classification performance. However, most methods focus on 

extracting features by using fixed convolution kernels and 

layer-wise representation, resulting in feature extraction 

singleness. Additionally, the feature fusion process is rough and 

simple. Numerous methods get accustomed to fusing different 

levels of features by stacking modules hierarchically, which ignore 

the combination of shallow and deep spectral-spatial features. In 

order to overcome the preceding issues, a novel multiscale 

dual-branch feature fusion and attention network (MSDBFA) is 

proposed. Specifically, we design a multiscale feature extraction 

module (MSFE) to extract spatial-spectral features at a granular 

level and expand the range of receptive fields, thereby enhancing 

the multiscale feature extraction ability. Subsequently, we develop 

a dual-branch feature fusion interactive module (DBFM) that 

integrates the residual connection's feature reuse property and 

the dense connection's feature exploration capability, obtaining 

more discriminative features in both spatial and spectral branches. 

Additionally, we introduce a novel shuffle attention mechanism 

that allows for adaptive weighting of spatial and spectral features, 

further improving classification performance. Experimental 

results on three benchmark datasets demonstrate that our model 

outperforms other state-of-the-art methods while incurring the 

lower computational cost. 
 

Index Terms—Hyperspectral image classification, multiscale 

feature extraction module (MSFE), Dual-branch feature fusion 

(DBFM), Shuffle attention block, Convolutional neural network 

(CNN)  

Ⅰ. INTRODUCTION 

yperspectral images (HSIs) have recently gained 

increased attention in the field of remote sensing. 

Hyperspectral remote sensing is a multi-dimensional signal 

acquisition technology that combines imaging and 

spectroscopy technology, which not only detect 

two-dimensional space characters but also one-dimensional 

spectral information of targets. Hyperspectral images have the 

following advantages over conventional remote sensing images. 
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To begin, the spectral resolution is high, making for the 

acquisition of continuous spectral curves for varieties of ground 

objects. Meanwhile, the spectral coverage range is expanded, 

allowing for more detection of ground object responses to 

electromagnetic waves. Additionally, HSIs incorporate both 

spatial and spectral features and contain a greater amount of 

detailed information. Exactly due to these characteristics, HSIs 

play a significant role in agricultural detection [1]-[2], medical 

diagnosis [3]-[4], atmospheric monitoring [5]-[6], hydrological 

detection [7] and other fields. The essence of the hyperspectral 

remote sensing image classification is assigning each pixel 

vector to a specific land cover class. How to fully exploit the 

abundant spatial and spectral features becomes a great 

challenge in HSIs classification.  

The traditional classification methods of HSIs are all based 

on the handcrafted feature. Early-stage classification methods 

such as Support Vector Machine [8], Random Forest [9] and 

Multiple Logistic Regression [10], they are all aimed at 

utilizing one-dimensional spectral features to complete the 

classification. Although the large number of spectral bands 

usually implies more potential information, the classification 

accuracy rises at first and then decreases owning to the 

high-dimensional data characteristics of HSIs that contribute to 

the Hughes phenomenon [11]. As a result, more and more 

studies focus on the dimensionality reduction of the spectral 

dimension [12]. Currently, the widely used methods include 

PCA [13] and LDA [14]. While these methods compress the 

spectral dimension and reduce the spectral redundancy, noise 

typically exists, which is caused by lighting and imaging 

equipment. Due to the spatial resolution limitation and the 

complexity of the imaging process, the phenomena of the same 

land-cover may exhibit spectral dissimilarity, while the spectral 

properties of different materials may be indistinguishable [15]. 

In recent years, deep learning occupies a dominant position 

in computer vision due to its robust feature representation 

ability. Deep learning eliminates the tedious process of feature 

engineering. Through an end-to-end structure, the network can 

automatically extract abstract features hierarchically. Deep 

learning (DL) has achieved great success in the fields of image 

classification [16], target recognition [17] and semantic 

segmentation [18]. For the first time, Chen et al. [19] apply DL 

to HSIs classification. Till then, more and more deep learning 

methods [20]-[25] have been existed in HSIs classification. For 

instance, [26] perform the feature extraction and classification 

with Deep Belief Network simultaneously. Xu et al. [27] 

generate HSIs classification map by combination of stacking 
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encoders. While both of the preceding methods have 

demonstrated considerable success, whereas they rely on the 

spectral vector of pixels to complete the classification and miss 

the spatial distribution of image pixels. The spatial context 

information of the original data is destroyed, resulting in the 

loss of useful spatial information. As a result, the research on 

HSIs classifications need to be further carried on. Researchers 

begin to place great emphasis on the spatial structure 

information of HSIs. A lot of methods based on 2-D CNN have 

been proposed to apply in the HSIs classification [28]-[31]. For 

instance, Makantasis et al. [28] developed a neural network 

model based on 2-D CNN. The intermediate pixels are packed 

into fixed-size cubes by filling surrounding pixels and then sent 

into the neural network to extract spatial information. This data 

processing technique is quite novel and achieve an excellent 

classification performance. Li et al. [32] proposed a novel 

pixel-pair method to exploit the similarity between pixels and 

use a majority voting strategy to generate the final label. Pan et 

al. [33] designed a small-scale data-driven method, 

multi-grained network (MugNet) to deal with the limited 

samples in HSIs classifications. Cao et al. [34] developed a 

Bayesian HSIs classification method, which combines the 

CNN and a smooth Markov random field to exploit the spatial 

information. However, the most distinguishing features of HSIs 

are the spectral diversities. Studies frequently place a greater 

emphasis on spatial characteristics but appear to overlook 

spectral characteristics. Therefore, later researches begin to 

explore the combination of spatial and spectral features to 

complete the classification tasks. For the first time, [35] 

proposed a hyperspectral image classification algorithm based 

on the spectral-spatial features, in which spectral information 

was fused with the spatial information through the 

transformation of the network. The classification task was 

carried out on the fused features, and the results were excellent. 

Li et al. [36] proposed a double-branch spatial-spectral 

extraction and fusion method based on 2D convolutional 

network which further improved the discriminative feature 

extraction capacity. Liu et al. [37] introduced LSTM to HSIs 

classification in a novel way, including spectral and spatial 

LSTM blocks. The method passed each pixel's spectral-spatial 

features to the softmax layer, which generated two distinct 

types of results, and then used the decision fusion method to 

generate classification renderings. 

CNN has strong feature extraction capabilities which can 

achieve the high-level abstract features by stacking modules 

and deepening the network layers. Nonetheless, On the one 

hand, a deeper network introduces additional parameters into 

the training process and lengthens the training time. On the 

other hand, gradient vanishing impairs back propagation and 

degrades the classification performance. For the former, the 

continued development of the high-performance graphics 

processing units (GPUs) [38] have resulted in a significant 

reduction in training time when confronted with a large training 

parameter network. For the latter, He et al. [39] propose a 

residual network that uses skip connections to ensure that 

gradients circulate smoothly in the deeper network, alleviating 

the problem of gradient vanishing. Soon after, residual 

networks gained popularity in the field of computer vision, and 

they were also applied to the classifications of HSIs. For 

instance, Zhong et al. [38] designed a spectral-spatial residual 

network (SSRN) with two consecutive residual blocks in order 

to learn the discriminative features in the HSIs, which can 

perform well with small training samples. Lee et al. [41] 

enhance the learning efficiency of traditional CNN models by 

introducing residual network and use multiscale convolution 

kernels to explore the spatial-spectral features in HSIs. Song et 

al. [42] develop a deep residual network with an attention 

mechanism to learn HSIs discriminative features and obtain 

further improvement in classification performance. Paoletti et 

al. [43] designed a deep pyramidal residual network for HSIs 

classification. 

Recent works in attention mechanisms have shown it to be an 

extremely powerful tool to boost the classification performance 

According to the biological cognitive research, human being 

receive significant information by focusing on a few critical 

items and ignoring others [44]. Similarly, attention in neural 

networks has the same function, which has been successfully 

applied to various tasks in the computer vision [45]-[46]. In the 

HSIs classification tasks, many methods based on existing 

attention mechanism also emerged, demonstrating the 

effectiveness of improving the classification performance. 

Meanwhile, multiscale feature extraction is a critical 

component of hyperspectral image classification, as it has a 

significant impact on the classification performance. Existing 

multiscale extractors [47] are limited to extracting features 

from fixed receptive fields, and thus cannot extract both global 

and local features simultaneously. To say the least, even if the 

multiscale features have been extracted from the front layers of 

the network, the fusion process of the features is rough, 

resulting in information loss in front layers. 

Drawing intuition from the success of the above-mentioned 

methods, a novel 3D dual-branch feature extraction and fusion 

attention network is proposed for HSIs classification. The main 

contributions of this article are summarized as follows:  

(1) Many existing classification methods based on CNN 

extract the multiscale spatial-spectral features with layer-wise 

representations and fixed kernel size. Different from them, we 

design a 3-D multiscale feature extraction module (MSFE) 

which refers to the multiple available receptive fields at a more 

granular level. The MSFE is capable of performing multiscale 

feature extraction in a lightweight and efficient manner. 

(2) In order to fully excavate the potential of spatial and 

spectral feature representation of HSIs, a 3D dual-branch 

feature interactive module (DBFM) is proposed for 

classification. Different from the existing parallel processing 

network with stacked convolution modules, DBFM is a 

dual-branch structure that consists of multiple filters with 

additive links and concatenative links. To be brief, 

concatenative links focus on new effective feature exploration 

in HSIs, while additive links enhance the feature reuse in 

previous layers. We integrate the two types of links in DBFM 

for fusing the spatial and spectral features in different levels of 

the network and assimilate the particular features from previous 

layers. 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2021.3103176, IEEE Journal

of Selected Topics in Applied Earth Observations and Remote Sensing

 3 

 
 (3) Given that the significant contribution of distinct spatial 

and channel features to classification results in HSIs, we 

introduce a 3-D spatial-channel attention block to boost the 

network's feature representation capability. Existing attention 

blocks focus on capturing the dependencies in spectral 

dimension, while our proposed 3-D attention block improves 

classification performance by creatively altering the 

conventional weight distribution method in both channel and 

spatial dimensions. 

(4) Extensive experiments on four publicly available datasets 

are conducted. The results indicate that our model outperforms 

state-of-the-art methods. 

The remainder of this article will be organized in the 

following manner. First, the proposed MSFE, DBFM, attention 

block and corresponding algorithms are described in Section II. 

Next, the section III details the associated experiments and 

analysis. Finally, Section IV concludes the article with 

observations and conclusions. 

Ⅱ. PROPOSED METHOD 

This section begins with a brief overview of the proposed 

MSDBFA model. And next we will elaborate the multiscale 

feature extraction (MSFE), dual-branch feature interactive 

module (DBFM) and attention block. 

A. Overview of proposed model 

The main procedure of the proposed MSDBFA is shown in 

Fig. 1 (a). We take the Indian Pines dataset for example to 

illustrate the detail process of the algorithm. Firstly, principal 

component analysis (PCA) is applied to reduce the spectral 

dimension and suppress the band noise in original HSIs. 

Additionally, PCA effectively mitigates the Hughes effect and 

thereby improves classification performance. The HSIs are then 

segmented into 3-D image cubes centered on labeled pixels and 

sent to the multiscale feature extraction module (MSFE). The 

MSFE is intended to extract multi-scale spatial-spectral 

features at a granular level and thus expand the range of 

receptive fields. Following that, the MSFE-processed image is 

evenly divided into two feature subsets and fed into the 3-D 

dual-branch feature interactive module. To achieve deep 

feature fusion in both spatial and spectral dimensions, we use 

hierarchical layers comprised of three DBFM modules with 

different kernel filters. Each DBFM has a spatial and spectral 

branch corresponding to it. The two branches combine shallow 

and deep features via additive and concatenative links to 

produce discriminative spatial-spectral features. Additionally, a 

Shuffle attention block is inserted into the network to 

adaptively filter out critical features for classification, allowing  

 
 
Fig. 1. (a) Overall flowchart of the proposed MSDBFA. (b) Structure of the MSFE. (c) Structure of the DBFM 
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the network to focus more on sensitive features while 

suppressing weaker ones. As a result, we will have 

discriminative feature maps for various classes. After 

completing above-mentioned operations, the feature maps are 

converted to vectors using an average pooling layer and then 

fed into the fully connected layers via softmax function to 

obtain the final classification maps. 

B. Structure of MSFE 

Multiscale feature representations are essential for various 

computer vision tasks. At the moment, the majority of methods 

rely on stacking multiple kernel filters in hierarchical layers to 

extract multiscale features. For instance, [46] makes use of 

spatial pyramid pooling to enhance the multiscale ability in 

each layer. [47] develops a feature pyramid that combines 

features at various scales. 

However, these methods extract features in a layer-wise 

manner and with relatively fixed receptive fields. In contrast to 

these existing methods, we aim to improve the layer-wise 

multiscale representation capability and to achieve multiple 

available receptive fields at a more granular level. As a result, 

we developed the MSFE module for the purpose of extracting 

multiscale features from HSIs. As shown in Fig. 1(b), the input 

of original HSIs can be denoted as 
C D W H

U
   ,whereU represents the image patch. C, D, W and 

H denotes the channel, spectral dimension, width, and height of 

the image patch, respectively. we subdivided the original 

feature map into 4 subsets along the channel, denoted by 

iU ,where {1,2,3,4}i  . They all retain the same spatial sizes 

and spectral dimensions, but the channel count is reduced to 1/4 

in comparison to the original feature map U . Subsequently, 

 
 

Fig. 2. Architecture of the SA Block 

 

TABLE Ⅰ 
CONFIGURATION OF THE MSDBFA MODEL FOR THE INDIAN PINES DATASET (SPATIAL SIZE=1515) 

 Layer Name Input Shape Kernel size padding Stride Filters Output Shape 

MSFE 

Conv3D_pre (1, 30, 15, 15) (1, 1, 1) (0, 0, 0) (1, 1, 1) 32 (32, 30, 15, 15) 

Split (32, 30, 15, 15) ── ── ── ── #4 (8, 30, 15, 15) 

Conv3D_1 (8, 30, 15, 15) (3, 3, 3) (1, 1, 1) (1, 1, 1) 8 (8, 30, 15, 15) 

Conv3D_2 (8, 30, 15, 15) (3, 3, 3) (1, 1, 1) (1, 1, 1) 8 (8, 30, 15, 15) 

Conv3D_3 (8, 30, 15, 15) (3, 3, 3) (1, 1, 1) (1, 1, 1) 8 (8, 30, 15, 15) 

Conv3D_4 (8, 30, 15, 15) (3, 3, 3) (1, 1, 1) (1, 1, 1) 8 (8, 30, 15, 15) 

Concatenate #4 (8, 30, 15, 15) ── ── ── ── (32, 30, 15, 15) 

── Split (32, 30, 15, 15) (1, 1, 1) (0, 0, 0) (1, 1, 1) 16 #2 (16, 30, 15, 15) 

DBFM1 
Spa_Conv3D_1 (16, 30, 15, 15) (1, 3, 3) (0, 0, 0) (2, 1, 1) 32 (32, 15, 13, 13) 

Spe_Conv3D_1 (16, 30, 15, 15) (5, 3, 3) (2, 0, 0) (2, 1, 1) 32 (32, 15, 13, 13) 

DBMF2 
Spa_Conv3D_2 (32, 15, 13, 13) (1, 3, 3) (0, 0, 0) (2, 1, 1) 64 (64, 8, 11, 11) 

Spe_Conv3D_2 (32, 15, 13, 13) (5, 3, 3) (2, 0, 0) (2, 1, 1) 64 (64, 8, 11, 11) 

DBFM3 
Spa_Conv3D_1 (64, 8, 11, 11) (5, 3, 3) (2, 0, 0) (2, 1, 1) 96 (96, 4, 9, 9) 

Spe_Conv3D_2 (64, 8, 11, 11) (1, 3, 3) (0, 0, 0) (2, 1, 1) 96 (96, 4, 9, 9) 

SA 

Block 

Spa_attention (96, 4, 9, 9) ── ── ── ── (12, 4, 9, 9) 

Spe_attention (96, 4, 9, 9) ── ── ── ── (12, 4, 9 ,9) 

aggreation #2 (12, 4, 9, 9) ── ── ── ── (96, 4, 9, 9) 

GLP Global pooling (96, 4, 9, 9) ── ── ── ── (96, 1, 1, 1) 

FC1 
Dense1 (96,) ── ── ── ── (128,) 

Dense2 (128,) ── ── ── ── (16,) 
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each feature subset is sent to the convolutional sequential 

(Conv-BatchNorm-ReLU) with kernel size 3×3×3 to generate 

a new feature map. To avoid size inconsistency, we fill the data 

with the padding operation. The convolutional sequential 

operation is denoted by ()iF . To strengthen the feature reuse of 

previous layer and reduce the calculating parameters, we omit 

convolution for 1U in the process of forward propagation, 

namely 1 1U Y= . After adding with the output of 1()iF − ,the 

remaining feature subsets 
, {2,3,4}i iY  are fed into ()iF . As a 

result,
i

Y can be written as: 

 

 
1

1

1

1

( )        2

( ) 2 4

i i

i i i

U i

Y F U i

F U Y i−

=
= =
 +  

 (1) 

 

According to the forward propagation, it can be found that 

the potential receptive field of each convolutional layer is a 

segmentation of { , 4}iU i  . Each time a convolutional operator 

is applied, the outputs will have a larger range of receptive field. 

Due to the effect of the combination, the final output of the 

module may contain multiple receptive fields with varying 

scales. In order to further improve the representative ability of 

the model, we concatenate all the feature subsets and pass them 

through a 1×1×1 convolution with ReLU activation to obtain 

more nonlinear characteristics. 

C. Structure of DBFM   

As is well known, ResNet [39] can be achieved by 

sequentially stacking residual blocks. The features are added 

element-wisely to the output ones through shortcut connections, 

which not only enhances the information propagation but also 

speeds up the network’s training. While concatenative links in 

DenseNet [50] enable each layer to receive raw data generated 

by preceding layers, which is useful for exploring new feature. 

Fig. 3 shows the connection pattern differences between 

additive links and concatenative links. To sum up, we propose a 

3D dual-branch feature interactive module for fusing these 

multiscale features in a novel way that includes multiple filters 

with additive and concatenative links in order to obtain 

discriminative spatial-spectral fused features. As is shown in 

the Fig. 1(c), the original input HSI cube X is indicated 

by C D H W
X

   , which has been evenly divided into two cubes 

along the channel C ,denoted by /2 , {1,2}C D H W

iX i
    . We 

pass the two feature subsets into spatial and spectral branch 

separately in the DBFM block. In the spatial branch, for the 

feature subset 1X , we adopt 1×3×3 spatial kernels with 

subsampling strides of (2, 1, 1) to obtain feature maps with 

representative spatial features. Similarly for the spectral branch, 

we apply 5×3×3 kernels with strides of (2, 1, 1) to convolve 

with 2X  to achieve discriminative spectral features. 

Consequently, the outputs of two branches take advantage of 

the desired spatial and spectral features. To further reduce the 

computational parameters, we divide the feature 

maps 1X , 2X into two subsets respectively, denoted 

by /2

1 {1,2}j C D H WX j    , /2

2 {1,2}k C D H WX k    . Due to the 

1

1X  and 1

2X contain rich original features, we reserve them for 

subsequent concatenative link with previous fused feature map 

to explore new mied features. While for the 2

1X  and 2

2X , we 

combine them by additive links to strengthen the 

spatial-spectral feature fusion. Mathematically, it can be 

described as: 

 

 

2 2

1 2

1

1

1

2

,

,

fus

spatial fus

spectal fus

X X X

X concat X X

X concat X X

= 

 =  
 =  

 (2) 

 

Where
fusX represents the fused features which contain 

discriminative spatial and spectral features.  . .cocnat  is 

indicated that concatenative links between the original 

feature subset and fused features. It will enhance the feature 

fusion and explore some new features in other way. 

D. Structure of Attention block 

As we all know, various features contribute differently to the 

HSIs classification. Based on the fact, we introduce the 

attention mechanism here to allow the network to focus on 

useful features and neglect unsignificant ones. Existing 

attention block includes SENet [51], CBAM [52], GCNet [53], 

and so on. Among them, SENet is a representative channel 

attention architecture which apply the global average pooling 

and fully connected layers to recalibrate channel-wise feature 

response and remodel interdependencies between channels. 

GCNet is a lightweight and effective attention block which is 

used to construct global context feature. CBAM separates 

spatial and channel attention in order to capture representative 

features respectively, and then combines them to create a 

weighted feature map. Based on the fact that both spatial and 

channel attention are critical for HSI classification. Inspired by 

[54], we propose a novel lightweight spatial-channel attention 

block capable of effectively combining two distinct types of 

attention. As is shown in Fig. 2, for a given HSI 

cube C D W H
X

   , where C, D, W, H refers to the channel, 

dimension, width and height respectively. We divide X into G 

groups along the channel dimension, denoted by 1[ ,..., ]GX X X= , 

 
 

Fig. 3. Illustration of two type of links (a) additive links (b)concatenative 

links 
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/2C G D H W

kX
   . Each feature map will be segmented along 

the channel dimension into two branches, denoted 

by /2

1 2, C G D H W

k kX X
   . One branch is used to generate 

channel attention feature maps by acquiring the 

inter-relationship of channels, while the other branch generates 

spatial attention maps via the analysis of space location 

relationships.  

For the channel attention branch, we first adjust the 

channel-wise dimension of the feature map 1kX via global 

average pooling operation, and then use sigmoid activation to 

recalibrate the channel-wise weights. The output of the channel 

attention can be obtained by: 

 

 '

1 1 1 1 1

1 1

1
[ *( ( , )) ]*

H W

k k k

i j

X w X i j b X
H W


= =

= +
   (3) 

 

where
1

1 1

1
( , )

H W

k

i j

X i j
H W = =  represents the global average 

pooling (GAP) operation. /2 1 1 1

1

C G
w

   and /2 1 1 1

1

C Gb    are 

the two dynamic parameters to scale the feature map. 

( , )i j refers to the specific spatial position in HSIs cube.  is 

the sigmoid activation. For the spatial attention branch, we 

first use Group Norm (GN) to obtain spatial-wise statistics, and 

then, similarly to the channel attention branch, we introduce 

sigmoid activation to create a gating mechanism and generate 

the weighted feature map. As a result, the final output of spatial 

attention branch is followed by: 

 

 
2 2 2 2 2( * ( ) )*k k kX w GN X b X= +  (4) 

 

where ( )GN  represents the Group Norm. Other parameters are 

consistent with the channel attention branch. To obtain the final 

weighted feature map, the representative features obtained by 

the spatial and channel attention branches require to be 

aggregated with concatenative links, denoted 

by 1 2[ , ]k k kX concat X X= .And then, we use the channel shuffle 

operation to allow cross-group information to flow along the 

channel dimension, which results in a more discriminative 

feature. The attention block is flexible and can be inserted 

anywhere in network. To optimize the classification 

performance, we place the attention block after the dual-branch 

feature interactive module. This allows the network to focus on 

and highlight the most critical components. 

Ⅲ. EXPERIMENTS AND DISCUSSION 

A. Data sets Descriptions 

The IP dataset was collected in 1992 over the Indian Pines 

agriculture experimental area by the AVIRIS sensor. It has a 

spatial resolution of 145×145 pixels and 220 bands with a 

wavelength range of 0.4-2.5um. After eliminating the 20 bands 

contaminated by water vapor, there are 200 bands used for 

classification. The IP dataset contains 16 labeled material 

classes. 

 
The Salinas dataset was captured by the AVIRIS sensor in 

the SA Valley in California. It covers 512×217 pixels with 

spatial size of 3.7m and 224 bands across the wavelength of 

0.36-2.5um. In addition, 20 bands were abandoned due to the 

water absorption. In total, 16 labeled material classes are 

available in the SA dataset. 

The Botswana dataset was collected by the NASA EO-1 

Hyperion sensor over the Okavango Delta. The dataset is 

1476×256 pixels in size with a spatial resolution of 30m per 

pixel, and 242 bands span the spectral wavelength range of  

 
(a) 

 

 
(b) 

 

 
(c) 

Fig. 4. False color image and the ground truth maps of the datasets. 

(a)Indian pines dataset, (b) Salinas dataset, (c)Botswana dataset 
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0.4-2.5um. After removing uncalibrated and noise bands, it 

contains 14 different categories in total. Fig. 4 (a)-(c) illustrates 

the false-color image and corresponding ground truth maps of 

three HSIs datasets. 

B. Experimental Setup 

All experiments are carried on with a desktop PC with 

NVIDIA RTX 2060 Super GPU and 64GB RAM. The proposed 

model DBMFA is implemented by using Pytorch with Python 

language. We take the overall accuracy (OA), average accuracy 

(AA), and kappa coefficient (kappa) to evaluate the 

classification performance quantitatively. Considering the 

unbalanced categories in three benchmarks, we use the 

different portions of training samples for each dataset to verify 

the effectiveness of our proposed model. Specifically, 1% 

labeled samples are randomly selected in SA dataset as the 

training set and the remaining 99% samples as the testing set. 

We randomly choose 10% samples per class for training and 

90% for testing for the IP and Botswana dataset. In addition, the 

batch size and epochs are 16 and 200, respectively. We adopt 

the Adam to optimize the parameters. The initial learning rate is 

0.0025 and decreases by 1% every 50 epochs. We repeat all the 

experiments five times and average the results in order to avoid 

errors. 

C. Analysis of parameters 

The classification performance is based on the proposed 

model structure and the selection of network parameters. PCA 

is first used to process the hyperspectral images in order to 

obtain the C principal components. And then, the input datasets 

are neighborhood blocks with Cdss centered on the label 

pixels, where ss refers to the spatial size of input data. We will 

elaborate on the analysis of the effects of these parameters. 

 

1) Effect of principal component C  

This section examines the effect of varying the number of 

principal components C on the proposed model's classification 

performance. We adopt PCA to decrease the dimension of the 

spectral. C is empirically set to 10, 20, 30, and 40. It can be 

observed in Fig. 5 (a) that the overall accuracies rise 

significantly from 10 to 30 and then plateau at 30. However, 

when the number of principal components exceeds 30, the 

overall accuracy begins to decline. The phenomenon 

demonstrates that in a certain degree, the greater the number of 

principal components, the more detailed the spectral 

information contained in HSIs. Simultaneously, the neural 

network can extract additional discriminative features from 

these components. As the number of principal components 

continues to increase, the classification performance degrades 

due to spectral redundancy. In addition, excessive principal 

components will inevitably generate computational complexity. 

Therefore, C is set to 30 for all three datasets.  

 

2) Effect of spatial size ss  

In HSIs classification, the spatial size of the image cube 

means how many pixels are processed simultaneously by the 

neural network. We select image patches with different sizes to 

test the classification performance. Specifically, the spatial 

sizes are varied from 77 to 1717 with the interval of 2. The 

Overall accuracies of our model classification performance on 

different spatial sizes are shown in Fig. 5 (b). From the 

observation of the figure, we can find the 77 spatial size has 

the worst performance, as it is too small to extract sufficient 

spatial-spectral information for classification. With the 

continuous expansion of spatial size, the patch contains more  

TABLE Ⅱ 

THE NUMBERS OF TRAINING AND TESTING SAMPLES FOR IP DATA SET 

No. Name Training Testing 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

Alfalfa 

Corn-notill 

Corn-mintill 

Corn 

Grass-pasture 

Grass-t 

Grass-p-m 

Hay-w 

Oats 

Soybean-notill 

Soybean-mintill 

Soybean-clean 

Wheat 

Woods 

Buildings-g-t-d 

Stone-s-t 

5 

143 

83 

24 

48 

73 

3 

48 

2 

97 

246 

59 

20 

126 

39 

9 

41 

1285 

747 

213 

435 

657 

25 

430 

18 

875 

2209 

534 

185 

1137 

347 

84 

 Total 1025 9224 

 
TABLE Ⅲ 

THE NUMBERS OF TRAINING AND TESTING SAMPLES FOR SA DATA SET 

No. Name Training Testing 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

Brocoli_g_w_1 

Brocoli_g_w_2 

Fallow 

Fallow_r_p 

Fallow_s 

Stubble 

Celery 

Grapes_u 

Soil_v_d 

Corn_s_g_w 

Lettuce_r_4wk 

Lettuce_r_5wk 

Lettuce_r_6wk 

Lettuce_r_7wk 

Vinyard_u 

Vinyard_v_t 

20 

37 

20 

14 

27 

39 

36 

113 

62 

33 

11 

19 

9 

11 

72 

18 

1989 

3689 

1956 

1380 

2651 

3920 

3543 

11158 

6141 

3245 

1057 

1908 

907 

1059 

7196 

1789 

 Total 541 53047 

 
TABLE Ⅳ 

THE NUMBERS OF TRAINING AND TESTING SAMPLES FOR BT DATA SET 

No. Name Training Testing 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

Exposed soils 

Mixed mopane 

Short mopane 

Acacia-g 

Acacia-s 

Acacia-w 

Island-i 

Firescars2 

Riparian 

Reeds1 

Floodplain-g2 

Floodplain-g 

Hippo grass 

water 

27 

10 

25 

21 

27 

27 

26 

20 

31 

25 

30 

18 

27 

9 

243 

91 

226 

194 

242 

242 

233 

183 

283 

223 

275 

163 

241 

86 

 Total 323 2925 
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discriminative information, and classification performance 

improves steadily. The peak value for different datasets appears 

at 1515. When the spatial size exceeds 1515, the overall 

accuracies begin to decline due to the excessive redundant 

features. As a result, we conclude that either an excessively 

large or excessively small spatial size is detrimental to 

classification performance. 

D. Impact of training ratio  

It is a difficult and time-consuming task for HSIs to find 

sufficient samples. In this section, we will examine the model 

classification performance under different training ratios. We 

randomly select 1%, 2%, 5%, 7%, 9%, 10%, 15% of samples on 

IP and Botswana datasets. For the SA datasets, the training sets 

portion is set to 0.1%, 0.2%, 0.5%, 0.7%, 0.9%, 1% and 1.5% 

of each land-cover category. Table Ⅴ  reports the overall 

accuracies of different ratios of training samples in three 

datasets. It can be observed that the overall accuracies rise 

steadily with the increase of the training samples. 

Simultaneously, our proposed model exhibits robust 

performance when training samples are insufficient.  

E. Ablation Study 

In order to demonstrate the effectiveness of the proposed 

MSFE module, attention block and DBFM module, we design 

three specific ablation experiments. The models used for 

comparison are consistent with the network of the proposed 

method except for the removal of the MSFE module and 

attention block from the original networks. While for the 

DBFM, we replace the module with single branch layer-wise 

3D CNN. The principal components and the spatial size are set 

to 30 and 1515 to guarantee the fairness of the experiments. 

The overall accuracies of three datasets of comparison models 

are displayed in Fig .5 (c)-(e). It can be observed that the MSFE 

module improve the value of overall accuracies by 

approximately 0.18%-0.41%.

 
Fig. 5. The results of parameter analysis and ablation study(a)effect of C on overall accuracies on three HSIs datasets, (b) effect of spatial size on overall 

accuracies on three HSIs datasets, (c)effect of MSFE module on three HSIs datasets, (d)effect of attention block on three HSIs datasets, (e)effect of DBMA 

module on three HSIs datasets 

TABLE Ⅴ 

CLASSIFICATION RESULTS OF THE PROPOSED MODEL WITH DIFFERENT TRAINING RATIOS 

Training Ratio 1% 2% 5% 7% 9% 10% 15% 

Indian 

Pines 

OA 86.04 90.24 97 97.93 98.62 99.14 99.38 

AA 84.56 90.15 96.89 98.32 97.86 99.01 99.42 

Kappa 90.22 92.62 95.34 98.54 98.04 98.97 99.65 

Training Ratio 0.1% 0.2% 0.5% 0.7% 0.9% 1% 1.5% 

Salinas 

OA 97.18 98.6 99.43 99.47 99.51 99.71 99.75 

AA 96.89 97.85 99.24 98.97 99.35 99.78 99.61 

Kappa 97.56 96.52 98.64 97.86 98.81 99.68 99.58 

Training Ratio 1% 2% 5% 7% 9% 10% 15% 

Botswana 

OA 86.66 92.94 97.3 98.77 99.34 99.91 99.95 

AA 85.32 91.75 96.87 98.54 99.42 99.89 99.92 

Kappa 84.75 92.36 97.68 98.89 99.31 99.92 99.97 
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TABLE Ⅵ  

CLASSIFICATION RESULTS OF DIFFERENT METHODS ON THE IP DATA SET 

 Methods 

Class SVM MLR RF 1D-CNN 2D-CNN Hybird-SN SSRN A2S2KResNet Proposed 

1 75 46.15 83.33 50 100 83.72 100 95.45 95.35 

2 79.58 73.57 69.78 72.58 83.79 94.12 98.07 99.29 98.91 

3 74.97 65.38 73.85 81.39 83.33 99.44 97.43 98.94 98.93 

4 55.67 43.96 64.1 58.93 89.33 97.96 96.37 100 98.57 

5 81.12 89.73 88.31 91.4 96.73 99.06 98.94 97.23 100 

6 90.22 93.37 79.14 90.00 98.78 97.68 96.84 97.5 100 
7 100 83.33 100 100 100 66.67 100 93.33 100 
8 94.83 86.56 85.06 91.87 93.56 98.62 97.47 96.25 100 

9 80 100 100 100 100 100 100 75 100 
10 72.04 71.79 74.41 76.99 91.21 97.17 95.31 98.7 98.61 

11 78.64 68.57 63.62 75.5 88.17 97.63 98.5 99.69 98.79 

12 86.95 56.05 55.64 76.43 90.05 97.62 97.89 96.13 99.25 

13 93.37 93.30 89.19 93.85 100 97.87 100 100 99.46 

14 91.57 86.86 90.12 91.6 94.48 97.67 97.96 98.92 99.56 

15 80.51 81.20 60.09 74.19 93.81 99.13 97.05 99.33 100 
16 97.79 98.55 98.53 98.63 98.51 90.41 94.8 94.8 96.43 

OA(%) 81.78±0.10 75.49±0.25 73.09±0.19 80.6±0.55 90.27±0.49 97.17±0.52 97.69±0.35 98.63±0.02 99.14±0.16 

AA(%) 83.26±1.07 77.39±0.43 79.69±0.46 82.71±0.53 93.85±1.69 94.67±1.53 97.91±0.34 96.28±0.13 98.99±0.15 

Kappa100 79.16±1.41 71.84±0.26 68.75±0.19 77.62±0.59 88.82±0.56 95.32±0.28 97.37±0.48 98.44±0.01 99.02±0.18 

 
TABLE Ⅶ  

CLASSIFICATION RESULTS OF DIFFERENT METHODS ON THE SA DATA SET 

 Methods 

Class SVM MLR RF 1D-CNN 2D-CNN Hybird-SN SSRN A2S2KResNet Proposed 

1 99.95 100 99.9 100 100 99.35 100 100 100 

2 96.78 98.42 99.54 98.64 100 100 99.78 100 100 

3 95.5 96.29 83.69 92.48 100 97.55 100 99.23 100 

4 99.63 93.28 96.62 97.37 89.59 99.64 95.95 96.88 100 

5 95.67 92.46 98.65 94.71 99.51 100 99.68 99.14 100 

6 99.85 99.97 99.92 100 99.80 100 99.36 99.95 99.97 

7 98.68 99.69 97.9 99.02 100 99.63 100 100 100 

8 79.25 76.14 71.8 80.45 87.90 95.42 90.55 92.94 98.93 

9 98.9 98.18 94.24 98.21 99.98 99.9 99.75 100 100 

10 93.94 91.33 87.22 97.27 95.86 98.57 99.28 95.82 99.66 

11 95.36 98.39 87.09 89.96 100 80.69 100 98.94 99.81 

12 97.97 95.31 96.76 96.61 95.88 99.47 99.56 98.95 100 

13 95.61 94.78 97.03 96.24 95.36 98.04 100 99.75 99.45 

14 95.36 92.02 84.03 97.28 99.70 98.97 93.78 90.05 100 

15 73.15 64.13 62.48 74.64 95.43 96.51 96.94 93.83 99.82 

16 97.78 98.78 96.99 99.94 100 96.53 100 100 99.72 

OA(%) 90.25±0.46 89.79±1.12 86.18±0.11 90.81±0.38 95.58±0.58 97.68±0.74 97.09±0.18 97.01±0.67 99.71±0.35 

AA(%) 94.58±0.38 93.07±0.50 9086±0.35 94.55±0.26 97.43±0.52 97.51±0.58 98.41±0.24 97.84±0.42 99.83±0.26 

Kappa100 90.02±0.44 88.62±1.24 84.48±0.13 89.75±0.42 95.07±0.64 97.42±0.63 96.76±0.11 96.67±0.37 99.67±0.17 

 
TABLE Ⅷ  

CLASSIFICATION RESULTS OF DIFFERENT METHODS ON THE BOTSWANA DATA SET 

 Methods 

Class SVM MLR RF 1D-CNN 2D-CNN Hybird-SN SSRN A2S2KResNet Proposed 

1 99.59 100 99.59 100 98.78 98.76 100 100 100 

2 92.86 97.83 81.91 95.56 100 100 100 100 100 

3 98.64 96.97 79.50 99.56 100 100 100 100 100 

4 92.57 92.96 86.14 94.09 94.15 97.97 93.33 97.67 99.74 

5 87.60 87.45 71.63 87.39 94.98 93.7 93.72 89.79 99.79 

6 79.83 85.84 63.53 81.86 100 97.4 99.47 97.04 99.59 

7 100 98.29 99.11 100 100 100 100 100 100 

8 98.92 92.82 79.91 97.27 100 98.38 100 100 99.46 

9 87.68 89.90 77.42 86.96 100 94.52 93.7 96.56 100 

10 86.15 90.45 81.87 87.45 99.11 99.55 100 100 100 

11 92.50 94.57 90.41 98.41 100 100 100 100 100 

12 94.48 97.96 95.48 96.64 100 100 100 100 100 

13 92.95 90.70 83.55 89.39 98.37 97.15 100 100 100 

14 97.62 98.80 95.40 100 96.59 100 98.48 100 100 

OA(%) 92.65±0.36 92.40±0.99 84.49±0.72 93.51±0.24 98.63±0.24 98.07±0.18 98.27±0.04 98.31±0.06 99.91±0.05 

AA(%) 92.95±0.06 93.89±1.24 84.67±0.87 93.89±0.37 98.71±0.35 98.39±0.34 98.48±0.13 98.64±0.11 99.90±0.04 

Kappa100 92.05±0.39 91.77±1.07 83.21±0.79 90.12±0.80 98.51±0.46 97.91±0.26 98.19±0.24 98.17±0.13 99.96±0.05 
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The reason for the phenomenon is that our MSFE module 

introduces multiple sizes of kernels to capture the rich 

spatial-spectral information and more effectively fuse 

information at different scales. Simultaneously, the model with 

the attention block achieves higher overall accuracies 

(approximately 0.19%-0.52%) than the model without the 

 
 

Fig. 6. Classification maps for IP. (a). Ground truth (b)-(j) Predicted classification maps for SVM (OA=81.78%), MLR (OA=75.49%), RF(OA=73.09%), 

1D-CNN(OA=80.60%),2D-CNN (90.27%), Hybird-SN (OA=97.17%), SSRN (OA=97.69%), A2S2KResNet (OA=98.63%) and proposed HSMSN-HFF 

(99.14%). 

 

 
 
Fig. 7. Classification maps for SA. (a). Ground truth (b)-(j) Predicted classification maps for SVM (OA=90.25%), MLR (OA=89.79%), RF(OA=86.18%), 

1D-CNN(OA=90.81%),2D-CNN (OA=95.58%), Hybird-SN (OA=97.68%), SSRN (OA=97.09%), A2S2KResNet (OA=97.01%) and proposed HSMSN-HFF 

(99.71%). 
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attention block, demonstrating that our proposed attention 

block can adaptively assign different weights to spatial-channel 

regions and selectively strengthen valuable features during the 

HSI feature extraction process. Simultaneously, our proposed 

DBMA module exhibits the superior performance compared 

with single-branch 3-D CNN network in three HSIs datasets. 

DBMA module is composed of multiple filters with additive 

links and concatenative links, which improves the 

spatial-spectral feature fusion with low resolution land-cover 

and captures discriminative features. 

F. Compare with different methods 

In order to evaluate the performance of our proposed method 

MSDBFA, we select eight classification methods to compare 

with our model. The eight methods are support vector machine 

(SVM) with radial basis function kernel, multinomial logistic 

regression (MLR), random forest (RF), spectral CNN 

(CNN-1D), spatial CNN with 2-D kernels, Hybrid-SN [55], 

SSRN [40], A2S2KResnet [56]. Among them, SVM, RF and 

MLR are classical machine learning classification methods. 

They complete the classification using the spectral dimension 

of HSIs, which has been widely used in previous classification 

research but has low accuracies. In order to highlight the 

progressiveness of our method, we also employ a variety of 

deep learning-based methods. 1-D CNN is an early neural 

network model using spectral dimension to classify 

hyperspectral images; 2-D CNN classifies based on spatial 

features; SSRN is a classical spatial-spectral classification 

model that incorporates residual connections to mitigate 

gradient disappearance and shorten training time. Hybrid-SN 

creatively utilizes the 3-D and 2-D convolution to explore the 

shallow and deep features respectively in HSIs. A2S2kResnet 

introduces an adaptive spectral-spatial kernel improved 

residual network with spectral attention for the purpose of 

capturing discriminative spectral-spatial features in HSIs. 

In order to ensure the fairness of experiments, the spatial size 

and the number of principal components are set to 1515 and 

30 for all DL methods respectively. Due to the fact that SSRN 

does not follow the PCA as described in the original paper, so 

we do not apply PCA operation to the SSRN model. Other 

parameters of the network are configured according to their 

papers. Our proposed method outperforms the other methods 

by approximately 0.51%-26.05% in terms of OA, 

0.5%-40.78% in terms of AA, and 0.58% -30.27% in terms of 

Kappa in IP dataset. The sample distribution is extremely 

unbalanced across the IP dataset's various classes. The class of 

Alfalfa, Grass-p-m, and Oats, for example, have only 46, 28, 

and 20 samples per class, respectively. That is a great challenge 

for the HSIs classification resulting in problems with 

unbalanced sample training. Notably, our proposed method 

achieves 100% overall accuracies on the grass-pasture, grass-t, 

grass-p-m, hay-w, and oats classes. By comparison, SVM, RF, 

and MLR have relatively poor classification performance. To 

be precise, the SVM classifier has the highest overall accuracy 

among the three machine learning methods. The MLR 

classifier's values fall precipitously when dealing with small 

sample sizes. While RF classifier performs the worst 

(OA=76.09%). Comparatively, some DL classification 

methods have superior performance; for example, the 

TABLE Ⅸ 

TRAINABLE PARAMETERS, FLOPS AND TRAINING TIMES OF DIFFERENT 

MODELS FOR IP DATA SET 

Methods SSRN Hybird-SN 
A2S2KResn

et 
MSDBFA 

TTPs(M) 36.4 512.2 37.1 46.5 

FLOPS(G) 7.022 7.971 5.454 4.642 

Training 

Time(s) 
702.5 164.6 1149.6 366.2 

 

 
 

Fig. 8. Classification maps for Botswana. (a). Ground truth (b)-(j) Predicted classification maps for SVM (OA=92.65%), MLR (OA=92.40%), 

RF(OA=84.49%), 1D-CNN(OA=93.51%),2D-CNN (OA=98.63%), Hybird-SN (OA=98.07%), SSRN (OA=98.27%), A2S2KResNet (OA=98.31%) and 

proposed HSMSN-HFF (99.91%). 
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A2S2Resnet method achieves the best classification results 

with 98.63 % value of OA among all the comparative methods.  

For the SA and Botswana datasets, our proposed model 

MSDBFA also achieves the highest value of OA. Among all the 

classification method, RF model performs the worst again, 

indicating that the random forest algorithm cannot deal well 

with the complex spatial-spectral features in HSIs. At the same 

time, some simple deep learning methods such as 1-D CNN and 

2-D CNN, the classification accuracy has been significantly 

improved compared with the conventional machine learning 

methods. However, they still have their own limitations. For 

example, 1-D CNN utilizes the redundant spectral information 

to complete the classification, which is bounded to be affected 

by the Hughes phenomenon. 2-D CNN relies on the spatial 

distribution and characteristics of ground objects to classify, 

whereas ignoring the characteristics of rich spectral of HSIs. 

For many recent deep learning methods that employ 

spatial-spectral feature fusion strategies, including SSRN, 

Hybrid-SN, A2S2KResnet, they generally outperform the 

former methods (1D-CNN,2D-CNN), especially when the 

number of training samples is relatively small. It’s 
demonstrated that in the case of a limited number of training 

samples, the hierarchical fusion mechanism can combine the 

complementary and relevant information from the output of 

distinct convolutional layers, making the extracted features 

more effective for classification. Additionally, to evaluate the 

computational cost and complexity of the proposed model. 

Table Ⅸ summarizes the total trainable parameters (TTP), 

floating-point operations (FLOPs), and training times for 

various models with the IP data set. As can be seen, Hybrid-SN 

has the largest parameters and highest FLOPs compared with 

other methods, owning to its large kernel filters and batch size. 

A2S2KResNet has approximately the same number of 

parameters as SSRN, but SSRN takes higher FLOPs due to the 

fact that it does not use PCA to reduce the spectral dimension of 

the HSIs as conventional methods do. Instead, it utilizes a 3-D 

kernel filter to squeeze the dimension hierarchy. Our method 

has the lowest FLOPs due to the lightweight multiscale 

extraction module and effective shuffle attention block. In 

terms of training time, our method is only slightly longer than 

the Hybrid-SN, but achieves significantly better classification 

performance in all three datasets. On the whole, the MSDBFA 

model outperforms other methods in terms of both 

classification performance and computational cost. 

Ⅳ. CONCLUSION 

In this article, a novel multiscale dual-branch feature fusion 

and attention network has been proposed. Specifically, we 

propose a multiscale feature extraction module (MSFE) by 

constructing multiple residual-like connections, thus the 

structure of the module can obtain multiscale features at a 

granular level. Moreover, we design the dual-branch feature 

fusion interactive module (DBFM) to complete the deep fusion 

of spatial-spectral features via concatenative and additive links, 

which can not only enhance the feature reuse at shallow level 

but also explore new discriminative information from the fused 

spatial-spectral features. In addition, we introduce a novel 

shuffle attention block to improve performance over the 

network by creatively altering the conventional weight 

distribution method in channel and spatial dimensions, thereby 

enhancing the representation ability of the feature map. The 

obtained results on three HSIs datasets reveal that our proposed 

MSFDBA model provides competitive results compared to the 

other state-of-the-art approaches for classification 

performance. 
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