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Abstract

This thesis presents a multiscale framework for the construction of affine invariant pattern

recognition and registration methods. The idea in the introduced approach is to extend the given

pattern to a set of affine covariant versions, each carrying slightly different information, and then to

apply known affine invariants to each of them separately. The key part of the framework is the

construction of the affine covariant set, and this is done by combining several scaled representations

of the original pattern. The advantages compared to previous approaches include the possibility of

many variations and the inclusion of spatial information on the patterns in the features.

The application of the multiscale framework is demonstrated by constructing several new affine

invariant methods using different preprocessing techniques, combination schemes, and final

recognition and registration approaches. The techniques introduced are briefly described from the

perspective of the multiscale framework, and further treatment and properties are presented in the

corresponding original publications. The theoretical discussion is supported by several experiments

where the new methods are compared to existing approaches. 

In this thesis the patterns are assumed to be gray scale images, since this is the main application

where affine relations arise. Nevertheless, multiscale methods can also be applied to other kinds of

patterns where an affine relation is present.

An additional application of one multiscale based technique in convexity measurements is

introduced. The method, called multiscale autoconvolution, can be used to build a convexity measure

which is a descriptor of object shape. The proposed measure has two special features compared to

existing approaches. It can be applied directly to gray scale images approximating binary objects, and

it can be easily modified to produce a number of measures. The new measure is shown to be

straightforward to evaluate for a given shape, and it performs well in the applications, as

demonstrated by the experiments in the original paper.

Keywords: Affine invariant features, image alignment, image transforms, object

recognition, pattern classification, shape analysis
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Abbreviations

MSA Multiscale autoconvolution

SMA Spatial multiscale affine invariants

RANSAC Random sample consensus

R Real numbers (Denoted also as R in the original publications)

R+ Positive real numbers

R
n n-dimensional space of real numbers

A Affine transformation, see Definition 1

A −1 Inverse of the affine transformation A

A {T,t} Affine transformation with parameters T and t

A (x) Affine transformation of a coordinate vector x

f : R
n → R A function from R

n to R

Lp(Rn) Lp space of functions f : R
n → R

f Function f : R
2 → R

f ◦A −1(x) Affine transformation of the function f

f ′ f ′(x) = f ◦A −1(x)

χ f Characteristic function of f

‖ f‖Lp Lp norm of function f

µ( f ) Centroid of function f

∗ Convolution operation

f̂ Fourier transform of f , see Definition 5

f̃ Translation normalized version of f , see Definition 6

ḡ Complex conjugate of g

det(T ) Determinant of the matrix T

P(A) Probability of the event A

|K| Area of a set K

v Feature vector

9



10



Contents

Abstract

Preface 5

List of original articles 7

Abbreviations 9

Contents 9

1 Introduction 13

1.1 Background and motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 The contribution of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3 Summary of original papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Affine recognition and registration 21

2.1 The affine transformation of patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.1 Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.2 Affine feature extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.3 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3 Registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3.1 The area based approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.2 Feature based approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Multiscale framework 35

3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Related theorems in the spatial and Fourier domain . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Multiscale affine invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4.1 Spatial multiscale affine invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4.2 Multiscale autoconvolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4.3 Multiscale Fourier invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4.4 Multiscale ridgelet invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4.5 Generalized affine moment invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4.6 Multiscale autoconvolution histograms . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4.7 Comparison based histograms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

11



3.5 Multiscale affine registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.5.1 Spatial multiscale registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46

3.5.2 Multiscale autoconvolution registration . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.6 Completeness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47

3.7 Experiments and implementational issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.7.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.7.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4 Convexity measures 53

4.1 Motivation and other convexity measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Multiscale autoconvolution in convexity measurements . . . . . . . . . . . . . . . . . . 55

5 Conclusions 59

References 60

Original articles 64

12



1 Introduction

1.1 Background and motivation

The word ”pattern” can refer to many different concepts. A pattern can be, for example,

a spoken word, an image, written text, a human face, a motion sequence, a silhouette,

the order of books on a shelf, or learned manners. In fact, it is quite difficult to define a

general pattern in a rigorous and practical way. Watanabe (1985) defines a pattern as the

opposite of a chaos; it is an entity, vaguely defined, that could be given a name. Even if

this definition may not be very useful for applications, it nevertheless gives some idea

what a pattern can be.

Humans deal with patterns in hundreds of situations every day. We are actually

so used to recognizing, managing, and interpreting different patterns that most of the

time we take it for granted. In fact, compared to machines, humans are by far the

better pattern recognizers in most situations, and despite many years of research it is

not known how humans do this (Jain et al. 2000). However, computer aided pattern

processing is already mature enough to be applicable in limited settings. Table 1, taken

from (Jain et al. 2000), gives some idea about where it has been used in different fields.

The vast potential of general purpose pattern recognizers also encourages to continue

the research in this field.

Constrained pattern processing problems usually arise in particular applications.

Two applications, which are studied in this thesis, are recognition and registration. In

recognition applications, we need to build systems that can associate a given pattern,

say an image of an object, to one or more sample patterns. In registration applications,

on the other hand, the requirement is to find the best possible alignment between two

patterns. Tasks of this kind appear frequently in many applications, as already illus-

trated in Table 1. Registration is particularly important in medical imaging (Maintz &

Viergever 1998) and in achieving the relative positions of images for 3D reconstruction

(Hartley & Zisserman 2003).
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Table 1. Examples of Pattern Recognition Applications.

Problem Domain Application Input Pattern Pattern Classes

Bioinformatics Sequence analysis DNA/Protein sequence Known types of

genes/patterns

Data mining Searching for

meaningful patterns

Points in

multidimensional

space

Compact and well

separated clusters

Document

classification

Internet search Text document Semantic categories

(e.g. business, sports,

etc.)

Document image

analysis

Reading machine for

the blind

Document image Alphanumeric

characters, words

Industrial automation Printed circuit board

inspection

Intensity or range

image

Defective/non-

defective nature of

product

Multimedia database

retrieval

Internet search Video clip Video genres (e.g.

action, dialogue, etc.)

Biometric recognition Personal identification Face, iris, fingerprint Authorized users for

access control

Remote sensing Forecasting crop yield Multispectral image Land use categories,

growth pattern of crops

Speech recognition Telephone directory

enquiry without

operator assistance

Speech waveform Spoken words

Pattern recognition problems can be approached from several different viewpoints.

Four well-known paradigms are template matching, syntactic or structured matching,

neural networks, and statistical classification (Jain et al. 2000). These models need not

be independent, and there have also been attempts to design hybrid systems involving

multiple models (Fu 1983).

In template matching, the idea is to test the pattern against a set of stored templates,

while taking into account all possible pose changes. The quality of the different matches

is evaluated with some measure, like correlation or mutual information. For example,

let us have an image of a text and templates of all possible characters that can occur.

Then to recognize the characters, we simply measure the correlation between the im-

14



age and templates with, say, all possible translations and rotations. Those that have a

correlation higher than some threshold are assumed to be correct matches. In general,

the templates do not have to be the actual training patterns, as in this example, but can

be learned from them. Especially if the number of possible poses is high, template

matching becomes computationally inefficient. However, as computation power has

increased, it has become feasible in some applications.

In the syntactic approach the patterns are interpreted as being composed of simple

subpatterns, which again can be built from even simpler subpatterns (Fu 1982). The

simplest possible subpatterns are called primitives and a given complex pattern is rep-

resented in terms of these. The natural analogy to this approach is the syntax of a

language (Jain et al. 2000). The patterns could be seen as sentences and the primitives

as the alphabet. The sentences would be then constructed according to grammatical

rules. The syntactic approach is appealing, but its implementations can run into prob-

lems, especially due to difficulties in the segmentation of patterns to primitives (Jain

et al. 2000).

Neural networks can be seen as a massive parallel computing system, with a large

number of simple processing units with many interconnections. The main character-

istics of neural networks are that they can learn complex and nonlinear relationships

between the input data and the outputs (Jain et al. 2000). These relations are learned

using training samples, and they are used to recognize the upcoming patterns. Neural

networks can also be seen as efficient models for statistical pattern recognition (Bishop

2006), and they are actually closely connected to this approach.

The statistical approach to pattern recognition is maybe the one which is most fre-

quently applied. In this approach, the patterns are first mapped to feature vectors and

the recognition is performed according to them (Jain et al. 2000). The sample patterns

are used to adjust the recognition method to a specific problem. There are numerous

ways of performing both the mapping of patterns to feature vectors, referred to as fea-

ture extraction, and the recognition, usually referred to as classification (Bishop 2006).

The statistical approach is the one used with the methods in this thesis. In particular,

the presented methods provide new approaches for the feature extraction step in this

procedure.

There are also several approaches (Zitova & Flusser 2003) for registration. The

main two paradigms here are somehow similar to template matching and the statistical

approach. From the description of template matching, it is easy to see that it actually

performs a registration between the pattern and the template. Hence, simply by using

15



one of the registered patterns as a template, we have immediately a registration method.

The other main approach to registration uses features similar to those in statistical recog-

nition. There, we extract some salient characteristics of the patterns and use only them

to perform the alignment, which can be computationally simpler than direct matching.

As in the registration, the practical algorithms are not limited to follow only one of these

paradigms, but can often apply a combination of them.

Recognition and registration, as described above, have thus far proved to be too

complex problems to allow for a general solution which works efficiently in real appli-

cations. Thus it is necessary to even further restrict these problems. In this thesis, we

study a case where the transitions within one pattern class can be depicted, or at least

well approximated, by a particular geometric mapping, namely the affine transforma-

tion. In other words, in recognition we are associating the new pattern to the training

pattern that can be mapped close to it by some affine transformation. In registration,

we estimate the transformation parameters given a pattern and an affine transformed

version of it.

Since a pattern can refer to many different things, we usually have to select the par-

ticular patterns under discussion. The selection can naturally rise from the application

under study. For example, if we are recognizing objects using images, examples of

possible patterns could be the 2D image intensity function, the contour of the object, or

the corners of the object in the image. The new methods presented in this thesis apply

to patterns that can be presented by image intensity functions.

1.2 The contribution of the thesis

A common difficulty in affine invariant recognition and registration methods is to pro-

duce sufficiently many discriminating descriptors from the patterns. Such problems are

also present in approaches that in theory would give an unlimited number of features.

This is because usually only part of these features are stable or the implementation of

further features is not feasible. The low number of descriptors can result in situations

where the methods are not discriminative enough to register or recognize complex pat-

terns.

This thesis introduces a novel multiscale framework for constructing affine invariant

recognition and registration methods. The idea in the proposed framework is to extend

the given pattern to a set of affine covariant versions, which carry partially independent

information from the original pattern. Then the known approaches are applied to each

16



of these separately, increasing the total number of descriptors compared to the original

method. The key part of the framework is the construction of the affine covariant set,

and this is done by combining several scaled representations of the patterns. The advan-

tages are the possibility of many variations and the extension of the existing methods to

produce a number of features capturing more information on the patterns.

The application of the multiscale approach is demonstrated in nine constructions

where different preprocessing steps, combination schemes, and feature extraction meth-

ods are applied. The resulting new techniques are comprehensively analyzed, and their

performance is illustrated in the experiments, including comparisons to other similar

affine recognition and registration approaches. Also implementational issues and com-

putational complexities are considered, making it easier for application developers to

use the proposed methods.

In addition to the recognition and registration applications one multiscale method,

the multiscale autoconvolution, can be used to measure convexity. Convexity is a de-

scriptor for the shape of an object and it is an important feature in many applications,

especially in medical imaging. The introduced approach and its properties are thor-

oughly analyzed and assessed in experiments, comparing them to the other convexity

measures. The new measure is also shown to be directly applicable to gray scale im-

ages approximating binary objects and it can be easily modified to produce a number of

measures.

The multiscale methods are presented from the perspective of recognition and reg-

istration from image intensity functions. However, the ideas in the framework are more

general and may provide new approaches for other applications which consider differ-

ent types of patterns as well.

1.3 Summary of original papers

This thesis consists of ten publications. Since the multiscale framework, as presented

in this thesis, was only developed later, the papers presented are originally not directly

derived from the framework, but are more inspired by each other.

Paper I presents a new fast and simple affine invariant feature extraction method

based on pointwise products of scaled image functions. In the experiments the proposed

descriptors were shown to outperform the descriptors based on affine invariant moment

polynomials.

Paper II presents the convolution based affine invariant feature extraction method,

17



with a detailed discussion about its known properties. One of the strongest advantages

compared to other approaches is that the method does not require any translation nor-

malization. The presented method is also straightforward to implement and reasonably

fast to compute. The experiments performed indicate that the new features perform well

in classification.

Paper III introduces the affine registration technique using similar pointwise prod-

ucts of scaled image functions to those in Paper I. The method was also extended to

cover registration of point sets. The new technique proved to be fast to compute, due to

its easy operations.

Paper IV presents another affine registration method, based on the ideas of multi-

scale autoconvolution introduced in Paper II. This registration method has similar ad-

vantages to the features in Paper II. The two most important ones are the ability to deal

with the translation component directly and that the same efficient evaluation through

Fourier transform is applicable here. This registration method is also extended to the

registration of point sets, as in Paper III.

Paper V examines the properties of patch based approaches in the classification of

visual object classes. The main focus was to observe how different properties of the

segmented image patches affect the classification performance. The multiscale auto-

convolution descriptors, presented in Paper II, were one of the methods for which the

examination was performed.

Paper VI introduces a new combination of the well known affine invariant moment

polynomials and multiscale approach. Using this method it is possible to increase the

number of descriptors achieved with low order moments. The additional features clearly

increase the performance compared to the moment polynomials and some other meth-

ods.

Paper VII proposes a new way of using ridgelets to produce affine invariants. The

approach was inspired by the Fourier form of multiscale autoconvolution, but brings in

a new analyzing function with greater variability.

Paper VIII extends the convolution based multiscale approach presented in Paper

II, to produce affine invariant histograms. The main advantage is that with the same

computational load as for traditional multiscale autoconvolution, this new method is

able to capture more information from the patterns. This is clearly illustrated in the

experiments.

Paper IX presents a new convexity measure based on the ideas in multiscale auto-

convolution, and gives a comprehensive analysis of its properties. The new measure
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introduces two special features compared to previous approaches. It can be applied

directly to gray scale images approximating binary objects, and it is easily modified

to give a number of different measures. The experiments performed indicate that the

proposed technique is applicable in shape analysis.

Paper X introduces comparison operations to multiscale methods and demonstrates

them in two examples similar to Papers I and II. The construction of the new features

also takes advantage of the binary coding presented originally in local binary patterns.

The new methods based on nonlinear operations demonstrated high discriminability

in the experiments, achieving the same recognition rates with only a fraction of the

computation time compared to the traditional methods.
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2 Affine recognition and registration

This chapter presents a brief introduction to affine pattern recognition and registration.

The discussion begins with a definition of the affine transformation and a short motiva-

tion for the study of recognition and registration in the affine case. The main focus of

this thesis is in the feature extraction, and hence this point of view is clearly emphasized

in the following introduction.

2.1 The affine transformation of patterns

The affine transformation of a coordinate vector x ∈ R
2 is a linear mapping defined by

a matrix T composed with translation by a vector t.

Definition 1 Define the affine transformation A = A {T,t} by

x′ = A (x) = T x + t, (1)

where t,x ∈ R
2 and T is a 2×2 nonsingular matrix whose elements belong to R. Any

such transformation is invertible with inverse A −1(x) = T−1x−T−1t.

Before applying this transformation to the actual patterns, they must be defined

more specifically.

Definition 2 The patterns examined in this thesis will be real valued positive functions

defined in R
2. We will further assume that the functions belong to L1(R2)∩ L2(R2),

have compact support, and are not identically zero as L1 functions.

A function f belongs to Lp(R2) if the integral
∫

R2 | f |p exists and has a finite value.

f is identically zero as an L1 function if
∫

R2 | f | ≡ 0. The additional requirements in

Definition 2 have been imposed to ensure that the methods introduced later are well

defined. This is explained in more detail in Paper II.

A particular pattern fulfilling Definition 2 is the intensity function of a gray scale

image. In fact, since images are the main interest of this thesis, the words pattern and

image are used interchangeably in the following, although the methods could be applied

to any pattern fulfilling Definition 2. Most of the discussed methods, particularly the

multiscale framework, may be extended in a straightforward manner to cover higher

dimensional functions f : R
n → R. The case n = 3 is particularly useful in applications
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(Rigoutsos 1998, Ronneberg et al. 2002, Schael & Siggelkow 2002). Some discussion

of such applications can be found in the original papers.

We define the action of affine transformations on image functions as follows:

Definition 3 Suppose f (x) is a pattern as defined in Definition 2. We may apply an

affine transformation A to f , which gives a new function f ′ in R
2, where

f ′(x) = f ◦A
−1(x) = f (T−1x−T−1t). (2)

We call f ′ the A transformed version of f .

The affine transformation arises in this thesis in two ways. In affine recognition,

the goal is to find a method for extracting a descriptor vector v from the pattern f in

such a way that the resulting v is the same for f and f ′ for any affine transformation

A . In affine registration, the objective is to recover the parameters T and t using the

given pattern pair f and f ′. The methods introduced apply to any application where the

affine transformation between the patterns f and f ′ may arise. However, to motivate the

practical importance of this transformation, the most common practical situation where

this is encountered is presented in the following.

Let us have a pinhole camera acquiring a picture of a planar object from different

viewing angles, as illustrated in Figure 1. Following from the camera geometry, the

resulting images are connected by a projective transformation, also called homography

(Hartley & Zisserman 2003). Using this knowledge in recognition, we could define that

all such patterns that are the same up to some homography belong to the same object

class or category. In registration, on the other hand, we are looking for a particular

projective transformation, which aligns the two given patterns most accurately.

However, the unrestricted projective transformation gives a great deal of freedom

to deform the images, and it is unfortunately very difficult to limit the examination

only to the physically relevant cases. In recognition, this means that many patterns

that we would like to distinguish can actually be mapped close to each other by some

projective transformation. For example, a square may be mapped to be arbitrarily close

to a triangle by a homography, although we would usually like to distinguish between

these two shapes. Also any closed contour can be mapped very close to a circle with

a series of homograhies (Åström 1995). Another drawback rises from the fact that the

projective transformation of image functions is a nonlinear operation, which can be

hard to manage in the algorithms.
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Fig 1. Two images of a planar object, taken from different viewing angles with a

pinhole camera, are connected by a projective transformation, also called homog-

raphy.

A common solution is to relax the requirement of the accurate camera model and

approximate the projective transformation by something that is easier to handle. On

many occasions, a proper approximation has been provided by the first order Taylor

expansion of the projective transformation, which is exactly the affine transformation.

Due to the properties of Taylor representation, this is accurate at least locally, but if the

field of view and the change of viewing angle are relatively small, the approximation is

accurate for the entire image (Hartley & Zisserman 2003).

The image can also be segmented by looking at regions where the requirement of

the affine transformation holds. This is exactly what is done in affine covariant area

detectors (Mikolajczyk et al. 2005, Mikolajczyk & Schmid 2004, Matas et al. 2002,

Tuytelaars & Gool 2004, Kadir et al. 2004), as illustrated in Figure 2.

The affine transformation is not the only way to approximate the projective trans-

formation. Depending on the situation, it may be beneficial to use further simplified

models, like translation, rotation, or scaling. A number of different approaches for

recognition and registration exist for these simpler models and in those cases where

this approximation is accurate, they are likely to perform better than affine techniques.

Some of the presented affine methods can also be modified to operate only with these

simpler transformations, as explained for example in Paper II, but generally such mod-

ification are not easy. However, in many real applications the translation, rotation, and

scaling are not sufficent for modeling the distortions, and the affine model is required.
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Fig 2. Affine covariant neighborhoods segmented from two images using a Hes-

sian affine detector (Mikolajczyk & Schmid 2004).

2.2 Recognition

This section considers affine recognition. The approach studied here is statistical, and

it is well described for example by Jain et al. (2000). Briefly stated, this means the

following: the studied image, or pattern, is represented as a d-dimensional feature vec-

tor, which defines a point in d-dimensional feature space. Such points, created from

the given sample set, are then given to a classifier that defines boundaries in the fea-

ture space separating the object classes. Finally, the examined new image, or pattern,

is again mapped to a point in this feature space and classified according to the defined

boundaries. The affine recognition is a special case, where we assume that the patterns

in a particular class are the same up to affine transformation.

The algorithms applying the statistical recognition scheme usually contain three

main steps, namely segmentation, mapping to a feature vector, and classification. Since

the main subject of this thesis is to construct mappings from patterns to feature vectors,

the other two steps are only briefly introduced in the following.

2.2.1 Segmentation

A typical problem in pattern recognition is that one has large amounts of data, from

which only part is relevant for the recognition at hand. A common way to approach

this problem is to introduce a preprocessing step, where the essential information is
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separated from nonrelevant parts. This kind of action is referred to as segmentation.

In the literature, one also uses the forms grouping, perceptual organization, or fitting

(Forsyth & Ponce 2003). Segmentation is a wide ranging and very challenging research

area, and Duda et al. (2001) even referred to it as one of the deepest problems in the

whole pattern recognition.

Despite the difficulties, the segmentation is very important part of many applica-

tions, particularly in image recognition. For example, often one needs to recognize if

particular sample objects are present in a given image. It would be difficult, if not im-

possible, to generate the feature vectors directly so that the recognition could be done

only using them. Instead, one could first segment the image by detaching those parts

from the scene where the objects of interest might be. Then the feature extraction would

be applied only to the segmented parts.

All the affine feature extraction methods discussed in this thesis require segmenta-

tion to be done in one way or another. However, even in the case of images, this can

involve many different operations and the choice again depends heavily on the applica-

tion. Some recent and generally interesting approaches for image segmentation would

include texture based methods (Chen & Kundu 1995, Panjwani & Healey 1995), mean

shift (Comaniciu & Meer 2002), normalized cuts (Shi & Malik 2000), and affine co-

variant regions (Mikolajczyk et al. 2005). The last-mentioned approach is not usually

referred to as segmentation, but it can be interpreted in this way also, since it segments

the interest points and the affine neighborhoods around them. Plenty of discussion about

image segmentation can be also found from (Forsyth & Ponce 2003, Umbaugh 2005,

Petrou & Bosdogianni 1999).

2.2.2 Affine feature extraction

In feature extraction, the idea is to convert the studied pattern to a d-dimensional fea-

ture vector describing a point in d-dimensional feature space, which is usually R
d . The

affine feature extraction which is studied here is a special case of general feature ex-

traction. There the idea is to construct a mapping from patterns f to vectors v, which

would result in the same v for f and f ′ if, and only if, the two images are connected

by an affine transformation. Such features are called complete. In reality, if v has finite

length, no known feature extraction method satisfies the ”only if” part of this condition.

In the applications, this is not necessarily a problem, if the functions which result in the

same feature vector are reasonably close to being the same up to affine transformation.
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What is reasonable here often depends on the application.

There are two main approaches to affine feature extraction, namely normalization

and invariants. Those feature extraction methods applying the first approach have a

distinguishable normalization part where the pattern is rectified to a canonical form

before the actual mapping to the feature vector. The methods in the latter approach

map the pattern directly to a feature vector without any normalization phase. Figure 3

illustrates the difference between these two approaches. Another possibility is to use a

combination of normalization and invariants. In this kind of approach, one only partially

normalizes the image and then applies a mapping that is insensitive to the deformations

left unnormalized. It must be emphasized that in the following discussion, as well as in

Chapter 3, it is assumed that the patterns f are segmented and the background is set to

be zero.

Features from

normalized patterns

Invariant

features

Normalization Normalization 

Fig 3. Illustration of the differences between the invariant and normalizing ap-

proaches to the affine recognition.

The normalization approach

The idea in the normalization approach is to rectify the image to a canonical repre-

sentative before extracting the actual features. The advantage here is that the method

producing the features after normalization need not have any invariance. Usually, it

can be even better if they do not have much invariance in order to achieve strong dis-

crimination. Some examples of such feature extraction methods, appearing frequently

in applications, could be gradient orientation histograms (SIFT) (Lowe 2004) and the
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image moments (Gonzalez et al. 2002). Promising results have also been produced by

the recently introduced CS-LBP (Heikkilä et al. 2006).

The drawback of this approach is, however, that robust affine normalization is not an

easy task, and the amount of possible approaches is limited. Maybe the most important

one is based on normalizing the image sequentially starting from the translation t and

continuing to the linear part T . A common example of this procedure is the following

three step algorithm:

1. Given a pattern f , normalize the translation by moving its centroid to the origin.

2. Normalize the linear part of the affine transformation, excluding final rotation, by

transforming f so that its second moment matrix will become the identity matrix.

3. Normalize the final rotation by turning the pattern in such a way that it has some

fixed dominant gradient orientation.

If the above procedure has an unique solution for f , then it should result in the same

normalized form also for any f ◦A −1, with arbitrary A . Problems are encountered,

however, if no unique solution exist, which often happens for instance if f has rotational

symmetries.

There are many variations of this procedure, where, for example, the translation

normalization is based on some point other than the image centroid, the second moment

matrix is computed from the image gradient magnitudes or substituted with the Hessian

matrix, or the final rotation is normalized based on moments as presented by Suk &

Flusser (2005). Suk & Flusser (2005) also deal with symmetric patterns.

Another possibility for applying normalization is to use it only partially, and then to

apply invariant feature extraction to the result. One example, which is used in some mo-

ment based features and in some examples of the multiscale framework, is to normalize

only the translation part t and leave out the rest of the transformation. Another example

could be that we exclude the final step of the presented normalization procedure and ap-

ply rotation invariant features. For such features, and other types of invariants, there is

a vast number of different approaches. For some examples one can refer to (Burkhardt

& Siggelkow 2001, Rodrigues 2000, Reiss 1993).

The invariant approach

Feature extraction methods using the invariant approach do not have a distinguishable

normalization part, but the features are created directly from the given pattern. The
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only exception in this thesis is that also methods that may normalize the translation are

categorized as affine invariant feature extraction methods. The advantage compared to

the normalizing approach is that one possible error prone step is completely omitted in

the process.

Several affine invariant feature extraction methods are known so far. Maybe the

most trivial ones are the normalized integral

I f =
1

‖χ f‖L1

∫

R2
f (x)dx (3)

and the normalized histogram

H f =
[ 1

‖χ f‖L1

∫

( f )−1(B j)
dx

]m

j=1
, (4)

where B1, . . . ,Bm are disjoint subsets of R+ (bins), and χ f (x) = 1 if f (x) 
= 0, and

χ f (x) = 0 otherwise. In the case of images, these two descriptors are more commonly

known as the mean gray value, and the normalized gray value histogram. While they

are very easy to evaluate, they have serious problems as descriptors. The first one

of these, which applies to both (3) and (4), is that we completely ignore the spatial

distribution of the gray values in the image. For example, if we discretize the integrals

and apply them to digital images, we can permute the pixels into arbitrary order without

changing the features. This results in a situation where the set of patterns having the

same feature vector is very large. Another problem is the limited number of features.

This is especially seen in the case of a normalized integral (3), which gives only one

feature. It is easy to imagine that this would not be enough to classify complex patterns.

Hadjidemetriou et al. (2004) present a modified form of image histograms which are

able to include spatial information of the image. These constructions are, however,

invariant only to rigid motion of f .

A less trivial solution is provided by the affine invariant moment polynomials, in-

troduced in 1960’s by Hu (1961, 1962), though later corrected by Flusser & Suk (1993)

and Reiss (1991). These descriptors make use of the two-dimensional cross products al-

lowing us to incorporate also spatial information to the features. A general formulation,

from which all the affine invariant moment polynomials can be constructed, is given by

Suk & Flusser (2004) as

MP f =
1

‖ f‖w+N

L1

∫

R2N
∏

1≤k<l≤N

C((xk − µ( f )),(xl − µ( f )))nkl

N

∏
i=1

f (xi)dxi, (5)
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where xi,xk,xl ∈ R
2, C(xk,xl) = det[xkxl], N ≥ 2 and nkl ≥ 0 are integers, w = ∑k,l nkl ,

and µ( f ) ∈ R
2 is the centroid of f . Integration is over vectors x1, . . . ,xN . This formu-

lation can be further simplified to the more familiar form as a polynomial of the image

central moments

mpq( f ) =
∫

R2
(x1 − µ( f )1)

p(x2 − µ( f )2)
q f (x)dx, (6)

where x = (x1,x2), µ( f ) = (µ( f )1,µ( f )2), and the value p + q is called the order of

the moment. Only some of these polynomials are independent, and thus worth using

as descriptors (Suk & Flusser 2004). The resulting features are computationally very

efficient and there are number of them. However, they do have a serious deficiency,

since in order to produce more features one needs to use higher order moments, which

soon results in poor performance in noisy conditions. The amount of useful features is

hence limited.

Another moment based approach was introduced by Van Gool et al. (1996). There,

in addition to the moments computed from image f , they use moments that are com-

puted from the support χ f of f . In this way, it is possible to construct features that

are also insensitive to certain changes in the values of f , which can occur when pho-

tographing under varying illuminations. The drawback of these invariants seems to be

their very strong sensitivity to the changes in the image. Also the number of features is

rather small.

One new solution was presented by Yang & Cohen (1999). The key part of this

approach was the introduction of the cross-weighted moment

µkl pq( f ) =
∫

(x1 − µ( f )1)
k(x2 − µ( f )2)

l(y1 − µ( f )1)
p(y2 − µ( f )2)

qw(x,y) f (x) f (y)dxdy,

(7)

where x and y are as above, and w(x,y) is a weighting function defined by Yang &

Cohen (1999). Compared to the invariants constructed using traditional moments, this

new technique seems to provide clearly more robustness. The unfortunate trade off is

the increased computational cost, which very easily becomes impractically high.

Yet another approach to the affine invariants is proposed by Petrou & Kadyrov

(2004). The method is called the trace transform and it was based on applying a par-

ticular combination of functionals to f . The features seem to perform well, but the

implementation of the method is far from trivial.
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In the methods described above, it was assumed that the patterns f have nonzero

support size. In the case of images, this means that there are segments which have a

nonzero area, and the images do not consist solely of points, line segments, conics, or

curves. Another approach, however, to constructing affine invariants is to use exactly

these components. In fact, line segments and conics can be even used to construct

projective invariants (Mundy & Zisserman 1992). A number of methods using curves

and points to produce affine invariants have been introduced in the literature. We will

describe some of these in the following.

One of the first approaches presented by Burkhardt et al. (1991) and Arbter et al.

(1990) is based on closed contours. These curves can be interpreted as periodic func-

tions, and one may compute the corresponding Fourier coefficients. These can then be

used to produce the affine invariants as described by Arbter et al. (1990). The main

idea here is to take advantage of the fact that the affine mapping scales all areas with

the same factor. The method they presented is, however, not translation invariant, and

this must be normalized. The Fourier coefficients of the boundary curve were also used

by Jin & Yan (1992) to construct affine invariants.

Other techniques for producing affine invariants using contours were introduced

by Khalil & Bayoumi (2002, 2001). The construction in these methods was based on

wavelet instead of Fourier transform of the boundary curve. The experiments performed

in these papers indicate that wavelet transform provides some advantages, in particular

increased robustness compared to the Fourier approaches.

Affine invariants can also be constructed using points. One possible construction

is presented by Forsyth & Ponce (2003). In their method, the idea is to use three non-

collinear points to form an affine coordinate frame and use the coordinates of the other

points as features. The only problem here is that we would need to use the correspond-

ing three points in all patterns to construct the affine coordinate frame. One solution to

this is provided by geometric hashing (Forsyth & Ponce 2003), which is basically based

on trying different combinations and voting for the best one.

2.2.3 Classification

The task of the classifier is to assign a category to the pattern according to the corre-

sponding feature vector. Before this can be done, the classifier has to be trained to the

specific problem using a given set of training patterns. These patterns can either have

preassigned categories or not, in which case they must be also learned from the data. In
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the training phase, the classifier defines boundaries in the feature space separating the

object classes. The simplest way to do this is based on the nearest neighbor method,

where the boundaries are defined so that each point in feature space will be assigned to

the same class as the nearest training sample. This is done according to some distance

measure, which could be selected according to the application. Other commonly used

methods to find the decision boundaries are based on support vector machines (Vapnik

1998) or different discriminant functions (Bishop 2006).

The classifier can hardly ever achieve perfect performance. Therefore sometimes

the classifier can be also asked to determine only the probabilities for each possible

category. The classification is considered in the context of the examples in the original

papers, but for a comprehensive discussion one can refer to (Duda et al. 2001, Bishop

2006, Vapnik 1998).

2.3 Registration

In the affine recognition in Section 2.2, we were looking for something in the patterns

that is independent of any possible affine transformation. In affine registration, we are

especially interested in the transformation instead of the particular patterns. In a basic

registration assignment, we are given two patterns f and f ′, which are known to be

connected by some affine transformation A , i.e f ′ = f ◦A −1. We are then asked to

solve the parameters T and t of this transformation. In practice, the affine relation

f ′ = f ◦A −1 does not necessarily hold exactly, but it is a good approximation of the

mapping between the patterns.

One way of categorizing the affine registration approaches is to divide them to the

area and feature based approaches (Zitova & Flusser 2003). In the area based meth-

ods, we make some initial guess for the transformation parameters and then apply a

standard optimization method with some selected error criteria to refine them. In the

feature based techniques, we first extract salient features, from which we can later solve

the transformation parameters. The multiscale framework, presented in this thesis, is

basically applicable to both of these approaches, but in the area based approach it is not

likely to provide significant additional advantage. Hence this approach is only briefly

introduced and the discussion concentrates more on the feature based methods.
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2.3.1 The area based approach

The idea in area based registration is to obtain the transformation parameters directly,

using standard optimization methods with a proper quality measure. This measure is

usually computed by first mapping one pattern on the other, according to the current

estimate, and then evaluating some function giving the alignment error. The choice of

this function is maybe the most crucial step in the process and many different options

have been proposed (Zitova & Flusser 2003). A simple example for such an error func-

tion is the sum of absolute pointwise differences between the aligned patterns. Another

possible example is a measure based on the mutual information between the patterns

(Viola & Wells 1997).

The actual optimization phase is done by applying some of the standard gradient

decent methods, for example the Gauss-Newton or Levenberg-Marquardt algorithms.

The best selection, of course, depends on the selected error measure and the type of

the aligned patterns. However, regardless of this choice, the quality of the initial guess

for transformation parameters has a strong effect on the performance and a poor initial

guess can cause the algorithm to converge very far from the optimal solution. Thus, it

can be even beneficial to use some feature based registration method to find the initial

guess, and then to refine the result using the area based approach. One can find a more

comprehensive introduction, with a number of references from (Zitova & Flusser 2003),

which also includes approaches for nonaffine situations.

2.3.2 Feature based approach

In the feature based approach, the transformation parameters are not estimated directly,

but use salient features extracted from the patterns. The extraction of these features

is the most important step here, and many different ways of performing it have been

introduced. The main difference in these methods is whether they find the features

using some local information or the entire pattern at once. These two approaches are

referred to as local and global feature extraction, respectively.

Many examples of local feature extraction methods are listed by Zitova & Flusser

(2003), where the possible features range from interest regions to different kinds of lines

and points. The common characteristic to all of these features is that they are extracted

based on small local regions of the pattern, which means that they remain unaltered no

matter what changes are made outside these neighborhoods. Another way of interpret-
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ing the local feature extraction is to see it as a segmentation of distinguishable local

characteristics.

In the context of affine registration for images, those methods using the affine covari-

ant neighborhoods (Mikolajczyk et al. 2005) or interest points (Mikolajczyk & Schmid

2004) are maybe the most frequently used. The registration using these techniques

usually follows the three step algorithm:

1. Extract affine covariant neighborhoods or interest points from both images.

2. Find the correspondences between the extracted features.

3. Estimate the transformation parameters using the matched features.

The correspondence search in step 2 can be performed by applying the recognition

techniques described in Section 2.2, where the input patterns are now the extracted

affine covariant areas or the neighborhoods around the interest points. The estimation

of the transformation in the third step can then be done, for example, by minimizing the

reprojection error between corresponding features (Hartley & Zisserman 2003). This

estimate is however not without problems, since there are usually false matches referred

to as outliers in step 2. This may happen for example if the detected regions are small,

or if the interest point matching is done using nonaffine covariant neighborhoods. The

outliers can result in significant errors in the final estimate of the transformation param-

eters. One way to approach this problem is to apply the RANSAC algorithm (Fischler &

Bolles 1981), which has proved to be efficient in applications. More discussion about

RANSAC and its application to registration can be found for example in (Hartley &

Zisserman 2003).

In general, the local approaches perform well, if the patterns have distinctive local

characteristics which can be accurately extracted and reasonably well matched. These

are normally fulfilled with standard photographs, but for example medical images usu-

ally lack such strong details (Zitova & Flusser 2003).

Another option is to extract the features using the entire pattern. These so called

global features have the characteristic that they do change if the pattern is altered at any

place. Another common character is that using these techniques the correspondence

matching, step 2 in the registration algorithm, is achieved automatically. This happens

since each feature corresponds to a certain parameter configuration in the feature extrac-

tion method, and hence we know that the features achieved with similar configurations

in two patterns must be the corresponding ones. This gives the additional advantage

that no outlier detection is required.
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The simplest example of the global approach is to use the image centroid as a feature.

This would only produce one point correspondence, which alone would be enough to

determine the translation t. However, as will be described in Section 3.5, we can use

the multiscale framework to produce a set of images from which to compute enough

corresponding centroids to solve the entire affine transformation. Other methods in

this category include the cross weighted moments (Yang & Cohen 1999), the affine

moment descriptors (Heikkilä 2004), the trace transform (Kadyrov & Petrou 2006), and

the affine invariant spectral signatures (Ben-Arie & Wang 1998). The affine invariant

spectral signatures are not actually a purely feature based approach, but partially apply

optimization to find some of the transformation parameters.

The global methods presented encode the affine transformation parameters in differ-

ent ways, and the final estimate for the transformation parameters must be formulated

accordingly. Often some type of least squares approach is used in these constructions.

34



3 Multiscale framework

This chapter defines the multiscale approach and discusses some related issues. Several

invariants and registration methods based on the framework are also given. The methods

are related to the original publications, and hence some mathematical formalities have

been left out in order to make the main ideas easier to understand. The details can be

found in the corresponding publications. The discussion begins with a short motivation

in the following section.

3.1 Motivation

As already mentioned in Section 2.2.2, previously proposed affine invariants have some

important disadvantages. First of all, the amount of useful descriptors is limited. An

extreme example is the normalized integration, which produces only one feature. An-

other example could be the affine invariant moment polynomials (Flusser & Suk 1993),

where in theory we can construct an infinite amount of features, but in reality only the

few invariants which use low order moments are applicable in practice.

The second disadvantage was related to normalized integration and image histogram

descriptors, which without any modifications do not include any information about the

spatial distribution of gray values. The third problem is related to the computational and

implementational difficulties. An example of these could be the trace transform (Petrou

& Kadyrov 2004), which is able to produce a great number of features with spatial

information, but the implementation and evaluation of these features is complicated

and time consuming.

Similar problems are also associated with the affine registration methods. There, the

low amount of descriptors can even result in a situation where the affine transformation

cannot be fully recovered.

To overcome these problems we would ideally like to find a simple way to construct

arbitrarily many descriptors which capture both intensity and the spatial characteristics

of the patterns. While this can be difficult, it is possible to modify the previous methods

so that they overcome these deficiencies.

35



3.2 Definition

The basic idea in the multiscale approach can be presented as a three step algorithm:

1. Given an image f , represent it in n different scales f (α1x), . . . , f (αnx).

2. Combine the scaled images to a new image G f (x). The combination is required to

be affine covariant, which means that for any affine transformation A , one has

G( f ◦A
−1)(x) = (G f )(A −1(x)). (8)

3. Extract the affine invariant features, or perform affine registration, using f , G f , and

some of the methods presented in Chapter 2.

Figure 4 illustrates the overall procedure. The advantage of the approach is that by

varying the scales αi and combinations G, we are able to generate a great variety of

different descriptors. This is possible regardless of the inherent number of features

offered by the descriptor used in step 3. It is also significant that the values of G f can

already carry the spatial information so that this is not necessarily required from the

operations in the last step.

The first step, scaling of images, is straightforward. The third step can also be quite

simple, depending on which methods are selected, but if we take the mean gray val-

ues, gray value histograms, or image centroids, the implementation is not too difficult.

The second step is often the most complicated one and is the key part of the whole ap-

proach. There, one needs to take the scaled images f (αix) and combine them to a new

image G f (x) so that G f and G( f ◦A −1) are related with an affine transformation A .

The reason for this requirement is quite obvious, since we need to maintain the affine

relationship of the new images Gi f in order to get the methods in step three to work.

The requirement for the affine covariance also provides the motivation for us using

scaling instead of other transformations in the construction of G f . This is because in

general only scaling commutes with matrix products, and this makes it easier to find

combinations for which this requirement is fulfilled. The translation component of A

can, however, cause some problems. It may either be normalized away by computing

the image centroid, or one may choose G more carefully, so that translation invariance

is obtained without finding the centroid.
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I f2 I f3

f(x)

Fig 4. Example of a multiscale scheme where two scaled representations are com-

bined together with a pointwise product. The final invariants are computed from

the resulting images Gi f .

We consider also one possible extension to the basic multiscale framework. We

preprocess the image by taking some transform T of it. The resulting new image T ( f )

is then considered as an input to the basic multiscale algorithm. Some extra caution

must be paid here, since the relation between these new images is not likely to be the

original affine transformation. If the new relation is again affine, then the invariant

features can be computed in a straightforward manner. If we can find inverse mapping

from the resulting relation to A , also the registration can be performed. However,

problems may arise because the resulting relation is not affine. In some cases, we

also have to make exceptions to the affine covariance requirement in the second step.

Examples of this extension are discussed in Sections 3.4.3 and 3.4.4.
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3.3 Related theorems in the spatial and Fourier domain

This section lists a number of spatial and Fourier domain theorems and definitions that

are used in the discussion of multiscale methods in this chapter, as well as in the original

publications. All of them are well known and can be found in textbooks (Kreyszig 1998,

Bracewell 2000), but they are included here for convenience. Throughout the section,

the functions f and g are assumed to fulfill Definition 2.

Definition 4 The L1 norm of f is given by

‖ f‖L1 =
∫

R2
| f (x)|dx. (9)

The L2 norm of f is given by

‖ f‖L2 =

(

∫

R2
| f (x)|2dx

)1/2

. (10)

Lemma 1 The L1 norms of f and the affine transformed version f ◦A −1 are related

by

‖ f ◦A
−1‖L1 = |det(T )|‖ f‖L1 , (11)

where det(T ) denotes the determinant of the matrix T .

Definition 5 The Fourier transform F of function f is given by

F ( f ) =

∫

R2
f (x)e− j2πx·ξ dx = f̂ (ξ ) (12)

with inverse F−1

F
−1( f̂ ) =

∫

R2
f̂ (ξ )e j2πx·ξ dξ = f (x). (13)

Remark 1 If f (x) ≥ 0 for all x ∈ R
2, then ‖ f‖L1 = f̂ (0). This is particularly the case

with the image intensity functions.

Lemma 2 The Fourier transforms of function f and the affine transformed version

f ◦A −1 are related as

F ( f (T−1x−T−1t)) = |det(T )|e− j2πt·ξ f̂ (T tξ ). (14)

Particularly if A is nonzero scaling, we have

F ( f (ax)) =
1

a2
f̂ (

ξ

a
), (15)

where the scaling factor a ∈ R\ {0}.
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Lemma 3 The Fourier transform of the convolution ( f ∗ g)(x) =
∫

R2 f (y)g(x− y)dy is

related to the Fourier transforms of f and g as

F ( f ∗ g) = f̂ (ξ )ĝ(ξ ). (16)

Lemma 4 The inner product of two functions f and g is related to the inner product of

their Fourier transforms f̂ and ĝ according to Plancherel formula (see (Rudin 1987))

as

∫

R2
f (x)ḡ(x)dx =

∫

R2
f̂ (ξ ) ¯̂g(ξ )dξ , (17)

where ḡ denotes the complex conjugate of g.

Definition 6 The translation normalized version f̃ of function f is defined by

f̃ (x) = f (x + µ( f )), (18)

where the centroid µ( f ) =
∫

R2 x f (x)dx.

Lemma 5 Let g(x) = f ◦A −1 = f (T−1x−T−1t). Now f̃ and g̃ are related as g̃(x) =

f̃ (T−1x).

3.4 Multiscale affine invariants

In this section, we illustrate the multiscale framework by applying it to produce a set

of affine invariant feature extraction methods. These techniques have originally been

introduced in Papers I,II,VI,VII, and VIII. They are presented here very briefly and in a

slightly different form, representing the viewpoint of the multiscale framework. Many

details and further properties can be found in the original publications. We will begin

with the simplest construction, and continue to more complex ones, presenting also

several possible variations.

3.4.1 Spatial multiscale affine invariants

The first example is the Spatial multiscale affine invariants (SMA), originally presented

in Paper I. Here, we choose G f to be a product of the original f and two scaled repre-

sentations of it, f (αx) and f (β x). In this formulation, the translation component must,
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however, be normalized, and it is done by replacing f with the normalized version f̃

given by Definition 6. The operator G is given by

G f (x) = f̃ (x) f̃ (αx) f̃ (β x), (19)

where α,β ∈ R. For the construction of the final invariant, we choose the normalized

integration. The resulting final SMA invariants are then given by

S f (α,β ) =
1

‖ f‖L1

∫

R2
f̃ (x) f̃ (αx) f̃ (β x)dx. (20)

Due to its simplicity, S f (α,β ) is very fast to evaluate, and the possibility of varying the

scales results in an infinite number of different descriptors.

The choice to use exactly two scaled versions to form the invariant is somewhat

arbitrary. However, the computational cost of one scaling is O(n), where n is the number

of points in the scaled image. Therefore by taking more scales the descriptors would get

less efficient to evaluate. On the other hand, using only one scaling we would probably

compromise the discriminability. Hence the choice of two scales can be considered as

a trade-off between the discriminability and the efficiency.

3.4.2 Multiscale autoconvolution

Another example is multiscale autoconvolution (MSA), originally presented by

Heikkilä (2002) and later more comprehensively discussed in Paper II. In this case,

we use a combination of convolutions and products to form G f . One advantage of

this approach is the fact that the translation component does not have to be considered

separately. Define

G f (x) =
1

‖ f‖2
L1

f (x)( fα ∗ fβ ∗ fγ )(x), (21)

where α,β ∈ R, γ = 1−α − β , fa(x) = a−2 f (x/a), and ∗ denotes convolution. The

third scaling factor γ is set to 1−α −β in order to eliminate the translation component.

The actual invariant features are again constructed by normalized integration, which

gives the MSA transform

M f (α,β ) =
1

‖ f‖3
L1

∫

R2
f (x)( fα ∗ fβ ∗ fγ)(x)dx. (22)
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This formulation is not computationally appealing, but fortunately by applying the re-

sults in Section 3.3 M f can be expressed using the Fourier transform f̂ as

M f (α,β ) =
1

f̂ (0)3

∫

R2
f̂ (−ξ ) f̂ (αξ ) f̂ (β ξ ) f̂ (γξ )dξ . (23)

3.4.3 Multiscale Fourier invariants

As mentioned in Section 3.2, it is possible to extend the basic multiscale approach by

making a transform T to the image function f before application of the multiscale

framework. We now give one example of this, where we select T to be the Fourier

transform F . Recall from Section 3.3 that the Fourier transformed versions of f and

f ◦A −1 are connected as

F ( f ◦A
−1) = F ( f (T−1x−T−1t)) = |det(T )|e− j2πt·ξ f̂ (T tξ ). (24)

From (24) one can see that if t 
= 0 and det(T ) 
= 1, the resulting relationship is not

affine and the application of the standard multiscale framework would fail.

In order to make this approach work, we need to do something about these problems.

The issue with the det(T ) is easily fixed by defining a normalized Fourier transform as

f̂n(ξ ) =
1

f̂ (0)
f̂ (ξ ). (25)

The problem with the translation is, however, slightly more complicated. We could of

course normalize the translation by computing the image centroid, but a better choice is

to choose the combination G so that this effect is eliminated. This is done by defining,

G f (ξ ) = f̂n(α1ξ ) f̂n(α2ξ ) . . . f̂n(αNξ ), (26)

where we require that α1 + α2 + . . . + αN = 0. This additional requirement makes

the translation parts cancel, and we see that the overall relation becomes G f ′(ξ ) =

G f (T tξ ), which is affine. In particular, if we select a normalized integration to produce

the final invariant and α1 = −1, α2 = α , α3 = β , and α4 = 1−α −β , we have

M f (α,β ) =
1

f̂ (0)3

∫

R2
f̂ (−ξ ) f̂ (αξ ) f̂ (β ξ ) f̂ (γξ )dξ , (27)

which is exactly the Fourier form of the MSA transform. Note that here the integral is

normalized by multiplying with ‖ f‖L1 . The affine invariance of (27) is easy to show

using the results in Section 3.3.
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3.4.4 Multiscale ridgelet invariants

In Section 3.4.3 we considered the utilization of the Fourier transform before applying

the multiscale framework. This is not the only possibility, and another prominent choice

would the ridgelet transform considered in Paper VII. We define the ridgelet transform

of a function f as

R f (ξ ) =

∫

R2
f (x)ψ(x ·ξ )dx, (28)

where ξ ∈ R
2 and ψ is a wavelet. The function ψ(x · ξ ) looks like a ridge, and such

functions are called ridgelets in the literature (Candés 1998, Candés & Donoho 1999,

Do & Vetterli 2003). An example of ψ(x ·ξ ) is illustrated in Figure 5. R f (ξ ) behaves

well under the affine transformation except for the translation part. This must be nor-

malized and we replace f with the normalized version f̃ given by Definition 6. Further

by denoting f ′ = f ◦A −1 we have the relation

R f̃ ′(ξ ) = |det(T )|R f̃ (T tξ ). (29)

Now define,

G f (ξ ) =
1

‖ f‖3
L1

R f̃ (ξ )R f̃ (αξ )R f̃ (β ξ ), (30)

where α,β ∈R. Then, by applying normalized integration to produce the final invariant,

we have

RI f (α,β ) =
1

‖ f‖2
L1

∫

R2
R f̃ (ξ )R f̃ (αξ )R f̃ (β ξ )dξ . (31)
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Fig 5. An example of a ridge function, using Gaussian wavelet.
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3.4.5 Generalized affine moment invariants

In the previous examples, we used normalized integration, which is perhaps the simplest

possible invariant at the third step of the multiscale approach. Instead, we could use

something different, such as affine invariant moment polynomials. This is exactly what

is done in the generalized affine moment invariants, presented in Paper VI. Now let G

be one of the operators given in previous sections and define

I f =
1

‖ f‖w+N

L1

∫

R2N
∏

1≤k<l≤N

C((xk − µ( f )),(xl − µ( f )))nkl

N

∏
i=1

G f (xi)dxi, (32)

where xi,xk,xl ∈ R
2, C(xk,xl) = det[xkxl], N ≥ 2 and nkl ≥ 0 are integers, w = ∑k,l nkl ,

and µ( f )∈R
2 is the centroid of f . Integration is over vectors x1, . . . ,xN . With particular

choices of N and nkl , I f will give all the possible affine invariant moment polynomials

of G f (Suk & Flusser 2004). These can then be expressed as polynomials of central

moments of G f , given by

mpq(G, f ) =

∫

R2
(x1 − µ( f )1)

p(x2 − µ( f )2)
qG f (x)dx, (33)

where x = (x1,x2), and µ( f ) = (µ( f )1,µ( f )2).

As an example, the first two affine invariants would be

I1 = (m20m02 −m2
11)/‖ f‖4

L1 ,

I2 = (−m2
30m2

03 + 6m30m21m12m03 −4m30m3
12 (34)

−4m3
21m03 + 3m2

21m2
12)/‖ f‖10

L1 .

3.4.6 Multiscale autoconvolution histograms

In addition to normalized integration and moment polynomials, one may apply a his-

togramming operation to G f in order to produce affine invariants. Formally, this is

given by

I f =
[ 1

‖χG f ‖L1

∫

(G f )−1(B j)
dx

]m

j=1
, (35)

where B1, . . . ,Bm are disjoint subsets of R+ (bins), and χG f (x) = 1 if G f (x) 
= 0 and

χG f (x) = 0 otherwise. These operations have natural discrete analogues. A particular
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example of this histogramming approach is presented in Paper VIII, where

G f (x) =
1

‖ f‖2
L1

( fα ∗ fβ ∗ fγ)(x). (36)

In that paper, the histogram bins are, however, chosen according to the original function

f rather than G f as in (35).

3.4.7 Comparison based histograms

So far, all the examples of multiscale invariants presented construct the combination G,

using convolutions or pointwise products. These linear operations can behave robustly

in many settings, but they can also compromise the discriminability of the methods to

some extent. For this reason, it might be better to utilize nonlinear functionals in the

combination of the scaled images.

One example of such an approach, presented in Paper X, is to use pointwise com-

parison operations. The motivation for using this method comes from the local binary

patterns (LBP) (Ojala et al. 2002), where similar operations were used to construct

highly discriminative texture descriptors. Paper X illustrates this idea in two different

cases, based on a formulation similar to SMA and MSA.

In the first of these constructions, define

G f (x) = Gα f (x) = X( f̃ (x), f̃ (αx)), (37)

where α ∈ R, and

X(a,b) =

{

1 if a > b,

0 otherwise.
(38)

The G in (37) corresponds to the one defined for SMA in Section 3.4.1, with some

modifications. In (37) the pointwise product is replaced with the comparison operation

X , and the affine covariant combination is computed using only one scaled version of

f .

The second formulation, presented in Paper X, for G is based on convolution

Cα f (x) =
1

‖ f‖L1

( fα ∗ f1−α)(x), (39)

where α ∈ R\ {0} and fα(x) = α−2 f (x/α). Using (39) define

G f (x) = Gα f (x) = X( f (x),Cα f (x)). (40)
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This formulation is clearly related to MSA, with similar modifications as in the case of

SMA and G defined in (37).

In the new formulations introduced, the resulting G is a binary image, from which

we would have to compute the invariant. This could be done following the same ideas as

in the previous case, but since we have such a specific form we can do something better.

Paper X proposes to compute G f (x) with a few different α values, say α1,α2, . . . ,αn,

and then to use a binary code construction as in LBP to combine all the information to

a new function

B f (x) = Gα1
f (x)+ Gα2

f (x) ·2 + . . .+ Gαn f (x) ·2n−1. (41)

The function B f has integer values from 0 to 2n −1, and it completely encodes the

information in the functions G f . To compute the final affine invariant, one could just

evaluate the normalized integral of B f . This approach, however, does not make sense,

since the different combinations would have an uneven impact on the resulting invariant

value. Instead, we construct a histogram HS f (k), with 2n−2 bins, from nonzero values

of B f , and we normalize the histogram so that the sum over all bins is equal to one.

Compared to the direct integration of Gα f , this makes it possible to preserve the relative

spatial arrangements in the functions Gα1
f , . . . ,Gαn f . The construction of the invariant

is illustrated in Figure 6.

f(x)

f(α x)

Pointwise comparison operation

..
.

Construct binary codes

10110110 = 182
2 10

Build a histogram

....

f(α x)>f(x)

i

..
.

i

f(α x)>f(x)
1

f(α x)>f(x)
2

f(α x)>f(x)
n

Fig 6. Illustration of the process for generating the invariant histograms.

These two examples illustrate the application of comparison operations in the con-

struction of affine invariants. The approach is however not restricted to these examples,

and may be applied to other constructions as well.
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3.5 Multiscale affine registration

In the previous section, we considered the construction of affine invariant descriptors

using a multiscale framework. Here we concentrate on using similar ideas in the affine

registration between two images f and f ′ = f ◦A −1. We approach this through two

examples originally given in Papers III and IV. These methods provide easily imple-

mentable and computable solutions for the registration task. According to the experi-

ments, the accuracy of these methods is reasonable, and if more precision is required,

these solutions serve as a good initial estimate for the complex iterative registration ap-

proaches. Note that as in feature extraction, in the following discussion it is assumed

that the registered patterns are segmented and the background is set to zero.

3.5.1 Spatial multiscale registration

In general, one would need to fix six constraining equations in order to be able to

solve all six degrees of freedom in the affine transformation. This can be done for

example by locating three noncollinear corresponding coordinate points. In the global

approach, such points should be produced using the entire image function instead of

some local properties. The image centroid µ( f ) could easily work as one of these, since

it transforms exactly according to A . However, at least two other similar points have

to be located for the complete affine registration. Applying the multiscale approach, we

can produce multiple images G f and G f ′ that are connected with the same A as the

original images f and f ′. Now by computing the image centroids µ(G f ) from all these,

we can construct enough corresponding points to solve the transformation A .

Paper III presents the kind of method that is based on using G f defined for SMA in

Section 3.4.1. Writing this out explicitly gives

µ(G f ) = µ(Gα ,β f ) =
1

‖ f‖L1

∫

R2
x f̃ (x) f̃ (αx) f̃ (β x)dx, (42)

where f̃ is the translation normalized version of f , as defined in Section 3.3. Clearly,

for any α,β ∈ R it holds that µ(G f ′) = T µ(G f ), where T is the linear part of A .

Now, by computing µ(G f ) and µ(G f ′) for at least two different α,β pairs, we have

enough information to solve T . In the case where we have more than two α,β pairs,

the estimate for T can be obtained as a least-squares solution

min
T

n

∑
i

‖µ(Gαi,βi
f ′)−T µ(Gαi,βi

f )‖2 (43)
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(Hartley & Zisserman 2003). The translation part t is then estimated as t = µ( f ′)−

T µ( f ).

3.5.2 Multiscale autoconvolution registration

In the previous section, we formulated the affine registration based on the G f defined for

SMA in Section 3.4.1. The drawback there was that the translation component had to be

considered separately using only one computed correspondence, namely (µ( f ),µ( f ′)).

Now, instead we can select G f to be the same convolution based combination as for

MSA in Section 3.4.2. This approach is considered in Paper IV, where it is also shown

that for this selection of G f we have the relation

µ(G f ′) = T µ(G f )+ tM f , (44)

where T and t are linear and translation parts of A respectively, and M f denotes MSA

as defined in (22). One can observe that in (44) the translation is now incorporated in

all pairs (µ(G f ),µ(G f ′)). This enables us to make a least squares estimate for both T

and t directly from four or more corresponding (µ(G f ),µ(G f ′)) pairs. This, however,

involves also computation of M f with the same parameters α,β , but, as shown in Paper

IV, this is achieved with only a small increase in the computation load. In addition, as

in MSA the computation of the µ(G f ) can be performed efficiently in Fourier space.

3.6 Completeness

Recall from Section 2.2.2 that a system of features is called complete if the feature

vectors extracted from patterns f and f ′ are the same exactly when the two images

are connected by an affine transformation. Ideally one would like to use feature sets

that are complete to ensure that they would distinguish between any patterns up to

affine transformation. One example of a complete system is the geometric moments

computed from an affinely normalized image (Shen & Ip 1997). Also affine invariant

moments (Suk & Flusser 2004) are likely to form a complete system. However, as

already mentioned, if the feature vector v has a finite length, no known feature extraction

method is complete.

In applications, incompleteness is not necessarily a problem if the functions which

result in the same feature vector are reasonably close to being the same up to affine

transformation. It must also be emphasized that even if we have a complete feature set,
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it does not guarantee good performance. This is because the completeness does require

features to be stable or tolerant to nonaffine distortions. Neither does it require that

two feature vectors that are close to each other in the feature space are resulting from

patterns similar to each other.

The multiscale framework by itself does not cause completeness problems, but the

methods derived from it may be incomplete. SMA presented in Section 3.4.1, and the

SMA type comparison invariants presented in Section 3.4.7 have known incompleteness

related to starlike objects and reflections of image sectors with respect to the centroid.

We refer to Section 4 in Paper I for more details. Similar issues arise with MSA if

one performs the aforementioned operations in Fourier space. This however almost

always results in noncompactly supported images, which are not interesting in practice.

The generalized moment based invariants, presented in Section 3.4.5, are likely to have

similar completeness to the affine moment invariants. The completeness of the other

presented multiscale methods is not known in detail. It can be difficult to analyze what

kind of incompleteness is present in a particular method, and what kind of effect this

has in applications. This knowledge would, however, be valuable for implementations.

3.7 Experiments and implementational issues

This section discusses some general issues in the implementation of the multiscale meth-

ods, and the principles of the experiments performed in the original papers. A more

detailed description of the experiments can be found in the corresponding papers, as

well as detailed discussions of implementational issues of particular method. The idea

here is only to give some guidelines.

3.7.1 Implementation

In practice, the patterns examined are not available as continuous functions, and we

only have some amount of discrete samples. This is particularly the case with the gray-

scale digital image functions, which can be interpreted as N1 ×N2 matrices consisting

of samples from the real pattern. In such circumstances, the operations presented in

Sections 3.4 and 3.5 must be discretized for the implementation. In most methods, this

involves the evaluation of the integrals and performing the scaling.

There are several approaches for carrying out these approximations, and it may be

difficult to name the optimal ones. However, in the experiments we did not find much
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difference between the various approaches. Hence, we chose to use simple methods for

both of these operations. The integrals were approximated as the sum

∫

R2
f (x)dx ≈

1

N1N2

N1N2−1

∑
i=0

f (wi), (45)

where wi are N1 ×N2 points in a rectangular grid in R
2. The scaling of images was

performed by using standard linear interpolation. With MSA, however, the interpolation

was done by adding zeros between the known samples and the decimation by dividing

the image into equal sized regions, and then summing the elements in them to form

one element in the decimated image. This different method was chosen due to the

probabilistic interpretation of MSA.

In addition to integration and scaling, we needed to evaluate also Fourier and

Ridgelet transforms. The first one of these was easily achieved using the standard dis-

crete Fourier transform. The second one, the Ridgelet transform, was more complicated

and the standard techniques were found unusable, since they evaluate the transform in

an unsuitable grid. The implementation that we created is introduced in Paper VII.

When the working implementation has been achieved we face another problem,

which is the parameter selection. In the methods presented in Sections 3.4 and 3.5,

the scaling parameters were allowed to be any real numbers. Consequently, there is

an infinite amount of different combinations to select from. With all of these methods,

however, there exist some symmetries which restrict the useful parameter space. For

example, in the case of MSA and SMA, such areas would be the triangles illustrated in

Figure 7.

β

α

(1/3,1/3)

-1 1

1

-1

(a)

β

α-1 1

1

-1

(b)

Fig 7. Regions in the (α,β ) plane that will give all the (a) MSA or (b) SMA invariant

values.
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In spite of having these limited areas from which to choose the parameters, we still

have infinitely many possibilities. Ideally, we would like to take those samples that

would give us the best possible discrimination. However, we do not yet have a way

of performing this. Hence, in the experiments the parameter values were picked either

randomly, or from a uniform grid. For a particular application, it is also possible to

take a large number of candidate parameters, and then select the best ones using sample

data.

3.7.2 Experiments

Several types of experiments involving the new multiscale methods have been per-

formed in the original papers. In the case of affine invariants, most of these can be

divided into two categories.

The experiments in the first category examined the effect of certain nonaffine distor-

tions on the performance. The setting was such that we had a group of training images

which were then modified to form the test set by randomly affine transforming them and

adding particular distortion. Features were computed from all images and then a clas-

sifier, typically SVM or nearest neighbor, was used to determine the correspondences.

The performances with different distortions and distortion strengths were evaluated and

compared to other multiscale or affine invariant approaches.

In the second class of experiments, the training and test sets were both taken in real

photographing conditions and separately from each other. The feature extraction and

classification was then performed in a similar manner to above. In these settings, it was

possible to examine the combined effect from several real distortion types, originating

from the scene, lenses, sensors, etc.

The experiments demonstrated that the multiscale approach clearly increases the

performance compared to standard approaches. The MSA and the Ridgelet descriptors

seemed to be the most accurate, but also computationally the most demanding. The his-

togram methods provided high discriminability with low computational costs, and they

are recommended for situations with low resources. The challenge here is, however, to

incorporate many histograms with different parameters in an efficient way.

Paper V illustrates yet another type of experiment. There the invariant features were

computed from small local regions in the images. This basically differs from the previ-

ous experiments by the fact that the areas were much smaller. The results of these tests

illustrated that MSA is applicable to these situations, but compared to performances in
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the other experiments we believe that MSA is likely to perform better when applied to

larger segments. This is our impression also in the case of other multiscale methods.

The experiments in Papers III and IV, involving multiscale affine registration, are

very similar to the first type of those involving invariants. There, instead of recogni-

tion, we performed registration of the images and evaluated the accuracy using some

error measure, like pointwise absolute differences. The registration experiments also

included a special case where the registered patterns were point sets.

The registration methods provide a simple way of getting an estimate for the trans-

formation parameters. In the cases where the accuracy of the methods is not sufficient,

they give a good initial guess for the iterative algorithms.
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4 Convexity measures

Besides the presented recognition and registration assignments, the multiscale approach

may also be used in other applications. One specific example of these, described in Pa-

per IX, is to use the multiscale autoconvolution for measuring object convexity. This

chapter presents a short introduction to this method and to convexity measures in gen-

eral. The presentation is slightly different from that in Paper IX in order to emphasize

the connection to the MSA transform. Some mathematical formalities have also been

left out. They can be found in Paper IX, where also a collection of different comparison

experiments using the new measures are presented.

4.1 Motivation and other convexity measures

Shape is an effective descriptor in many applications (Lee et al. 2003, Costa & Cesar

Junior 2001, Hyde 1997). One approach to measuring shape is to study the convexity

of the object. Recall that an object is said to be convex if the line segment between

two points in the object also belongs to the same object (Valentine 1964). Figure 8

illustrates some examples of both convex and nonconvex objects.

(a) (b)

Fig 8. (a) Samples of convex objects. (Note the slight deviation from convexity

due to discrete sampling) (b) Samples of nonconvex objects.
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In shape description, we are not so interested in classifying the objects as convex

and nonconvex, but more in measuring how close to convex a particular object is. In

other words, we consider a convex object to be somehow regular, and we are interested

in how irregular the inspected objects are in this sense. One instance, where this idea is

particularly suitable is in medical image analysis, where such irregularity can be used

in classification of skin lesions (Lee et al. 2003, Rosin & Mumford 2006).

Before considering any convexity measures, it is reasonable to fix some properties

that are required from a valid measure in order to make it behave well and produce

sensible results. A presentation of such properties is given by Zunic & Rosin (2004),

who list the following four.

Definition 7 A convexity measure should have the following basic properties:

1. The convexity measure is a number from (0,1].

2. The convexity measure of a given shape is equal to 1 if and only if the shape is

convex.

3. There are shapes whose convexity measure is arbitrarily close to 0, implying that

there is no gap between 0 and the minimal possible value of the measure.

4. The convexity measure is invariant under appropriate geometric transformations of

the shape.

The first approach to constructing a measure arises directly from the definition of

convexity.

Definition 8 Let K ⊆ R
2 be a compact set representing a planar shape and let X and

Y be independent random variables drawn uniformly from the set K. Define a convexity

measure

Cls(K) = P([X ,Y ] ⊆ K), (46)

where P(A) denotes the probability of the event A and [x,y] is a line segment between x

and y.

This measure provides a direct way of estimating the convexity. However, the difficul-

ties in computing the value of Cls basically forbid the application of this measure in

practice (Zunic & Rosin 2004).

Another approach is based on the idea of approximating an object by larger or

smaller convex sets. This leads to two new measures.
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Definition 9 Let K be as in Definition 8. Define two convexity measures

Cch(K) = |K|
|ch(K)|

, (47)

Cmcs(K) = |mcs(K)|
|K| , (48)

where ch(K) is the convex hull of K, |K| is the area of a set K, and |mcs(K)| is the

supremum of the areas of convex subsets of K.

Of these two measures, Cch is the one most frequently appearing in the literature and

in applications. It has proved to be robust and easy to compute. Cmcs, introduced by

Rosin & Mumford (2006), has good performance in applications, but the challenges in

the computation of |mcs(K)| may restrict the use of this measure in practice.

All of the measures Cls, Cch, and Cmcs can be thought of as being area based, since

their values depend on the areas of different parts of the object. Consequently, such

measures are usually tolerant with respect to small defects in the objects, which can

be caused, for example, by noise or insufficient segmentation. In some applications,

such robustness is not a desired attribute, and in such cases it is better to use so called

boundary based measures. Two such measures, for polygons, can be defined as follows

(Zunic & Rosin 2004).

Definition 10 For a given planar shape K, where K ⊆ R
2 is a compact and connected

polygon, define

Cchp(K) =
Per2(ch(K))

Per2(K)
, (49)

where Per2(K) is the L2 perimeter of K and ch(K) is the convex hull of K. Further, let

R(K,α) denote the minimal rectangle with edges parallel to the coordinate axes which

contains the polygon K rotated by angle α . Define

Cpoly(K) = min
α∈[0,2π ]

Per2(R(K,α))

Per1(K)
, (50)

where Per1(K) is the L1 perimeter, for definition see (Zunic & Rosin 2004), of K.

4.2 Multiscale autoconvolution in convexity

measurements

The idea that the multiscale autoconvolution can be used to measure convexity was first

introduced by Rahtu et al. (2004). The approach there started directly from MSA, show-

ing that with certain parameters the transformation acts as a convexity measure. Later,
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Paper IX presented a more comprehensive study and generalization of this type of con-

vexity measure. The construction there was different, starting from the viewpoint of

convex combinations, and showed the connection to MSA through the explicit expres-

sions of the measure. The introduction here follows a similar idea to that in Paper IX,

but presents it in a slightly modified form in order to illustrate the interconnectedness

with multiscale autoconvolution more directly. Also for possible generalizations of the

measure, one can refer to Paper IX.

The idea in the new measure follows directly from the alternative definition to con-

vexity approaching it though convex combinations.

Definition 11 A set A ⊆ R
2 is called convex if and only if for any points x1, . . . ,xn ∈ A,

any convex combination a1x1 + . . .+ anxn, where a j ≥ 0 and a1 + . . .+ an = 1, is in A.

Definition 12 Let α,β ,γ > 0, α + β + γ = 1, and let K be the set representing the

object under study. Define a convexity measure

Cαβ (K) = P(αX + βY + γZ ∈ K), (51)

where X, Y , and Z are independent random variables drawn uniformly from K.

It can be shown, see Paper IX, that Cαβ is a convexity measure fulfilling all the require-

ments set in Definition 7. Note that γ is determined by α and β because of the require-

ment α + β + γ = 1. Figure 9 illustrates possible α,β values resulting in α,β ,γ > 0.

β

α−1 1

1

Fig 9. Region of valid α,β values for Cαβ .

One can observe that the formulation of Cαβ is similar to Cls, which originates from

another definition of convexity. The fundamental difference, however, is that Cαβ deals
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with points rather than line segments. This gives two significant advantages, the first

one being that by varying the parameters α and β one can construct infinitely many

different convexity measures. The second advantage is that there is a computationally

efficient way of evaluating Cαβ , unlike in the case of Cls which must be estimated by

sampling. The connection of Cαβ to MSA, or how to compute the Cαβ is not obvious

from the definition, but this will be clarified though the explicit expressions derived

next.

Let X , Y , and Z be drawn independently from the set K. Thus, they all have the

same probability density function

p(x) =
1

|K|
χK(x), (52)

where χK(x) is a characteristic function of K defined as

χK(x) =

{

1 if x ∈ K,

0 otherwise.
(53)

Now let α , β , and γ be as in Definition 12 and define a new random variable

Uαβ = αX + βY + γZ. (54)

Using Lemma 2.1 in Paper II, it can be shown by a straightforward derivation that the

probability density function of Uαβ can be written in terms of p as

pUαβ
(u) =

1

α2β 2γ2

(

p(
x

α
)∗ p(

x

β
)∗ p(

x

γ
)

)

(u), (55)

if all α,β ,γ > 0, and with straightforward modifications if some of these are equal to

zero.

From the definitions of Uαβ and Cαβ , it is obvious that Cαβ (K) = P(Uαβ ∈ K).

Writing this out in terms of a probability density function gives

Cαβ (K) =

∫

K
pUαβ

(u)du

=
∫

R2
χK(u)pUαβ

(u)du

=
1

α2β 2γ2

∫

R2
χK(u)

(

p(
x

α
)∗ p(

x

β
)∗ p(

x

γ
)

)

(u)du. (56)

Substituting here expression (52) for p, this becomes

Cαβ (K) =
1

|K|3α2β 2γ2

∫

R2
χK(u)

(

χK(
x

α
)∗ χK(

x

β
)∗ χK(

x

γ
)

)

(u)du. (57)
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Applying the Plancherel formula,
∫

R2 f ḡ =
∫

R2 f̂ ¯̂g (see Section 3.3) and noting that the

Fourier transform takes convolutions to products, one can reformulate (57) as

Cαβ (K) =
1

|K|3

∫

R2
χ̂K(−ξ )χ̂K(αξ )χ̂K(β ξ )χ̂K(γξ )dξ , (58)

where χ̂K denotes the Fourier transform of χK . Comparing (58) to the Fourier expres-

sion of MSA (23) it can be easily observed that

Cαβ (K) = MχK(α,β ), (59)

identifying the direct connection of the convexity measure to the multiscale autoconvo-

lution. Formula (58) also gives a simple and efficient way of evaluating the measure

Cαβ from the given shape K using the Fourier transform.

Compared to the previously proposed measures Cls, Cch, Cmcs, Cchp, and Cpoly, Cαβ

has two new properties. First of all, it offers a basis for constructing a whole set of new

convexity measures, by altering the parameters α and β . The new measures, achieved in

this way, can be then used to improve the discrimination as demonstrated in the Pollen

experiment in Paper IX. Secondly, as explained in detail in Paper IX, Cαβ can also be

applied to gray scale images approximating a shape K. In this case, the gray values

may be interpreted as the probabilities that particular points belong to K. Being able to

apply the convexity measure directly to these situations removes the need for limiting

the image to a strictly binary one.

Each convexity measure captures different, sometimes partially overlapping, char-

acteristics of the object shape. For this reason, they are not generally easy to compare,

since what is important in the shape can vary so much from application to application.

However, being very straightforward to evaluate, and offering numerous possibilities

for variations, the new MSA based convexity measure brings a valuable addition to the

set of convexity measures. Figure 10 illustrates a set of objects classified according to

their convexity measured with C0.5,0.5.

Fig 10. Six objects ranked according to their convexity using the C0.5,0.5 measure.
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5 Conclusions

Pattern recognition and registration are two important tasks in many applications. Since

a general solution to these problems has not yet been found, the questions have to be

studied in restricted settings. In image processing, one particularly important situation

arises when objects are photographed from various viewing angles. In this case, one

may use a geometric transformation to describe the relations between patterns in one

class, and use it as a basis for the recognition or registration. In many instances, affine

mapping is a reasonable choice for this transformation, providing sufficient accuracy,

and being still essentially linear. Hence, affine recognition and registration often appear

in vision applications.

Both affine recognition and registration can be studied from several different per-

spectives. However, feature based approaches have been the ones which are most

frequently applied. This thesis presented a new framework for constructing invariant

feature extraction methods applied in these settings. The idea in the new approach is to

extend the given pattern to a set of affine covariant versions, each carrying slightly dif-

ferent information, and then to apply known affine invariants to each of them separately.

The key part of the framework is the construction of the affine covariant set, and this is

done by combining several scaled representations of the original pattern.

The usage of the novel framework was illustrated in nine constructions, where dif-

ferent preprocessing methods, combination schemes, and final feature extraction tech-

niques were applied. A short presentation of each of the new methods was offered, and

a more thorough discussion is given in the corresponding original publications. There

the methods are also assessed in several experiments, comparing them to previous ap-

proaches. The constructions presented are not in any way a complete set of possible

ways to apply the multiscale approach, and further research may bring new interesting

possibilities.

An additional application of one multiscale based technique in convexity measure-

ments was introduced. Convexity is a descriptor of object shape. The proposed new

measure proved to be simple to evaluate and it offered the possibility of many vari-

ations. Variability together with the ability to use the measure directly to gray-scale

approximations of the binary shapes are properties previously not present in convexity

measures.
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The idea of applying scaled versions of the image in the multiscale framework was

introduced particularly due to the properties of the affine transformation. In situations

where the interconnections of the patterns are described with some other mappings,

similar ideas may be applicable when the scaling is replaced by a suitable operation.

For example, in order to construct rotation invariants, one could use combinations of

rotated versions of the original pattern.

The multiscale methods and the corresponding experiments were presented using

image intensity functions as patterns, since this is the main application where affine

relations arise. Nevertheless, the new approach can be applied to other types of patterns

where the affine transformation is present, as long as the patterns can be represented by

functions. An example of such patterns could be volume data or probability densities.

We are looking forward to such new applications in future.
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Rahtu E, Salo M & Heikkilä J (2004) Convexity recognition using multi-scale autoconvolution.

Proc. Proc. International Conference of Pattern Recognition, Cambridge, United Kingdom,

1: 692–695.

Reiss TH (1991) The revised fundamental theorem of moment invariants. IEEE Transactions on

Pattern Analysis and Machine Intelligence 13(8): 830–834.

Reiss TH (1993) Recognizing planar objects using invariant image features. Springer-Verlag, NJ.

Rigoutsos I (1998) Well-behaved, tunable 3d-affine invariants. Proc. Proc. Computer Vision and

Pattern Recognition, Santa Barbara, USA, 455 – 460.

Rodrigues MA (2000) Invariants for pattern recognition and classification. World Scientific, Sin-

gapore.

Ronneberg O, Burkhardt H & Schultz E (2002) General-purpose object recognition in 3d vol-

ume data sets using gray-scale invariants – classification of airborne pollen-grains recorded

with confocal laser scanning microscope. Proc. Proc. International Conference of Pattern
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