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A MULTISCALE METHOD FOR HIGHLY OSCILLATORY
ORDINARY DIFFERENTIAL EQUATIONS WITH RESONANCE

GIL ARIEL, BJORN ENGQUIST, AND RICHARD TSAI

In Memory of Germund Dahlquist

Abstract. A multiscale method for computing the effective behavior of a
class of stiff and highly oscillatory ordinary differential equations (ODEs) is
presented. The oscillations may be in resonance with one another and thereby
generate hidden slow dynamics. The proposed method relies on correctly track-
ing a set of slow variables whose dynamics is closed up to ε perturbation, and
is sufficient to approximate any variable and functional that are slow under the
dynamics of the ODE. This set of variables is detected numerically as a pre-
processing step in the numerical methods. Error and complexity estimates are
obtained. The advantages of the method is demonstrated with a few examples,
including a commonly studied problem of Fermi, Pasta, and Ulam.

1. Introduction

Solutions of ordinary differential equations (ODEs) often involve a wide range
of time scales. In many problems, one is only interested in the slow dynamics, or
on the long-time behavior of the solutions. However, it is often the case that fast
oscillations, or an otherwise small perturbation build up to an observable effect
that cannot be neglected. A typical example, suggested by Germund Dahlquist, is
the drift path of a mechanical alarm clock when it set off on a hard surface1. The
rapid vibrations of the clock’s arm are not precisely symmetric. Together with the
heavy, inhomogeneous internal structure and the interaction with the surface these
oscillations can cause the clock to drift slowly in a complicated trajectory that is
difficult to calculate or predict. Moreover, this drift seems to be deterministic and
does not resemble a random walk.

Within the large literature considering dynamical systems that evolve on two
or more well separated time scales, analytic averaging techniques [3, 34] have been
found to be one of the methods of choice for providing approximate solutions. In
this paper such an averaging theorem is used to construct a numerical method for
integrating stiff ODE systems that may include oscillatory and resonant compo-
nents. Our method follows the framework of the heterogeneous multiscale method
(HMM) [9, 10, 12, 13].
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Consider an ODE system of the general form

(1.1) ẋ = ε−1f(x) + g(x), x(0) = x0,

where 0 < ε ≤ ε0 is a small parameter that characterizes the separation of time
scales in the problem. In this paper we consider solutions in a bounded domain
x ∈ D0 ⊂ Rd and in a bounded time interval I = [0, T ]. We assume that the solution
of (1.1) exists in I Although the solution of (1.1), x(t; ε), depends on the parameter
ε, this dependence is suppresses and for short hand we often write x(t) ≡ x(t; ε).

Typically, the fast dynamics in equations such as (1.1) is one of two types. The
first are modes that are attracted to a low dimensional manifold in ε time scale.
These modes are called transient or dissipative modes. The second type are modes
that oscillate with a frequency that is inversely proportional to ε. One of the main
difficulties in numerical integration of (1.1) using explicit methods is that stability
requirements force a step size that is of order ε. This generally implies that the
computational complexity of such explicit methods for integrating (1.1) over a fixed
time T is at least of the order of ε−1.

Several different approaches have been suggested, each appropriate to some class
of ODEs. Dahlquist laid down the fundamental work for designing linear multistep
methods [5, 6, 7, 8] and studied their stability properties. Problems with fast
transients can be optimally solved by implicit schemes [5, 20, 25]. The Chebyshev
methods [1, 29] as well as the projective integrator approach [17] provide stable and
explicit computational strategies for this class of problems in general. For harmonic
oscillatory problems, traditional approaches attempt to filter out or fit fast, O(ε−1)
oscillations to some known functions in order to reduce the complexity, e.g. [16, 26,
35], or use some notion of a Poincaré map to determine slow changes in the orbital
structure [18, 33]. A general class of approaches aiming at Hamiltonian systems are
geometric integration schemes that preserve a discrete version of certain invariance.
We refer the readers to [19] and [30] for a more extensive list of literatures. In certain
applications, special considerations are given to the expensive cost of evaluating
non-local potential in large systems (see e.g. the impulse method [15]) as the cost
may be even more than dealing with the fast oscillations that appear in the systems.
Using matrix exponentials and [22], we can effectively compute oscillatory solutions
to a class of problems with leading harmonic oscillations.

For problems in meteorology [4, 27] or celestial mechanics [28], it is possible to
carefully prepare suitable initial conditions near accurate observational data so that
the fast modes in the system will not be exerted, and thus long-time solutions can
be computed accurately using large time steps.

The different methods described above vary not only in scope and underlying
assumptions, but also in their approach to broader questions. To name a few, how to
characterize or capture the “slow constituents” of the dynamics which may involve
non-trivial functionals of the state variable x. How can one obtain slowly varying
observables out of trajectories that evolve on a faster time scale? Which observables
should the multiscale integrator approximate and in what sense? Finally, which
variables or observables are essential to the algorithm and which are not? This
question is related to the closure problem in the formulation of averaged equations.

In many examples, it is not clear how to characterize the slow parts of the dy-
namics in systems such as (1.1). To this end we define slow variables or observables
as follows.
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Definition 1.1. Let x(t) = x(t; ε) ∈ D0 denote the solution of (1.1) for some initial
conditions.

• A smooth function a(t) = a(t; ε) is said to be slow if |da/dt| ≤ C0,for some
constant C0 independent of ε in t ∈ I.

• A smooth function α(x) : D0 �→ R is said to be a slow variable with respect
to x(t) if

(1.2) | d

dt
α(x(t))| ≤ C0, t ∈ I

for some constant C0 independent of ε.
• A bounded functional β : C1(D0)×[0, T ] �→ R is said to be a slow observable

with respect to x(t) if

(1.3) β̄(t) =
∫ t

0

β(x(τ ), τ )dτ,

or

(1.4) 〈β(x)〉η(t) =
∫ t+η

t−η

Kη(t − τ )β(x(τ ), τ )dτ,

where Kη(·) = η−1K(·/η) for some kernel function K ∈ C1 with support
on [−1, 1] and

∫ 1

−1
K(t)dt = 1. Functionals of the second kind will also be

referred to as local time averages.

In Section 4 we show that under appropriate scaling of η with ε, (d/dt)〈β〉η(t) is
indeed slow.

Next we define a concept which we call “effective closure.” It is a necessary
condition for the macroscopic slow variables in our schemes.

Definition 1.2. We say that the dynamics of ξ is effectively closed in [0, T ] with
respect to ε if ξ satisfies an equation of the form

dξ

dt
= fI(ξ, t) + εfII(ξ, t, z(t)),

dz

dt
= g(ξ, z, t)

in a time interval [0, T ], where T < ∞ is independent of ε, and fI , fII , and g are
smooth and bounded in D0 × [0, T ].

In the next section it is shown that if a sufficient number of independent slow
variables are approximated accurately by the algorithm, then, these variables are
effectively closed. Furthermore, the same variables can be used to consistently ap-
proximate any other slow variable and functional. The algorithm described in the
next section indeed achieves this goal and the accuracy of the different approxima-
tions is calculated.

In this paper we propose an HMM algorithm that first constructs, by a numerical
procedure, a transformation x → ξ(x) such that ξ(x(t)) are slow for all solutions of
(1.1) x(t) and its dynamics are effectively closed. This means that, for a given x(0)
and the corresponding evolution x(t), ξ(t) := ξ(x(t)) is well described for small ε
by an effective equation of the form

(1.5) ξ̇ = F (ξ), ξ(0) = ξ0 = ξ(x0),

for t ∈ I. Note that we do not assume that the effective equation (1.5) is available
as an explicit formula. Instead, the idea behind the HMM algorithm is to evaluate
F (ξ) by numerical solutions of (1.1) on significantly reduced time intervals. In this
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way, the HMM algorithm approximates an assumed effective equation whose form
is typically unknown.

The layout of the paper is as follows. Section 2 presents a well-known averaging
theorem. Based on this theorem we prove that by using an appropriate set of slow
variables, all slow observables admitted by (1.1) are approximated by a class of
HMM schemes. The outline of the algorithm is also described. Section 3 gives an
example of a particular, limited class of ODEs, in which this set of slow variables is
polynomial in x. Several strategies for identifying these polynomials are suggested.
Section 4 considers local time averages which form an essential part of the HMM
algorithm. Section 5 describes high order explicit schemes. In Section 6 we estimate
the global accuracy and complexity of the method. Section 7 presents several
numerical examples. We conclude in Section 8 by suggesting different possible
generalizations of our algorithm and we compare them to other techniques.

2. The HMM scheme

We begin with a well-known averaging theorem. A proof can be constructed
along the lines of Sanders and Verhulst [34]; e.g. Thereom 3.2.10 on page 39.

2.1. An averaging theorem. Let (ξ(t), φ(t), γ(t)) denote the solution of

(2.1)

⎧⎪⎨
⎪⎩

ξ̇ = F (ξ, φ, γ), ξ(0) = ξ0,

φ̇ = ε−1Ω(ξ) + G(ξ, φ, γ), φ(0) = φ0,

γ̇ = −ε−1H(γ), γ(0) = γ0,

in a bounded domain D×S1×D1, where D ⊂ Rr and D1 ⊂ Rd−r−1. In this paper,
we identify S1 as R/Z, i.e., the space R modulus one, with the corresponding
topology and Lebesgue measure. In this construction, the functions, F , G, H and
Ω are C1 and independent of ε. Additionally, we assume that Ω ≥ m > 0 and ξ(t)
remains bounded for 0 ≤ t ≤ T.

The function H(γ) is chosen such that, for all γ ∈ D1, γ(t) is attracted on an
ε time scale to an invariant manifold, M, on which γ is relaxed to be of order ε.
More specifically, it is assumed that

(2.2) |γ(t)| ≤ C

D + (t/ε)l
,

for some constants C, D, l > 1. Hence, γ are transient, or dissipative variables
which are relaxed to zero after an initial time layer that vanishes in the limit ε → 0.

Let ζ(t) denote the solution of

(2.3) ζ̇ = F̄ (ζ) =
∫

S1
F (ζ, σ, γ = 0)dσ, ζ(0) = ξ(0).

Then,

(2.4) sup
0≤T0(ε)≤t≤T

|ξ(t) − ζ(t)| ≤ εCTeLF̄ T ,

where LF̄ ≥ 0 is a Lipschitz constant of F̄ , C > 0 is a constant that is indpendent of
ε and T0(ε) = o(1) is the time required for the relaxation of the dissipative modes,
which depends on the rate of decay of γ, l. This theorem suggests that simulating
the averaged equation for ζ introduces an error on the order of ε.
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The above condition on the dissipative modes can be generalized to a case in
which the equation for γ ∈ Rd−r−1 has the form

γ̇ = ε−1g(ξ, γ),

where g is such that γ is attracted to an r+1 dimensional invariant manifold, M1, on
which g(ξ, γ) is of order ε. See [32] for sufficient conditions that guaranty stability
and uniqueness of this manifold and a proof that γ decays to M1 exponentially
fast on a time scale of the order of ε. For simplicity, we do not consider the
interesting problem of turning points. The algorithm described in the following
section automatically guaranties that all dissipative models are relaxed and that
the dynamics stays close to M1. This generalization is not discussed any further
since the main interest of this paper is the oscillatory modes.

Assume that there exists a change of variables

Φ : D0 ⊂ R
d �→ D ∈ R

r × S1 × R
d−r−1, Φ(x) = (ξ(x), φ(x), γ(x))

such that for the solutions of (1.1), the functions ξ(t) = ξ(x(t)), φ(t) = φ(x(t)), and
γ(t) = γ(x(t)) satisfy some equations in the form (2.1). For 0 < ε � 1, the fast
dynamics in the new coordinate system appears only in φ(t) and γ(t). Hence, the
effective behavior of the system can be described by ζ(t), which approximates ξ(t).

The most important aspect of equation (2.3) is that it is closed, i.e., the time de-
rivative of ζ is expressed in terms of ζ alone. As a result, it is possible to construct
an algorithm that only approximates ζ. Later, it is shown that if ζ is approxi-
mated accurately, then all slow variables and observables are also approximated
consistently.

System (1.1) can be analyzed and computed efficiently if there exists a diffeo-
morphism between x and (ξ, φ, γ). Clearly, the choice of Φ is not unique. However,
since we are only interested in the slow parts of the dynamics, it is enough to find
a sufficient number of slow variables ξ = (ξ1, . . . , ξr) such that ∂ξ/∂x has rank r.
Once ξ(x) is identified, F (ξ) = F (ξ(x)) is easily calculated. The key step is then
to relax all dissipative modes and average over φ to obtain the unknown function
F̄ (ξ). In Section 4, we show that this can be approximated by local time averages

F̄ (ξ) ∼ 〈F (ξ(x(t)))〉η.
ξ̇(t) = F̄ (ξ) is then used in an integrator to obtain ξ at some later time t + H.
Efficiency is attained if H > η since we do not need to evolve the stiff systems for
x(t) for all time.

2.2. Algorithm. The first step in our algorithm is to numerically find the diffeo-
morphism Φ and identify the slow variables ξ(x). Then, the ODE (1.1) is integrated
using a two level algorithm; each level corresponds to the integration of (1.1) in a
different time scale. The first is a Macro-solver, which integrates the averaged
equation (2.3). The second level is a micro-solver that is invoked whenever the
Macro-solver calls for it. Each time the micro-solver is invoked, it computes a
short-time solution of (1.1) using suitable initial data (see also [12, 13, 36]). For
example, suppose the Macro-solver applies a forward Euler scheme with step size
H. Higher order methods are described in Section 5. Sample times of the Macro-
solver are denoted t0, . . . , tN , where N = T/H. The output of the Macro-solver is
denoted x0, . . . ,xN . The output of the micro-solver with step size h, initiated at
time tn with initial conditions xn is denoted x1

n, . . . ,xM
n , where M = 2η/h is an

even integer. The coordinates of F̄ are denoted F̄ (ζ) = (F̄1(ζ), . . . , F̄r(ζ))T . We
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micro−solver
h

η η

Macro−solver

x

ξ
H

Figure 1. The picture depicts the time steps taken by the HMM
scheme. At the n-th macro step, a micro-solver with step size h
integrates (1.1) to approximate x(t) in a time segment [tn, tn +2η].
This data is used to approximate F̄ (ξ) by 〈ξ(x(t))〉η. Then, the
Macro-solver takes a big step of size Hδx, where δx is consistent
with 〈ξ̇〉η, i.e., δx · ∇ξi = 〈ξ̇i〉η for the identified slow variables ξi.

micro−solver

micro−solver

H

H

x1

x2

Figure 2. The picture depicts the outline of the HMM scheme for
a simple two-dimensional system that oscillates with a frequency
of the order ε−1 and expands on an O(1) time scale (cf. Section
7.1). The dotted line depicts the trajectory obtained by the micro-
solver. The bold arcs depict the steps taken by the Macro-solver.

also assume that the averaging kernel K is symmetric with respect to its mid-point.
This implies that if Mh >> ε, then all transient modes practically vanish at the
midpoint. The outline of the algorithm, depicted in Figure 1 for a one-dimensional
example and in Figure 2 for a two-dimensional case, is as follows:

(1) Construction of slow variables:
Find functions ξ1(x), . . . , ξr(x) such that, for all x ∈ D0 ∩ {F �= 0},
|∇xξẋ| ≤ C0 and rank(∂ξ/∂x) = r. See Section 3 for details.

(2) Multiscale evolution:
(a) Initial conditions: x(0) = x0 and n = 0.
(b) Force estimation:

(i) micro-simulation: Solve (1.1) in t ∈ [tn, tn + 2η] with initial
conditions xn.
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(ii) averaging: approximate ξ̇(tn + η) by

〈ξ̇〉η(tn + η) = (Kη ∗ ξ̇)(tn + η) = (−K̇η ∗ ξ)(tn + η).

(c) Macro-step (forward Euler example):
xn+1 = xM/2

n + Hδx, where δx is the least squares solution to the
linear system

δx · ∇ξi = F̄i(ξ) = 〈ξ̇i〉η,

for all i = 1 . . . r.
(d) n = n + 1. Repeat steps (b) and (c) to time T .

Note that there is no need to actually change the original ODE (1.1) to the
form used in the averaging theorem (2.1). In addition, it is important that at each
Macro step the vectors ∇ξi(x

M/2
n ) are linearly independent. In case they are not,

it is possible to take a few extra micro steps and reach a point in which they are.

2.3. Approximation of slow quantities. With the proposed algorithm, ξ is im-
plicitly and accurately evolved. Thus we are able to compute the slow variables in
Definition 1.1.

Let α(x) ∈ R be a slow variable with respect to x(t), i.e., | d
dtα(x(t))| ≤ C0.

Denote α̃(ξ, φ, γ) = α(Φ−1(ξ, φ, γ)), and α̃(t) = α̃(ξ(t), φ(t), γ(t)) = α(x(t)) = α(t).
Differentiating with respect to time, we have

d

dt
α =

d

dt
α̃ = α̃ξ · ξ̇ + α̃φ · φ̇ + α̃γ · γ̇,

where α̃ξ, α̃φ and α̃γ denote partial derivatives with respect to ξ, φ and γ, respec-
tively. This implies that if α(x) is slow, then

α̃(ξ, φ, γ) = α̃(ξ, φ0, 0) + εC(ξ, φ, γ),

where C(ξ, φ, γ) is bounded independent of ε. However, since α or equivalently,
α̃ is independent of ε, we have that C ≡ 0. In other words, any slow variable is
a function of ξ alone. Consequently, if the algorithm approximates ξ(t), then any
smooth function α̃(ξ(t)) is also approximated.

The second type of slow observables we consider are time averages of the form
〈β(x(·))〉η. The discussion above implies that

(2.5) 〈β(x(·))〉η = 〈β(x(ξ, φ, γ))〉η ≡ 〈β̃(ξ, φ, γ)〉η,

for some function β̃. However, the variables γ decay to zero and, as shown in
Section 4, for sufficiently large η, time averages can be approximated by averaging
over the angle variable φ. Therefore, we have

(2.6) 〈h̃(ξ, φ, γ)〉η ∼
∫
S1

h̃(ξ, φ, γ = 0)dφ ≡ B(ξ),

which is a function of ξ alone and hence a slow variable. The discussion above shows
that the algorithm approximates the value of 〈β(x)〉η. In practice the time average
〈β(x)〉η can be calculated from the output of the micro-simulation initiated at each
Macro-step. The error introduced in approximating time averages by angular ones,
and vice versa, is analyzed in Section 4.
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Convergence of functionals follows from the observation that for any smooth
functions α(x, t),

ᾱ(t) =
∫ t

0

α(x(s), s)ds

is slow since |(d/dt)ᾱ(t)| = |α(x(t), t)| ≤ C0 for x(t) ∈ D0.
In the simple case in which the integrand α(x, t) is a slow variable itself, the

functional
∫ t

0
α(x(τ ), τ )dτ can be approximated by quadrature over the sample

points of the Macro-solver. In general, α(x(t), t) exhibits fast oscillations with
frequency proportional to ε−1. However, we observe that ᾱ(t) solves the ODE

(2.7)

{
˙̄α = α(Φ−1(ξ, φ, γ), τ ),
τ̇ = 1,

which complies to the form required by the averaging theorem. Therefore, ᾱ(t) can
be integrated by the proposed HMM scheme as a passive variable at the macroscopic
level. In other words, it can be approximated by

ᾱ(t) ∼
∫ t

0

〈α(x(τ ))〉ηdτ.

3. Slow variables

The idea behind the proposed method is to find (by numerical construction) a
set of slow variables so that the dynamics of the given system is decomposed into
this set of slow variables, a single fast oscillating mode defined on S1 and dissipative
modes. This coordinate system shares some resemblance to action-angle variables
in the context of Hamiltonian dynamics.

In this section, we consider a class of equations, of a less general form than
(1.1), for which it is possible to analytically classify the slow variables and describe
the diffeomorphism Φ. We should mention that the HMM algorithm described in
Section 2 applies to the general form (1.1).

3.1. Polynomial slow variables. Consider a system of ODEs of the form

(3.1)

⎧⎪⎨
⎪⎩

ẋ = ε−1Ax + fI(x, y, z, t),
ẏ = fII(x, y, z, t),
ż = ε−1p(x, y) + fIII(x, y, z, t),

where x = (x, y, z) ∈ Rd with x ∈ Rdx , y ∈ Rdy and z ∈ Rdz , dx + dy + dz = d, A
is a real, diagonalizable dx × dx matrix whose eigenvalues are non-zero and either
have a negative real part or are purely imaginary. Eigenvalues with negative real
parts are denoted −λ1, . . . ,−λl. Purely imaginary eigenvalues appear in complex
conjugate pairs and are denoted, with multiplicity, ±iω1, . . . ,±iωr, so l + 2r = dx.
Without loss of generality, we may take ωk > 0, 1 ≤ k ≤ r. In addition, fI , fII

and fIII are C1 in a bounded domain D0 × [0, T ] ⊂ Rd × R+ to which the solution
is restricted. p = (p1, . . . , pdz

) are polynomials such that z is bounded independent
of ε. It may happen that several terms in p(x, y) cancel to give a slow variable even
if p itself is fast. In this case, if the slow parts are of order one, then the variable
z leaves the domain D0 in a time scale of order ε. This situation is not considered
here. Initial conditions are x(0) = (x(0), y(0), z(0)) = (x0, y0, z0). Note that p(x, y)
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does not have to be linear, however, it may not depend on any of the coordinates
of z itself.

Suppose Σ is a change of variables that diagonalizes A. We obtain the following
scalar equations for Σ−1x:

(3.2)

{
ϑ̇±

k (t) = ±iε−1ωkϑ±
k (t) + f±

1 k = 1 . . . r,

γ̇k(t) = −ε−1λkγk(t) + f2 k = 1 . . . l.

Here, f±
1 and f±

2 are linear combinations of the components of fI . We refer to the
variable pairs {(ϑ+

i , ϑ−
i )}r

k=1 as oscillators and to {γk}l
k=1 as transient, or dissipa-

tive modes.
The assumption that A is diagonalizable can be relaxed to include cases in which

only the Jordan blocks corresponding to purely imaginary eigenvalues are diagonal
while blocks that correspond to −λk are not.

The following lemma considers the slow variables in the oscillatory mode. Hence,
to simplify notation, we assume that d = 2r, i.e., that only the oscillatory modes
exist. In other words, we take l = dy = dz = 0. This assumption is lifted in
Lemma 3.3. We also take r ≥ 2, i.e., the system has at least two oscillators. We
restrict the discussion to the case in which all the oscillators are excited, i.e., initial
conditions satisfy x0 ∈ U0 = {x ∈ Rd|Σ−1x ∈ V0}, where, V0 = {ζ = (ζ1, . . . , ζ2r) ∈
C2r|ζk �= 0, ∀k = 1 . . . 2r}. Note that by hypotheses, f±

1 are bounded independent
of ε, so for initial conditions in V0, the trajectory remains in V0 for a time interval
larger than the ε time scale.

Lemma 3.1. Let x0 ∈ U0. There exsists a neighborhood U of x0 and a diffeomor-
phism

Φ : R
2r �→ (ξ(E), ξ(θ), φ) ∈ R

r × R
r−1 × S1,

such that ξ(E) = (ξ(E)
1 , . . . , ξ

(E)
r ) ∈ Rr and ξ(θ) = (ξ(θ)

1 , . . . , ξ
(θ)
r−1) ∈ Rr−1 are slow

variables with respect to (3.1).

The lemma shows that locally, one may consider (ξ(E), ξ(θ), φ) as a new coordi-
nates system for the subspace spanned by the oscillatory modes of A. The slow
variables ξ(E) correspond to the total energy (kinetic + potential) of the oscillators
{(ϑ+

i , ϑ−
i )}r

k=1. The slow variables ξ(θ) correspond to a chain of relative phases
between the oscillators. They capture the relative progress of the oscillators along
their period. Using ξ(E) and ξ(θ), all the fast oscillations are driven by a single fast
process φ ∈ S1.

Proof. Consider the map Φ̃ : C2r → C2r with Φ̃ = (Φ̃1, . . . , Φ̃2r) = Φ̃(ζ), given by

(3.3)

Φ̃k = ζ2k−1ζ2k, k = 1 . . . r,

Φ̃k+r = ζ
ωk+1
2k ζωk

2k+1 + ζ
ωk+1
2k−1ζ

ωk

2k+2, k = 1 . . . r − 1,

Φ̃2r = ζ
1/ωr

2r ,

where powers of complex numbers are defined as an analytic function in a small
neighborhood V ⊂ V0 of Σ−1x0 by taking a branch cut and picking one value for the
complex logarithm, for example, ln z =

∫ z

Σ−1x0
s−1ds. Recall that Σ is a complex

matrix that diagonalizes the real matrix A, i.e, x = Σ(ϑ+
1 , ϑ−

1 , . . . , ϑ+
r , ϑ−

r ). With
these definitions Φ̃ is an analytic map on V . In addition, since x0 ∈ U0, there exists
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a neighborhood U of x0 such that Σ−1U ⊂ V ⊂ V0. Let

(3.4) Φ(x) = (ξ(E), ξ(θ), φ) =
(
Φ̃1, . . . , Φ̃2r−1, (2π)−1 arg[Φ̃2r]

)
(Σ−1x),

where arg[z] is the argument of z. We note that the columns of Σ−1 consist of com-
plex conjugate pairs, i.e., ζ2k−1(Σ−1(x)) is the complex conjugate of ζ2k(Σ−1(x)).
Substituting into (3.3), we see that Φ(x) is real-valued.

We conclude that Φ is a diffeomorphism because each component is an analytic
function of a linear combination of the elements of x. Finally, differentiating with
respect to time shows that ξ(E) and ξ(θ) are slow with respect to (3.1). This is
easily verified by noting that Φ̃(ϑ) is slow with respect to (3.2). �

The change of coordinates described above is local. However, typically one can
extend it to an open region that includes most of the trajectory, so that the aver-
aging theorem applies. In addition, the change of variables described above is not
unique. For example, an alternative way for mapping the dynamics into 2r−1 slow
variables and a single fast variable in S1 is

(3.5)

Φk = x2
2k−1 + x2

2k, k = 1 . . . r,

Φk+r = ω−1
k arg(x2k−1 + ix2k) − ω−1

k+1 arg(x2k+1 + ix2k+2), k = 1 . . . r − 1,

Φ2r = (2π)−1ω−1
r arg(x2r−1 + ix2r).

However, the form (3.4) motivates the approach described below.
As an example, consider the simple case of two real-valued oscillators with fre-

quency ε−1,

(3.6)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ1 = ε−1x2 + f1(x),
ẋ2 = −ε−1x1 + f2(x),
ẋ3 = ε−1x4 + f3(x),
ẋ4 = −ε−1x3 + f4(x).

The slow variables given by (3.4) are

(3.7)

ξ
(E)
1 = x2

1 + x2
2,

ξ
(E)
2 = x2

3 + x2
4,

ξ
(θ)
1 = x1x3 + x2x4,

which correspond to the internal energy of the two oscillators and the cosine of their
relative phase. The fast variable can be taken to be φ = arctan(x2/x1). However,
our algorithm does not require identifying it. Note that the slow variables described
above are defined globally and that averaging with respect to φ is also well defined.
If the frequencies of the two oscillators (x1, x2) and (x3, x4) are different, then ξ

(θ)
1

will have a more complicated form. For example, if the matrix A in (3.1) is real,
and the ratio ωi/ωi+1 is rational, then ξ(θ) can be taken to be a polynomial (see 7.2
for an example in which ξ(θ) is cubic). This is made clear by the following lemma.

Lemma 3.2. Suppose mωk = nωk+1 with integer m, n > 0. Then, there exists a
polynomial, p, such that p(ϑ+

k (x), ϑ−
k+1(x)) is slow with respect to x(t), the solution

of (3.1), for all initial conditions.
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Proof. It is easily verified that

(3.8) ξ̃(θ) = (ϑ+
k )m(ϑ−

k+1)
n + (ϑ−

k )m(ϑ+
k+1)

n,

is indeed a real-valued slow variable. Since the eigenfunctions {ϑ±
k }r

k=1 are obtained
by diagonalization, ξ(θ)(x) = ξ̃(θ)(Σ−1x) is polynomial in x.

Alternatively, using (3.5), one gets that either the real or the imaginary parts of
(x2k−1+ix2k)m(x2k+1−ix2k+2)n are polynomial slow variables for all k = 1 . . . r−1.

�
The next lemma states that the z variables will result in some new slow variables

of the polynomial form. For convenience, we introduce multi-index notation of
vectors in Rd. Let n = (n1, n2, . . . , nd) denote a d-tuple of non-negative integers;
|n| = n1 + n2 + · · · + nd. For x = (x1, . . . , xd) ∈ R

d we denote xn = xn1
1 xn2

2 · · ·xnd

d

and by x · n the standard scalar product. Using this notation, an m-th degree
polynomial of x can be written as

p(x) =
∑

|n|≤m

cnxn

where {cn}|n|≤m is a family of real coefficients that determines p(x). Note that
vectors in Rd or Zd are denoted with bold letters while lower dimensional vectors,
for example x and y, are not.

Lemma 3.3. Given a system of (3.1) with the standing hypothesis detailed at the
beginning of the section, there exists a polynomial Q(x, y) of degree m such that
ξ(z) = z − Q(x, y) is slow with respect to (x(t), y(t), z(t)).

Proof. Without loss of generality, assume that ξ(z) is a scalar and that A is diagonal
with eigenvalues µ1 . . . µdx

. Differentiating with respect to time yields

(3.9) ξ̇(z) = ż +∇(x,y)Q(x, y) · (ẋ, ẏ) = ε−1 [p(x, y) −∇xQ(x, y) · Ax] + f3(x, y, z),

where ∇(x,y) denotes the gradient with respect to both x and y and ∇x with respect
to only x. Thus ξ(z) is slow if |p(x, y) −∇xQ(x, y) · Ax| ≤ C1ε. For a polynomial
p as described above, one can write p(x, y) =

∑
|k|+|l|≤m,|k|≥1 ck,lx

kyl. Also, let p̃

denote the polynomial obtained by removing from p all monomials that are slow
(µ · k = 0), p̃(x, y) =

∑
|k|+|l|≤m,|k|≥1,µ·k �=0 ck,lx

kyl. Then,

Q(x, y) =
∑

|k|+|l|≤m,|k|≥1,µ·k �=0

ck,l

µ · kxkyl,

satisfies ∇xQ(x, y) · Ax = p̃(x, y) for all x and y. For the remaining slow terms in
p, we consider two options. First, if p− p̃ vanishes, or is of order ε, then z−Q(x, y)
is slow. On the other hand, if p − p̃ is of order one, then the variable z leaves D0

on a time scale of order ε, which is a case not considered in this paper. The proof
above generalizes directly to A = ΣΛΣ−1. �

Lemmas 3.1–3.3 yield the following theorem:

Theorem 3.4. Let ξ(y) = y and ξ = (ξ(E), ξ(θ), ξ(y), ξ(z)). Then,

(3.10)
Ψ(x) = Ψ(x, y, z) = (Φ−1(x), y, z − Q(x, y)) = (γ, φ, ξ)

= (γ, φ, ξ(E), ξ(θ), ξ(y), ξ(z))

is a diffeomorphism on a region in {ξ(E)
i �= 0}.
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Proof. The Jacobian ∂Φ/∂x is given by

∂Ψ
∂x

=

⎛
⎜⎜⎝

(
1 0
0

(
∂Φ
∂x

)−1

)
0 0

0 1 0
−∂Q

∂x −∂Q
∂y 1

⎞
⎟⎟⎠ .

Using Lemma 3.1, det(∂Ψ/∂x) �= 0. �

In Section 7 we consider several example systems, including the Fermi-Pasta-
Ulam problem, that satisfy the assumptions of Lemmas 3.1–3.3, and hence Theo-
rem 3.4 holds.

3.2. Identifying slow variables. Theorem 3.4 constructs a diffeomorphism Ψ :
Rd → Rd that decomposes x into slow and fast variables, such that the slow vari-
ables lie in a R2r−1+dz dimensional space. Consequently, the effective behavior
of the system can be described by functions or functionals of these slow variables.
Under our definition, the choice of slow variables is not unique and we do not neces-
sarily have to use the ones that are defined in the previous subsection. The essential
criterion is to have a sufficient number of independent slow variables ξ = {ξj} such
that rank∂ξ/∂x = 2r − 1 + dz in some open set.

The general idea is to decompose the vector field locally by orthogonal projec-
tions of the right hand side fε to the subspace that is orthogonal to the gradient of
the slow variables. One should then search for a sufficient number of slow variables
ξ such that the projection

P∇ξfε(x) :=
(

I − ∇ξ ⊗∇ξ

|∇ξ|2

)
fε(x)

cannot contain any possible slow variables with respect to x(t). This way, by
applying the averaging theorem, the dynamics of ξ are effectively closed and can
be evolved to track the effective behavior of the system. Below, we describe our
rationale and strategy of using a numerical procedure to determine a sufficient set
of slow variables.

Let ξ(x) be a potential slow variable with respect to x(t). Following our definition
for slow variables, this implies that dξ(x(t))/dt = ∇xξ(x) · dx/dt, is expected to
be bounded independent of ε. More importantly, this is expected to hold for the
dynamics that originate from initial values in a non-empty open set. Therefore, we
may attempt to solve the minimization problem

(3.11) min
ξ∈X

∫
A⊂Rd

|∇xξ(x) · φ(x)|2dµx;

here φ(x) denotes the function dx/dt, i.e., the right hand side of (3.1), or more
generally (1.1). A is some open set in Rd endowed with a measure dµx and X is
an a priori chosen function space.

Based on Lemmas 3.1–3.3, we propose to search for slow variables in the space
of polynomials of the unknown variables of the original equation, x. Polynomials
are also used to locally approximate the potential functions in certain problems.
We proceed by looking for a polynomial with no constant term

(3.12) p(x) =
∑

1≤|n|≤m

cnxn
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that minimizes (3.11).
In order to choose the set A and measure dµx consider the following lemma.

Lemma 3.5. For any non-zero a ∈ R and x0 ∈ Rd, consider the grid {x0 +an|1 ≤
|n| ≤ m}. For any point on this grid we assign a value bn. Then, there exists a
unique polynomial p(x) =

∑
1<|n|≤m cnxn in Rd of order m such that p(x0 +an) =

bn for all 1 ≤ |n| ≤ m.

Proof. We wish to show that the Vandermonde system
∑

1≤|n|≤m cn(x0 + an)n,
1 ≤ |n| ≤ m has a unique solution for all {bn}1≤|n|≤m. Since the number of
equations is equal to the number of unknowns, it is sufficient to show that the
homogeneous system, bn = 0, ∀n has only the trivial solution.

The cases d = 1 or m = 0 are trivial. The rest is proved by induction: Without
loss of generality, let x0 = 0 and denote x = (x1, . . . , xd) and similarly for n.
Consider q(x) = p(x1 = 0) =

∑
1≤|n|≤m,n1=0 cnxn. It is a polynomial in Rd−1 of

degree m. By induction, q(x) is the zero polynomial, i.e., cn = 0 for all {1 ≤ |n| ≤
m, n1 = 0}. Hence, p(x) can be divided by x1. Let w(x) = p(x)/x1, a polynomial
in R

d of degree m − 1 that vanishes on the grid an, |n| ≤ m, n1 = 0. By the
induction hypothesis, w(x) is the zero polynomial. Hence, cn = 0 of all n. �

In light of this lemma, the set A can be taken to be the discrete set of points
A = {x0 +an : a �= 0, 1 ≤ |n| ≤ m} and dµx the counting measure. In other words,
we minimize

(3.13) min
p∈Pm(Rd)

∑
1≤|n|≤m

|∇xp(x0 + an) · φ(x0 + an)|2,

where Pm(Rd) is the set of all polynomials in R
d, and any x0 ∈ R

d, a �= 0. As
before, φ(x) denotes the function dx/dt. a and x0 should be chosen such that A is
a constant distance away from the zero of fε.

This is a least square problem whose unknowns are the coefficients of the polyno-
mial p. Theorem 3.4 and Lemma 3.5 suggest that this minimum should be of order
one. Using, for instance, singular value decomposition, one can find a basis to the
space of all polynomials. The eigenvectors, i.e., the coefficients, that correspond to
eigenvalues of the order one define our slow variables.

For systems of the form (3.1), we know that we should search for r + dz polyno-
mials that can serve as a change of coordinates. In general, we begin be searching
for low degree polynomials that involve only a small number of coordinates and
gradually look for more complicated ones. Once a slow variable is detected, the
procedure is repeated with an additional constraint that the coefficients of the new
polynomial are perpendicular (in the space of coefficients) to the ones already de-
tected. The constraint can be implemented as a penalty to the minimization. Once
a new slow variable ξi is identified, we check the rank of ∂ξ/∂x at an appropriate
set of points (also on a grid x0 + an). If ∂ξ/∂x does not have full rank, then the
new slow variable is discarded. For high dimensional problems, it is sometimes pos-
sible to reduce the number of free parameters using symmetries of the particular
equations of interest.

In addition, it is often useful to try to identify linear combinations of the slow
variables that involve the least possible number of non-zero entries. We employed
a “clean up” algorithm in order to obtain a simple set of slow variables that can
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help in our understanding of the slow dynamics. This process is not essential for
the HMM algorithm.

4. Time averaging

In this section we estimate the difference between angle and local time averages
for integrable functions α(x). Our estimates apply to any system of ODEs that,
following a change of variables Ψ : x → (ξ, φ, γ), take the form (2.1) along with
dissipative variables, i.e.,

(4.1)

{
ξ̇ = F (ξ, φ, γ),
φ̇ = ε−1Ω(ξ) + G(ξ, φ, γ),

where |γ| ≤ C/(D+(t/ε)l), for some l ≥ 1 and f, g, Ω ∈ C1. For the rest of the paper
we use C and D as generic positive constants whose values may change between
expressions.

Let α(x) = α(Ψ−1(ξ, φ, γ)) ≡ α̃(ξ, φ, γ). For simplicity, we drop the tilde nota-
tion. We recall that

(4.2) 〈α〉(t) ≡ 〈α(x(·))〉η(t) =
∫ t+η

t−η

Kη(t − τ )α(x(τ ))dτ.

and

(4.3) ᾱ(t) ≡ ᾱ(ξ, φ)(t) =
∫
S1

α(ξ(t), φ, γ = 0)dφ.

Let α(q)(t) denote the q-th time derivative and α[q](t) a q-th anti-derivative of
a Cq function α. In particular, α(0) = α[0] = α. The integration constant will be
specified in each case.

Definition 4.1. Let Kp,q denote the space of Cq functions which are even, sup-
ported on [−1, 1], normalized and have p vanishing moments, i.e.

(4.4)
∫ 1

−1

K(τ )τνdτ =

{
1 ν = 0,

0 ν = 1 . . . p.

The following well-known lemma will be useful.

Lemma 4.2. Let β(t) denote an integrable function with period T0. For K ∈ Kp,q,
for some positive constant C,

(4.5)
∣∣Kη(·) ∗ β(ε−1·) − β̄

∣∣ ≤ C||β||∞||K||W 1,q

(
ε

η

)q

,

where || · ||∞ denotes the sup norm in D0,

(4.6) ||β||∞ = sup
x∈D0

|β(x)|,

and

(4.7) ||K||W 1,q =
∫ 1

−1

K(q)(t)dt.

A proof can be found in [12].
The following theorem estimates the difference |〈α〉η − ᾱ| for any C1 function

α(x) = α(ξ, φ, γ). It is a generalization of a similar theorem found in [12]. Without
loss of generality, we take t = 0.
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Theorem 4.3. Let x(t) solve (1.1) in [−η, η], 0 < η < 1, with initial conditions
x(−η) = x−η = (ξ−η, φ−η, γ−η) ∈ D. Also, suppose that K ∈ Kp,q and ξ(t) ∈ C1.
Then

(4.8) |〈α(x)〉η(0) − ᾱ(ξ0)| ≤ C max
{

η, ηl,

(
ε

η

)q}
,

where ξ0 = ξ(0).

Proof. Denote ξ(t) := ξ(x(t)), γ(t) := γ(x(t)), and

φ̇ = Ω(ξ(t)) + εg(ξ(t), φ(t), γ(t)), θ(−η) = φ−η;

ψ̇ = Ω(ξ0), ψ(−η) = φ−η.

For |t| ≤ η, expanding α(ξ(t), ψ(t), γ(t)) around α(ξ0, φ(t), 0) we obtain

(4.9)
α(ξ(t), φ(t), γ(t)) = α(ξ0, ψ(t), 0)

+ RI(ξ, ψ, γ, t) + RII(ξ, ψ, γ, t) + RIII(ξ, ψ, γ, t)

where |RI | ≤ C|ξ(t) − ξ0|, |RII | ≤ C|ψ(t) − φ(t)|, and |RIII | ≤ |γ(t)| for some
positive constant C. For smooth ξ(t), RI is thus bounded by the Lipschitz constant
of ξ(t), i.e. |RI | ≤ C1η. By the hypothesis on |γ|, |RIII | ≤ C̃ηl. Let w(t) =
φ(t)−ψ(t), then we have the inequalities ẇ ≤ C1|ξ(t)−ξ0|+εC3 ≤ C4(η+ε). Using
the initial condition w(−η) = 0, we have that for |t| ≤ η,

|φ(t) − ψ(t)| = |w(t)| ≤ C4(η2 + ηε).

Now average (4.9) by the kernel Kη:

Kη ∗ α(ξ(·), φ(·), γ(·)) = Kη ∗ α(ξ0, ψ(·), 0)

+ Kη ∗ (RI(ξ, ψ, γ, ·) + RII(ξ, ψ, γ, ·) + RIII(ξ, ψ, γ, ·)) .

Using Lemma 4.2 and the estimates obtained above, we get

|ᾱ(x) − 〈α(x)〉 | = |ᾱ(x) − Kη ∗ α(ξ0, ψ(·), 0)

+ Kη ∗ (RI(ξ, ψ, γ, ·) + RII(ξ, ψ, γ, ·) + RIII(ξ, ψ, γ, ·)) |. �
The above theorem shows that time averages approximate averages using angular

coordinates for any system of ODEs that takes the form of (4.1). However, the
estimate (4.8) is not tight. Improved bounds can be obtained for particular cases.
For example, we consider a simple case with no dissipative modes and constant φ̇,
i.e., Ω ≡ ω.

Theorem 4.4. Let K ∈ Kp,q and α ∈ Cp+1. Suppose also that ξ(t) = ξ(x(t)) ∈
Cp+1. Then,

(4.10) |ᾱ(t) − 〈α〉(t)| ≤ C

(
p∑

k=0

||α(k)||∞

)
||K||W 1,q max

{
ηp+1,

(
ε

η

)q}
.

Proof. The proof is essentially the same as the proof of Theorem 4.3. The only
difference is that ξ(t) and α(ξ(t), φ) are expanded to order p + 1:

(4.11)

ξ(τ ) = ξ0 +
p∑

k=1

τk ξ(k)(0)
k!

+ τp+1 ξ(p+1)(τ∗)
(p + 1)!

,

α(ξ(τ ), φ) = α(ξ0, φ) +
p∑

k=1

τk αk(τ = 0, φ)
k!

+ τp+1 αp+1(τ = τ∗∗, φ)
(p + 1)!

,
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where ξ0 = ξ(0), τ∗, τ∗∗ ∈ [−τ, τ ] and αk are some functions of φ. A calculation
similar to Lemma 4.2 shows that

(4.12)
∣∣Kη ∗ (τkβk)

∣∣ ≤ C||α(k)||∞||K||W 1,q

(
ε

η

)q

.

In addition, the last term is trivially bounded by Cηp+1 for |τ | ≤ η. �
Suppose we identify Ξ(x) = ξ(x) + δ(x), as slow variables instead of the correct

ones ξ(x). For shorthand we denote ξ = ξ(x(·)) and similarly for φ and δ. As a
consequence, local time averages of a function g(ξ, φ) are replaced by

〈g(Ξ, φ)〉η = Kη ∗ [g(ξ + δ, φ)] = Kη ∗ g(ξ, φ) + Kη ∗ [δg′(ξ, φ)] + O(δ2).

The last term, which is the leading order term in the error introduced using the
wrong slow variable, is of order δ/η.

5. Higher order schemes

In this section we describe how the algorithm outlined in Section 2.2 can be
generalized to other explicit Macro-solvers of order s ≥ 2. For simplicity, we con-
centrate on the explicit mid-point method. It is possible to construct other methods
in a similar fashion.

Let z(t) denote the solution of

(5.1) ż = f(z), z(0) = z0.

Recall the form of a single step of size H using the usual second order mid-point
rule for integrating the equation for z(t):

(5.2)
k1 = f(xn), xn+1/2 = xn +

1
2
Hk1,

k2 = f(xn+1/2), xn+1 = xn + Hk2.

For the problem at hand, consider first a case in which (1.1) has no dissipative
modes. The benefit of this situation is that it is possible to integrate the ODE (1.1)
both forward and backward in time. Suppose that at time tn, we have x(tn) = xn,
which corresponds to (ξn, φn). We would like to approximate the averaged force
F̄ (ξn) using local time averages. We therefore have

(5.3) f̄(ξn) ∼ 〈ξ̇〉η = (K ′
η ∗ ξ(·)),

where ξ(t) denotes ξ(x(t)) as obtained by the micro-solver for t ∈ [tn − η, tn + η],
integrated from tn backwards to tn − η and from tn forward to tn + η with initial
condition x(tn) = xn. Note that the difference between (5.3) and the expression
appearing in the algorithm described in Section 2.2 is that in (5.3) the average is
evaluated at t = tn rather than at t = tn + η. In order to integrate ξ using the
mid-point rule we take

(5.4)
kη
1 = (K ′

η ∗ ξ(·)), kx
1 = δx,

xn+1/2 = xn +
1
2
Hkx

1 ,

where δx is consistent with 〈ξ̇〉η(tn), i.e., δx · ∇ξi(xn) = 〈ξ̇i〉η(tn) for all i = 1 . . . r.
The second half of the step at tn+1/2 = tn + H/2 is

(5.5)
kη
2 = (K ′

η ∗ ξ̃(·)), kx
2 = δx̃,

xn+1 = x0 + Hkx
2 ,
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t=H+η
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Figure 3. The picture depicts the implementation of the midpoint
rule using (5.6) and (5.7) for a simple two-dimensional system that
oscillates with a frequency of the order ε−1 and expands on an O(1)
time scale. The dotted line depicts the trajectories obtained by the
micro-solver. The bold arcs depict the steps taken by the Macro-
solver.

where ξ̃(t) denotes ξ(x(t)) as obtained by the micro-solver for t ∈ [tn+1/2 − η,
tn+1/2+η], integrated from tn+1/2 backwards to tn+1/2−η and from tn+1/2 forward
to tn+1/2 + η with initial condition x(tn+1/2) = xn+1/2. As before, δx̃ is consistent
with 〈ξ̇〉η(tn+1/2). Using the method described above, the error in each step of the
Macro-solver is O(H3). Additional integration schemes, for instance, fourth order
Runge-Kutta, are implemented in a similar way.

Generally, if (1.1) has one or more dissipative modes, then it is not possible to
integrate the ODE backwards and the method described above needs to be modified.
Our implementation for the second order mid-point scheme is depicted in Figure 3.
The first step is the same as before:

(5.6)
kη
1 = (K ′

η ∗ ξ(·)), kx
1 = δx,

xn+1/2 = x(tn + η) +
1
2
Hkx

1 ,

where ξ(t) denotes ξ(x(t)) as obtained by the micro-solver for t ∈ [tn, tn + 2η],
integrated from tn forward to tn+2η with initial conditions x(tn) = xn and x(tn+η)
denotes the value of x at the middle of the micro-simulation. For the second step
we would like to evaluate 〈ξ̇〉η(tn+1/2) at x = xn+1/2. However, since the kernel K
is symmetric, we need to start the micro-solver a time η earlier, at a point that is
not known. This initial point can be approximated by taking a step δxn, starting
at xn (rather than xn+1/2) and consistent with 〈ξ̇〉η(tn+1/2 + η). The second step
in the mid-point rule therefore has the form

(5.7)
kη
2 = (K ′

η ∗ ξ̃(·)), kx
2 = δx̃,

xn+1 = x0 + Hkx
2 ,
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where ξ̃(t) denotes the solution of the micro-solver for t ∈ [tn+1/2, tn+1/2 + 2η]
with initial conditions x(tn+1/2) = xn +Hδxn/2. This method does not cancel the
second order term (in H) exactly and leaves a residual error of the order of Hη.

6. Accuracy and efficiency

In this section we analyze the accuracy of the suggested method outlined in Sec-
tion 2.2. Each step of the approximations preformed in our algorithm introduces a
numerical error. In order to optimize performance, the different sources of errors
are balanced to a fixed prescribed accuracy ∆. We show how the different parame-
ters, ε, η, h and H scale with ∆ in order to have a global accuracy of order ∆. Note
that the maximal possible accuracy is ∆ = ε, since this is the error introduced by
simulating the averaged equation rather than the original one. We also study the
∆ dependence of the complexity of the algorithm.

We begin by estimating the error in our evaluation of the averaged force F̄ .
There are several sources of errors:

• Global error in each micro-simulation. Using an m-th order method with
step size h the global error is ηhm/εm+1.

• Quadrature error in K ′
η ∗ ξ: Using a quadrature formula of degree r the

error is ηhm/ε(m+1). However, due to the regularity of the kernel used,
K ∈ Cq, the integrand is smooth and periodic. Hence, the coefficients of
its Fourier decomposition decay very fast. As a result, it is advantageous
to use the trapezoidal rule, which is exact for e2πikx, k ∈ N. This implies
that the quadrature error is typically very small and can be ignored.

• Approximating F̄ by 〈F 〉η: Using a kernel K ∈ Kp,q the error is the larger
between ηp and (ε/η)q/η. Note that we are losing one order of η com-
pared to Lemma 4.2 since F̄ is found through integration by parts (cf.
Section 2.2). The above two bounds to the averaging error are equal if
ηp+q+1 = εq, where, for large η, the term ηp dominates, while for small
η the other. Since we would like to optimize our complexity, it is always
preferable to work in the latter regime. Hence, we can take the averaging
error to be (ε/η)q/η.

• Error due to inaccurate slow variables: Denoting the accuracy of the slow
variables by δ < η, the error in 〈F 〉η is δ/η. For the rest of this discussion
this error is also ignored.

For simplicity, we describe the error analysis for systems without dissipative
modes. Systems with dissipative modes may involve additional errors, both from
local time averages, which are evaluated in Theorem 4.3, and from the use of high-
order methods, as discussed in Section 5. Balancing all terms yields the optimal
scaling of the simulation parameters with ∆.

The global accuracy of integrating the original ODE (1.1) to time T = O(1) using
a Macro-solver of order s with step size H is, assuming errors are accumulative,

(6.1) E ≤ D max
{

Hs,
ηhm

εm+1
,

εq

ηq+1

}
,

For some D > 0: For shorthand we drop the constant in all following expressions.
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Figure 4. A log-log plot of the relative error of the HMM ap-
proximation to a linear ODE compared to the exact solution:
E = maxtn∈[0,T ] 100×|ξHMM(tn)−ξexact(tn)|/|ξexact(tn)|, as a func-
tion of ∆.

Balancing the different sources of errors to a prescribed accuracy ∆ yields

(6.2)

η = ε
q

q+1 ∆− 1
q+1 ,

H = ∆
1
s ,

h = ε1+
1

m(q+1) ∆
s+1
sm + 1

m(q+1) .

The complexity is, with a smooth kernel we can consider the q → ∞ limit:

(6.3) C =
η

h

T

H
= ε−

m+1
m(q+1) ∆− 1

s−
s+1
sm − m+1

m(q+1) .

In this case the complexity is reduced to

(6.4) C(q → ∞) = ∆− 1
s−

s+1
sm .

Figure 4 depicts the relative error of the HMM approximation compared to the
analytical solution of the linear system discussed in Section 7.1 (with dissipative
modes). The kernel was constructed from polynomials to have exactly two continu-
ous derivatives and a single vanishing moment, i.e., q = 2 and p = 1. Fourth order
Runge-Kutta schemes were used for both the micro- and the Macro-solvers. The
simulation parameters are chosen to balance all errors as discussed above.

From the parameter scaling (6.2) it is clear that the step size of the Macro-
solver, H, does not depend on the stiffness ε, but only on the prescribed accuracy
∆. Our algorithm is therefore multiscale in the sense that it converges uniformly
for all ε < ε0 [10]. More precisely, denote the sample times of the Macro-solver
by t0 = 0, . . . , tN = T and the corresponding numerical approximations for x by
x0, . . . ,xN . The exact solution is denoted x(t). We have that, for any variable
α(x) that is slow with respect to x(t),

(6.5) lim
H→0

sup
k=0...N

sup
ε<ε0

|α(x(tk)) − α(xk)| → 0.

Note that the order of the limits is important.
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7. Examples

In this section we present a few example ODE systems that fall under the cat-
egory of equation (3.1) and compare the numerical solution of the HMM to other
methods.

7.1. A simple linear example. We begin with a simple example of a linear system
that contains both oscillatory and dissipative modes:

(7.1)

⎧⎪⎨
⎪⎩

ẋ1 = ε−1x2 + x1 + 2x3,

ẋ2 = −ε−1x1 + x2,

ẋ3 = −ε−1x3,

with initial conditions (x1, x2, x3)(0) = (1, 0, 1). The solution is

(7.2)

x1(0) = (1 + ε)et cos ε−1t − εe−ε−1t,

x2(0) = (1 + ε)et sin ε−1t,

x2(0) = e−ε−1t.

The system admits a single slow variable ξ = x2
1 + x2

2. Outside a neighborhood of
ξ = 0 the diffeomorphism Φ can be taken as

(7.3) Φ(x) = (x2
1 + x2

2, arctan(x2/x1), x3) ≡ (ξ, φ, γ).

The Jacobian is det∇Φ = 2 in ξ > 0. Figure 5a depicts the HMM approximation
of x1 and x2 compared to the analytical one (7.2). Our algorithm correctly ap-
proximates the slow variable ξ = x2

1 + x2
2, while the phase, φ, and the dissipative

variable, x3, are lost. Simulation parameters are ε = 10−5, η = 5.4ε, h = ε/15,
T = 10 and H = 0.5. The kernel used in averaging is

(7.4) K(t) = Z−1 exp
(
−5

4
1

(t + 1)(t − 1)

)
,

where Z is a normalization constant. Hence, K ∈ K∞,1, i.e., C∞ with a sin-
gle vanishing moment. Both micro- and Macro-solvers implement a fourth order
Runge-Kutta scheme. Figure 5b depicts the HMM approximation for several local
averages and functionals. Note that the algorithm correctly approximates the value
of the oscillating observables even though the Macro step size may be much larger
than their period.

7.2. Stellar orbits in a galaxy. The following is a well studied system taken
from the theory of stellar orbits in a galaxy [23, 24]

(7.5)

{
r′′1 + a2r1 = εr2

2,

r′′2 + b2r2 = 2εr1r2,

where r1(s) stands for the radial displacement of the orbit of a star from a reference
circular orbit and r2(s) stands for the deviation of the orbit from the galactic plane.
The time-like variable s ∈ [0, ε−1S] denotes the angle of the planets in a reference
plane. Initial conditions are r1(0) = r2(0) = 1 and r′1(0) = r′2(0) = 0. Changing
variable to x = (x1, v1, x2, v2)T = (r1, r

′
1/a, r2, r2‘/b)T and t = εs, equation (7.5)

becomes

(7.6) ẋ = ε−1Ax + f(x), x(0) = x0,
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Figure 5. The HMM approximation to the solution of the linear
example (7.1). (a) Trajectory of the x1 and x2 coordinates: The
HMM time steps are denoted by circles while squares denote the
exact solution at the same times. The dotted circles are guides
for the eye. (b) Example of local time averages and functionals.
The dotted curve denotes the exact value for 〈x2

1x2−1〉η, the solid
curve of 〈5 cos(x2

1x2)〉η and the dashed curve of
∫ t

0
0.5x2

1(τ )dτ . The
HMM values for the same observables are denoted by plus signs.

where

(7.7) A =

⎛
⎜⎜⎝

0 a 0 0
−a 0 0 0
0 0 0 b
0 0 −b 0

⎞
⎟⎟⎠ , f(x) =

⎛
⎜⎜⎝

0
x2

2/a
0

2x1x2/b

⎞
⎟⎟⎠ , x0 =

⎛
⎜⎜⎝

1
0
1
0

⎞
⎟⎟⎠ .

To see how resonances occur, consider the following change of variables:

(7.8)
ξ1 = x2

1 + v2
1 , tan aφ1 = v1/x1,

ξ2 = x2
2 + v2

2 , tan bφ2 = v2/x2.

The coordinates ξ1 and ξ2 correspond to the amplitudes of the two oscillators,
(x1, y1) and (x2, y2), respectively. φ1 and φ2 correspond to the phase of each one
of the oscillators. Under (7.8), the ODE (7.6) takes the form
(7.9)

ξ̇1 = (2a)−1
√

ξ1ξ2 [2 sin aφ1 − sin(aφ1 + 2bφ2) − sin(aφ1 − 2bφ2)] ,

ξ̇2 = b−1
√

ξ1ξ2 [sin(aφ1 + 2bφ2) − sin(aφ1 − 2bφ2)] ,

φ̇1 = −ε−1 + ξ2(4a2
√

ξ1)−1 [−2 cos aφ1 + cos(aφ1 + 2bφ2) + cos(aφ1 − 2bφ2)] ,

φ̇2 = −ε−1 +
√

ξ1(2b2)−1 [−2 cos aφ1 + cos(aφ1 + 2bφ2) + cos(aφ1 − 2bφ2)] .

It is clear that ξ1 and ξ2 are slow. Naive averaging of ξ̇1 and ξ̇2 over φ1 and φ2

independently yields a wrong limiting effective equations for ζ1 and ζ2:

(7.10) ζ̇1 = 0 ; ζ̇2 = 0.
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Equation (7.10) is correct, except for the special cases in which either the aφ1+2bφ2

or aφ1−2bφ2 are slow and the effective equations become more complicated. When
a = ±2b, the leading term in the fast evolution of θ = aφ1∓2bφ2 is cancelled exactly
and θ is a slow variable. The system is then said to be in (mechanical) resonance. In
our algorithm, the requirement that θ is slow can be taken into account by adding
a third slow variable. The algorithm described in Section 3.2 identifies the cubic
polynomial

(7.11) θ = x1x
2
2 + 2v1x2v2 − x1v

2
2 .

The fast variable can be taken to be φ = φ1 although our algorithm does not require
identifying it. The choice of cubic polynomial (7.11) is not unique. However, any
other slow variable can be expressed as a function of ξ1, ξ2 and θ. Figure 6 compares
the HMM solution to a numerical integration of (7.5) using the fourth order Runge-
Kutta method with a step size of ε/50. HMM parameters are ε = 10−5, h = ε/50,
H = 0.3 and η = 10.28ε. In graph (b) η = 30.28ε was used. Both micro- and
Macro-solvers are fourth order Runge-Kutta. It is important to note that although
θ is constant throughout the simulation, it is not possible to approximate ξ1 and
ξ2 correctly without taking account of θ as well.
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Figure 6. Numerical solution of the stellar equations (7.6). The
solid line is the Runge-Kutta solution with step size of order ε while
plus signs are the HMM approximation. Figure (a) shows the slow
variables and figure (b) shows examples of local time averages.

7.3. Kapitza’s inverted pendulum. The following example, suggested by P.L.
Kapizta [37] considers a pendulum with a rigid arm that is attached at one of its
ends to a mechanical motor. The set up of the system is depicted in Figure 7a.
The motor causes the point of suspension of the arm to vibrate up and down with
amplitude ε and frequency ε−1. Surprisingly, the fast vibrations of the motor can
cause the pendulum to oscillate slowly (with a O(1) frequency) around the inverted
position, in which its arm is pointing up. Denoting by θ the angle between the
pendulum arm and the upward direction, the equation of motion for the system
becomes

(7.12) lθ̈ =
[
g + ε−1 sin(2πε−1t)

]
sin θ,
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Figure 7. (a) Kapitza’s pendulum has a rigid arm which is at-
tached to a motor that is vibrating fast. The centrifugal force pulls
the arm upwards. (b) Comparison of the HMM approximation for
the solution of the equations describing the dynamics of Kapitza’s
pendulum to the Verlet method with step size of order ε. The solid
curve depicts θ while the dotted curve depicts ψ = θ̇ +
sin θ cos(2πε−1t)/(2πl).

where l is the length of the pendulum’s arm and g is the gravitational constant.
The averaged dynamics of the pendulum was studied analytically in [31]. Sharp et
al. [36] used the HMM framework to numerically integrate (7.12). Their approach,
however, is different from the one described in this paper.

In order to put (7.12) in a form for which our method for finding polynomial
slow variables can be applied, let x1 = cos(2πε−1t), x2 = sin(2πε−1t), y1 = sin θ,
y2 = cos θ and z = θ̇. Equation (7.12) becomes

(7.13)

ẋ1 = 2πε−1x2 , ẋ2 = −2πε−1x1,

ẏ1 = y2z , ẏ2 = −y1z,

ż = ε−1l−1x2y1 + gl−1y1,

which has the form (3.1). The slow variables admitted by (7.13) are

(7.14)
ξ1 = y1 , ξ2 = y2,

ξ3 = x2
1 + x2

2 , ξ4 = z − x1y1/(2πl).

Going back to the original coordinates system, the slow variables are θ and ψ =
θ̇ + sin θ cos(2πε−1t)/(2πl). Figure 7b depicts the HMM approximation for θ and
ψ compared to numerical integration of (7.12) using the Verlet method with a step
size of order ε. Simulation parameters are ε = 10−5, h = ε/40, and H = 0.25 and
η = 25.4ε.

7.4. The Fermi-Pasta-Ulam model. The Fermi-Pasta-Ulam model [14] is a sim-
ple system of unit mass particles connected by springs. The springs alternate be-
tween stiff linear and soft non-linear ones. Recently, this model was considered by
Hairer et al. [19] as a benchmark problem for studying the long-time properties of
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numerical solutions to stiff ODEs using geometric integrators. The model is derived
from the following Hamiltonian:

(7.15) H(p, q) =
1
2

2k∑
i=1

p2
i +

1
4
ε−2

k∑
i=1

(q2i − q2i−1)2 +
k∑

i=0

(q2i+1 − q2i)4.

The following linear change of variables is convenient since it separates the elonga-
tions of the stiff springs and associated momentum:

(7.16) xi = ε−1(q2i−1 − q2i)/
√

2 , vi = (p2i−1 − p2i)/
√

2,

and a second set of variables associated with the soft springs:

(7.17) yi = (q2i−1 + q2i)/
√

2 , ui = (p2i−1 + p2i)/
√

2,

Defining y0 = x0 = y2k+1 = x2k+1 = 0, the equations of motion become

(7.18)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẏi = ui,

ẋi = ε−1vi,

u̇i = −(yi − εxi − yi−1 − εxi−1)3 + (yi+1 − εxi+1 − yi − εxi)3,
v̇i = −ε−1xi + (yi − εxi − yi−1 − εxi−1)3 + (yi+1 − εxi+1 − yi − εxi)3.

Typical initial conditions are x1 = y1 = v1 = u1 = 1 and zero otherwise, which
means that initially k− 1 of the stiff springs are at rest. The system admits 4k− 1
slow variables. First are all the degrees of freedom which are related to the soft
springs: yi and ui, i = 1 . . . k. Second, the total energy (kinetic + potential) of the
stiff springs, Ii = x2

i + v2
i . Finally, the relative phases between the different stiff

springs, φi = x1xi + v1vi, i = 1 . . . k − 1. Any other function α(x, y, v, u) which
is slow under the dynamics of (7.18) can be written as a function of the 4k − 1
variables described above.

On the O(1) time scale the system can be evolved using the algorithm described
in Section 2. We find that the energy of the stiff springs and their relative phases
are fixed, while the degrees of freedom that correspond to the soft springs oscillate
in a complicated, non-harmonic way. Figure 8a depicts our results for systems with
three stiff springs, k = 3, and with ten springs, k = 10, in Figure 9a.

On the O(ε−1) time scale the dynamics become more interesting as the energies Ii

begin to change [14, 19]. Unfortunately, the averaging theorem cannot be generally
extended to the ε−1 time scale due to the exponential dependence on time that
appears in (2.4). However, in this case, due to the oscillatory nature of the soft
degrees of freedom, the dynamics undergoes additional averaging. To this end
we construct the Macro-solver to be almost time-reversible, i.e., the integrator is
reversible for ε = 0. A single Macro step is implemented the following way. First,
the soft variables yi and ui are advanced by half a time step, H/2. Then, the stiff
variables xi and vi are advanced by a full time step H while keeping yi and ui fixed.
Finally, yi and ui are advanced again by half a step. Although we did not prove
convergence of the scheme in this set up, the numerical results depicted in Figure 8b
for k = 3 and in Figure 9b, agree with integration of the model using the Verlet
method with a step size of order ε. Note that both methods do not approximate
the soft degrees of freedom correctly on the longer, ε−1, time scale. Simulation
parameters for k = 3 are ε = 10−4, h = ε/15, and H = 0.02 and η = 20.4ε. For
k = 10 we used ε = 10−4, h = ε/35, and H = 0.02 and η = 35.4ε.
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Figure 8. Comparison of the HMM approximation for the solu-
tion of the Fermi-Pasta-Ulam equations of motion (7.18) with 3
stiff springs, k = 3, to the one obtained using the Verlet method
with step size of the order of ε. (a) soft variables on a O(1) time
scale and (b) I1, I2 and I3 on a O(ε−1) scale. With the above
parameters the HMM algorithm runs an order of magnitude faster
than the Verlet one. The ratio between running times increases
with smaller ε.
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Figure 9. The HMM approximation for the solution of the Fermi-
Pasta-Ulam equations of motion (7.18) with 10 stiff springs, k =
10. (a) y1, u1, y10 and u10 on a O(1) time scale and (b) I1 . . . I10

on a O(ε−1) scale. The Verlet method takes too long to integrate.

8. Conclusion

We have presented a numerical class of algorithms that compute the effective
slow behavior of highly oscillatory solutions to ordinary differential equations. A
key step is to first numerically detect a set of slow variables, ξ, that are effectively
closed, i.e., their dynamics is closed in the limit of ε → 0. The main idea is then to
integrate an averaged equation for these slow variables. The time stepping operates
on two scales. First, a micro-solver evaluates the time derivatives of the identified
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slow variables by solving the original system in a short-time segment. The micro-
solver is an explicit integrator with step size of the order of ε. Then, a Macro-solver
evolves the original variables, x, by taking a large step that is consistent with the
time derivative of the slow variables, obtained by the micro-solver. The Macro-
solver, which is effectively integrating the averaged equation, can take steps of size
that is almost independent of ε. Hence, in order to achieve an a priori fixed accuracy
∆, the overall efficiency of the algorithm is independent of ε asymptotically. This
is achieved by simulating a stiffer version of the original ODE.

An important observation is that the slow behavior of a system can be a result
of internal mutual cancellation of the oscillations. Such cancellations are called
resonance. The slow variables serve as a set of constraints to the fast dynamics of
the system. Keeping track of the evolution of these constraints maintains the correct
phase difference between different stiff oscillators. As a result, the resonances are
resolved and fully accounted for.

We applied this approach successfully to several systems, including the Fermi-
Pasta-Ulam problem. This paper considers predominantly problems with fast dy-
namics in the form of harmonic oscillators. Some of the simpler examples con-
sidered in Section 7 can be integrated by other numerical methods. For example,
trigonometric or exponential integrators [16, 19, 21], or envelope tracking methods
[33] may also be appropriate. In fact, we suspect that most of these schemes will
out-perform HMM when applied to reversible systems that are not in resonance.
However, the advantage of HMM in general, and the algorithm proposed here in
particular, is its applicability to a wider class of ODE systems, including the dif-
ficult case of resonance. Several directions await further study. An extension of
our approach to the cases of variable coefficients and to fast anharmonic oscillators
will be presented in a future publication [2]. In addition, in the Fermi-Pasta-Ulam
problem, we already see a need to design a three-scale method so that the ε−1 time
scale can be computed consistently and efficiently.

Finally, as discussed in the introduction, for suitable systems our method cor-
rectly approximates all variables and functionals that are slow with respect to the
system dynamics. It may be argued that this criterion is too strict. It is often the
case that we are only interested in a smaller set of observables. For instance, tem-
perature, heat capacity, or other statistical averages of a large system. In this case,
it is useful to understand which slow variables are essential to a consistent approx-
imation of particular observables. Another generalization of the methods proposed
in this paper is to stochastic ordinary differential equations, compare [11, 38].
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