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A Multiscale Method Modeling
Surface Texture Effects
In this paper a multiscale method is presented that includes surface texture in a mixed
lubrication journal bearing model. Recent publications have shown that the pressure
generating effect of surface texture in bearings that operate in full film conditions may be
the result of micro-cavitation and/or convective inertia. To include inertia effects, the
Navier–Stokes equations have to be used instead of the Reynolds equation. It has been
shown in earlier work (de Kraker et al., 2006, Tribol. Trans., in press) that the coupled
two-dimensional (2D) Reynolds and 3D structure deformation problem with partial con-
tact resulting from the soft EHL journal bearing model is not easy to solve due to the
strong nonlinear coupling, especially for soft surfaces. Therefore, replacing the 2D Rey-
nolds equation by the 3D Navier–Stokes equations in this coupled problem will need an
enormous amount of computing power that is not readily available nowadays. In this
paper, the development of a micro–macro multiscale method is described. The local
(micro) flow effects for a single surface pocket are analyzed using the Navier–Stokes
equations and compared to the Reynolds solution for a similar smooth piece of surface.
It is shown how flow factors can be derived and added to the macroscopic smooth flow
problem, that is modeled by the 2D Reynolds equation. The flow factors are a function of
the operating conditions such as the ratio between the film height and the pocket dimen-
sions, the surface velocity, and the pressure gradient over a surface texture unit cell. To
account for an additional pressure buildup in the texture cell due to inertia effects, a
pressure gain is introduced at macroscopic level. The method also allows for microcavi-
tation. Microcavitation occurs when the pressure variation due to surface texture is
larger than the average pressure level at that particular bearing location. In contrast
with the work of Patir and Cheng (1978, J. Lubrication Technol., 78, pp. 1–10), where the
microlevel is solved by the Reynolds equation, and the Navier–Stokes equations are used
at the microlevel. Depending on the texture geometry and film height, the Reynolds
equation may become invalid. A second pocket effect occurs when the pocket is located in
the moving surface. In mixed lubrication, fluid can become trapped inside a pocket and
squeezed out when the pocket is running into an area with higher contact load. To include
this effect, an additional source term that represents the average fluid inflow due to the
deformation of the surface around the pocket is added to the Reynolds equation at
macrolevel. The additional inflow is computed at microlevel by numerical solution of the
surface deformation for a single pocket that is subject to a contact load. The pocket
volume is a function of the contact pressure. It must be emphasized that before ready-to-
use results can be presented, a large number of simulations to determine the flow factors
and pressure gain as a function of the texture parameters and operating conditions have
yet to be done. Before conclusions can be drawn, regarding the dominanant mecha-
nism(s), the flow factors and pressure gain have to be added to the macrobearing model.
In this paper, only a limited number of preliminary illustrative simulation results, calcu-
lating the flow factors for a single 2D texture geometry, are shown to give insight into the
method. !DOI: 10.1115/1.2540156"

Keywords: surface texture, multiscale method, flowfactor, Reynolds equation,
Navier–Stokes, mixed lubrication, finite element method

Introduction
In the last decade, surface texture effects have been studied

with growing interest !5–14". It is observed from experimental
studies that surface texture has a positive effect on load capacity
and coeffecient of friction for certain applications and load cases
!5". The mechanisms that were pointed out to be responsible for
generating additional load capacity are microcavitation !6–10",
convective inertia !13,14" and piezo viscosity.

Microcavitation plays a role when subsequent converging and
diverging parts of the film cause a pressure fluctuation that is
larger than the average pressure level at that particular bearing
location. In conformal soft contacts, such as polymer journal bear-
ings, microcavitation may appear. It will be shown in this paper
that the occurance strongly depends on the ratio between pocket
depth and nominal film height. When the full Navier–Stokes equa-
tions are applied at the microlevel, the mass-conservative cavita-
tion algorithm proposed by Brajdic et al. !12" can be used. If the
film height and texture geometry is such that the Reynolds equa-
tion is valid, microcavitation can be treated numerically by the
half-Sommerfeld or by the Reynolds cavitation boundary condi-
tion. Whatever method is used to deal with cavitation at mi-
crolevel, a pressure correction and flow factors can be derived and
added to the macrolevel.

1Corresponding author.
Contributed by the Tribology Division of ASME for publication in the JOURNAL OF

TRIBOLOGY. Manuscript received March 22, 2006; final manuscript received
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Recent publications !13,14", where the Navier–Stokes equa-
tions were solved for the flow between two parallel surfaces #one
smooth, one having a single surface pocket$, have shown that,
apart from possible local cavitation, the pressure generating effect
of surface texture in full film operation may result from convec-
tive inertia. Therefore the generally used Reynolds equation can-
not be applied to this problem since the convective inertia forces
have been dropped in its derivation from the Navier–Stokes equa-
tions.

Piezoviscosity may play a role in heavily loaded oil lubricated
contacts where in local converging regions, the pressure rise may
be larger than the pressure drop in diverging regions. This effect is
unimportant in journal bearing applications where typical pressure
levels up to only a few MPa are found.

Another mechanism that has not been previously identified is
the pocket squeeze effect. In mixed lubrication, the fluid may be-
come trapped inside the pocket. Further loading of the bearing
surface when the pocket runs into the contact zone will load the
fluid in the pocket and eventually force the fluid to be partially
squeezed out.

Flow effects, including microcavitation, and the pocket squeeze
effect will affect the performance of the journal bearing system.
To analyze the net effect of a particular surface texture, it is not
sufficient to study the local effects, but they have to be included
into the macroscopic problem to evaluate the overall effect. In
Ref. !1" a numerical method has been presented for solving the
coupled Reynolds-structure deformation equations in elastic jour-
nal bearing problems with partial contact. In the first section of
this paper, this model will be reviewed shortly. Flow factors, cor-
recting for the flow resistance induced by a pocket, are introduced
in a modified macrolevel Reynolds equation. These flow factors
are derived by comparing the numerical solution of the Navier–
Stokes equations on a unit control volume with the solution for
the 2D Reynolds equation on a smooth unit control area.

An additional source term is included in the macrolevel Rey-
nolds equation, reflecting the fluid volume that is squeezed by a
pocket if the surfaces make contact. The volume change of the
pocket can be calculated from numerical solution of the linear
structure deformation equations for a unit part of the surface con-
taining a single pocket. The pocket-squeeze term is assumed to be
a function of the bearing contact pressure only.

Problem Formulation and Equations
In Ref. !1", a numerical solution method was presented for the

soft elastohydrodynamic journal bearing problem, including par-
tial contact. An iterative numerical method was used, based on
succesive solution of the three-dimensional #3D$ structure defor-
mation equations and the 2D Reynolds equation by finite ele-
ments. The 2D Reynolds equation was solved first
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with pf the fluid pressure and ht the effective film height. U1 and
U2 denote the upper surface and lower surface velocity, respec-
tively. We assume one of the surfaces to be stationary: U2=0.
Partial contact was taken into account by a stochastic contact
model, first published by Chengwei and Linqing !2". Asperity
contacts were assumed to deform plastically. The effective film
height ht and the contact pressure pc are a function of the nominal
film thickness h only !1"
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with Sq the combined root-mean-square surface roughness and H
the hardness of the bearing material. The effective film height

expresses the average fluid volume between a pair of rough sur-
faces divided by the total surface area. Details can be found in
Refs. !1,2,15". With the pressure solutions pf and pc, the 3D struc-
ture deformation equations were solved to find the bearing defor-
mation. Then the film height was updated by the solution for the
normal bearing surface deformation uz

h = c + e cos # − uz #4$
with c the radial clearance between the journal and the bearing
and e the excentricity. With the new film height h, ht was com-
puted and the Reynolds equation was solved again. This proce-
dure was repeated until convergence was obtained. Numerical
damping was added to the structure deformation equations to sta-
bilize the solution and obtain convergence. The reader is referred
to Ref. !1" for further details. The important point here is that we
have a macroscopic model that is based on the Reynolds equation.

Micro–macro Coupling: A Modified Reynolds Equation. To
introduce the local flow and squeeze effects that result from the
presence of a pocket in one of the surfaces in the macroscopic
journal bearing model, a modified average Reynolds equation for
the macroscopic journal bearing model is proposed
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A characteristic property of the micro–macro approach is that mi-
crolevel properties are represented at macrolevel in a homog-
enized way. Clearance variation is a macrolevel property and is
taken into account at macrolevel instead of microlevel. At mi-
crolevel a constant film height equal to the film height h#x ,y$ at
macrolevel can be assumed, as long as the number of texture unit
cells is large. For a couple of bearing surface, one smooth and one
having a surface texture, three different operating states can be
distinguished as follows:

1. The smooth surface moves, the textured surface is station-
ary;

2. The textured surface moves, the smooth surface is station-
ary; and

3. The smooth surface moves and the textured surface moves.

Equation #5$ describes the fluid on the macroscopic level, i.e., for
the complete journal bearing problem, replacing Eq. #1$, and is
valid for Case 1; a smooth moving surface together with a station-
ary textured surface. Concerning the flow effects, we will restrict
the model in this paper to Case 1. For Cases 2 and 3, an additional
term will appear in the Reynolds equation, resulting from the fluid
that is transported by a moving pocket. In future work, the model
will be extended for these cases.

In the presence of a surface texture, the mass flow between the
surfaces will differ from a regular nontextured pair of surfaces. To
correct the flow, a set of flow factors # is introduced in the Rey-
nolds equation. The factors #px and #py are pressure flow factors
and #s is a shear flow factor. These flow factors are determined at
a microscopic level, i.e., at a small representative piece of surface
containing the important features of the surface texture. Only a
small part of the surface area of this unit cell is covered by the
surface pocket itself, such that the flow is assumed to be fully
developed at its boundaries. In the Navier–Stokes simulations, it
was found that the flow profile at the boundaries of the unit cell
was unaffected by the presence of the pocket and was a linear
combination of Poiseuille and Couette flow at a pocket ratio of
0.3. It is assumed that the bearing surface contains a large number
of surface pockets such that the effects may be averaged in space.

The pressure flow factors #px and #py are determined for pure
pressure induced flow, i.e., the surface velocity is equal to zero
and hence
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#px = #px#!p/!x,geometry$ #6$

#py = #py#!p/!y,geometry$ #7$
The shear flow factor #s is determined for pure shear flow condi-
tions

#s = #s#U1,geometry$ #8$
The shear flow factor is a function of the upper surface velocity
U1 #U2=0$. This method appears to be similar to the classical
flow factor method of Patir and Cheng !3". However, it differs
from their method in the way the flow factors are determined. In
the work of Patir and Cheng, the Reynolds equation was used to
solve the flow through a rough unit piece of control volume.
Hence, the pressure flow factor #px is a function of !p /!x and
geometrical properties only, but not of U, nor !p /!y. This is due
to the fact that the flow according to the Reynolds equation is a
linear combination of pressure induced flow and shear driven
flow. This is not the case for the flow in a deterministic texture
unit cell. In Arghir et al. !13" and Sahlin et al. !14" it was shown
that the Navier–Stokes equations must be used in general.
Therefore, the flow is no longer a linear combination of
pressure—and shear flow and additional corrections
#sp,x#!p /!x ,!y /!x ,U1 ,geometry$ and #sp,y#!p /!x ,!y /!x ,U1 ,
geometry$ are necessary.

This description, splitting up the flow factors, has the advantage
that it becomes clear immediately if there is any crosscoupling
between the pressure flow resistance and the shear flow velocity
or between the shear flow resistance and the pressure gradient
over a unit cell with surface texture. If the factor
#sp,x#!p /!x ,!p /!y ,U ,geometry$ is equal to unity there is no cross
coupling.

The additional source term Qs #m/s$ in Eq. #5$ reflects the av-
erage additional fluid inflow per unit surface area, resulting from
the pocket-squeeze effect. The pocket-squeeze effect is the result
of surface deformation, reducing the volume of the surface
pocket. This effect is present if the textured surface is nonstation-
ary and is significant in mixed lubrication only, i.e., when the
surfaces make contact.

Summarizing, the correction factors #px, #py, #s, #sp,x, and
#sp,y, stem from flow effects due to the presence of a surface
texture and Qs results from the pocket-squeeze effect. The follow-
ing sections will address the pocket flow effect and determination
of the flow factors and pocket-squeeze effect, respectively.

Pocket Flow Effect
In the macroscopic journal bearing model, the details of the

surface pocket cannot be represented. For a surface with a simple
texture, we can define a representative unit cell that contains a
single surface pocket. In Fig. 1#a$, the macroscopic represtenta-
tion of a #global$ unit flow cell #GUFC$ is shown. The right figure
shows the texture unit flow cell #TUFC$ representing the details of
the pocket shape. To derive the flow correction factors #px,#py,
and #s, we compare the solutions for the TUFC and the GUFC in

terms of the mass flow through the cell. For the GUFC, we use the
2D Reynolds equation to determine the flow. For the TUFC, the
Navier–Stokes equations are used to solve for the flow and pres-
sure field. In the next sections, we will adress the calculation of
the flow factors, illustrated by 2D examples. Note that at the mi-
croscale, the surfaces are nominally flat since the radius of the
bearing R$ $Lx ,Ly. The surface velocities and pressure gradi-
ents in the calculations presented in this paper were chosen such
as they appear in journal bearing applications.

Microcavitation. Microcavitation can occur when the ampli-
tude of the pressure variation, induced by the surface texture, is
larger than the nominal pressure level at that particular location in
the bearing. Hence, the pressure solution at micro-level must be
compared to the pressure at macro-level.

In Fig. 2, the pressure solution is shown for the TUFC at dif-
ferent nominal film height. From top to bottom, the ratio h0 /dp is
varied from 10 down to 0.01. The problem is solved both by the
Navier–Stokes equations and by the Reynolds equation. For a film
height that is in the order of or larger than the maximum pocket
depth, a large difference in pressure solution is found. This is due
to convective inertia. The amplitude of the pressure variation is
relatively small and will, depending on the bearing pressure at
macrolevel, probably not lead to microcavitation. For a film
height that is small compared to the maximum pocket depth, the
contribution of convective inertia becomes negligible and the
Reynolds equation can be used. The amplitude of the pressure
solution is large, due to the so-called ram effect: a rapidly con-
verging restriction from the pocket to the thin film. From these
figures, it can be concluded that microcavitation occurs when the
film height is small compared to the pocket depth and that, in this
case, the Reynolds equation is accurate. For h0 /dp%1, convective
inertia plays a dominant role and microcavitation is not likely to
occur since the amplitude of the pressure variation remains small.
The amplitude of the pressure variation is about 0.25 MPa for the
case where h0 /dp=0.01. This pressure variation may exceed the
pressure level in a journal bearing and lead to microcavitation. Let
us assume the fluid pressure at the location of the TUFC at the
macrolevel pf to be 0.1 MPa. Either the half-Sommerfeld cavita-
tion boundary condition or the Reynolds cavitation boundary con-
dition can be used. The first can be implemented by simply ignor-
ing the negative part of the pressure solution and set it to zero.
The Reynolds cavitation boundary condition is implemented by
succesive iteration of the resticted #pTUFC+ pf %0$ problem. Fig-
ure 3 shows that both methods give similar results. The use of the
half-Sommerfeld boundary condition is preferable, since this
method can be implemented by simply computing the pressure
solution at microlevel as a function of the nominal film height h0
and pass on this information to the macrolevel. At the macrolevel
#where the pf is known$, the half-Sommerfeld boundary condition
is applied to the microlevel solution and the average pressure and
load capacity can be corrected. Applying the Reynolds cavitation
boundary condition requires communication between micro- and
macrolevel and vice versa. An alternative that needs computing
power, is to use the Navier–Stokes equations and implement the
cavitation model that was used in Brajdic et al. !12". As long as
the ratio h0 /dp is such that the Reynolds equation is valid, which
is the case for texture geometries that possibly result in cavitation,
the Reynolds based method should be sufficient. It would however
be very interesting to compare the cavitation methods based on
the Reynolds equation to the Navier–Stokes cavitation model pro-
posed by Brajdic et al.

The two cavitation methods discussed above are not mass con-
servative and, hence, an error is made at microlevel. This error is,
however, resticted to the microlevel and the macromodel can still
be mass conservative. This is an advantage that is inherent to the
micro–macro approach. Application of the Reynolds cavitation
boundary condition to a row of surface texture cells, as done in
Ronen et al. !7" will give inaccurate results and overestimate the

Fig. 1 GUFC „a… and TUFC „b…
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load capacity due to microcavitation. At each of the successive
reformation boundaries, mass conservation is violated. In a nu-
merical sense, mass is added to the system in each cavitation area
resulting in a large accumulated error. This is not the case for the
micro–macro approach.

Calculation of !px and !py. To calculate the pressure flow
factor in x direction, #px, periodical boundary conditions with
respect to the the three components of the velocity are prescribed
on boundaries a and b of the TUFC #Fig. 4$. A commercially
available finite-element code, called SEPRAN !4", is used to dis-

cretize the Navier–Stokes equations on the TUFC domain. A fully
incompressible formulation #Q1− P0$ is used, where both the ve-
locities and the pressure are considered as unknowns. The solution
is constrained by a prescribed mass flux. The pressure solution is
then fixed up to an additive constant. To fix the pressure solution,
the pressure must be set in one point of the domain: for example
p=0 at the upper outflow corner. The side boundaries are no-flow
boundaries, i.e., the normal velocity componenent vy equals zero
for the case !p /!y=0. The surface velocity U1 is set to zero. The
mass flow through the TUFC is given by

Fig. 2 Pressure distribution at the upper surface of the TUFC for pure shear driven flow „U1=1 m/s… for different
h0 /dp ratio „from top to bottom: 10, 1, 0.1, 0.01…. Note the different y axis scaling.

Fig. 3 Pressure distribution at the upper surface of the TUFC
for shear driven flow „U1=1 m/s… and h0 /dp=1/100 solved from
the Reynolds equation with different cavitation boundary
conditions

Fig. 4 Computational domain for the 2D GUFC „a… and for the
3D TUFC „b… with suitable boundary conditions for calculation
of !px. Boundaries a and b are periodical in terms of the veloc-
ity field.
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QTUFC = &*
'a

v!
a d'a #9$

with 'a the area of the inflow boundary and v!
a the velocity

inward normal to this boundary. The Reynolds equation is valid
on the 2D GUFC domain, shown in Fig. 4#a$. The pressure at the
upper inflow corner, (p, that was found from the pressure solu-
tion for the TUFC, is prescribed as an essential boundary condi-
tion for the GUFC problem at the inflow boundary. No-flow
boundary conditions are also used at the side boundaries. The
mass flow through the GUFC can be calculated

QGUFC = &*
−Ly/2
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Since, for pure pressure induced flow, the surface velocity U1=0,
the second term equals zero and the flow through the GUFC for
can be calculated from

QGUFC#U1 = 0$ = − Ly
&ht

3

12!

!p

!x
#11$

The pressure flow factor in x direction is

#px =
QTUFC#U1 = 0$
QGUFC#U1 = 0$

#12$

The derivation of the pressure flow factor #py in y direction is
very similar. For a x-y symmetric TUFC #as shown in Fig. 4$, the
flow factor #py is actually identical to #px.

Calculation of !px: 2D Simulation Results. Some preliminary
results for the 2D case are shown in Fig. 8. The geometry for the
2D TUFC is based on a squared cosine shape and is shown in Fig.
5. The boundaries a and b are periodic in terms of the velocity
field. The nominal film height h0=Lx /100, with the length of the
cell Lx=9 mm. The nominal film height h0 is chosen to be equal
to the maximum pocket depth dp. The viscosity and density of the
fluid are set to 10−3 and 103, respectively.

The pressure distribution at the upper surface, solved from the
Navier–Stokes equations, is represented by the solid curve in Fig.
6. The solution for the TUFC that would be found by the Rey-
nolds equation is given by the dotted curve and is antisymmetric
around the linear pressure drop over the GUFC #macrosmooth
representation of the unit cell$. Both the Navier–Stokes solution
and the Reynolds solution have a steeper pressure gradient at the
inlet #at x=−L /2$, compared to the macropressure gradient.
Therefore, the flow resistance is less in the presence of a surface
pocket, compared to a smooth surface and the flow factor #px
$1. As a result from this, the pressure build up in the textured
journal bearing problem will be less effective. However, it is clear
from Fig. 6 that load carrying capacity is generated by the asym-
metric pressure distribution in the TUFC. To account for this ef-
fect in the macroscopic bearing problem, a load correction is in-
troduced in one of the next sections. Both effects have to be
included in the journal bearing problem to decide whether the
total effect has a positive or negative influence on load carrying
capacity and friction in a journal bearing. Surface texture design
parameters can then be optimized to obtain the largest load carry-

ing capacity or the lowest friction.
Streamlines for the solution shown in Fig. 6 are shown in Fig.

7#b$. A recirculation zone is not seen yet, but the streamlines are
clearly asymmetric. The additional load carrying capacity that is
generated appears to be related to the amount of streamline
asymmetry.

In Fig. 8 the pressure distribution at the upper surface of the
TUFC is shown for pure pressure driven flow at different Rey-
nolds number. The Reynolds number is defined as Re
=&h0vx,max/!. The larger the Reynolds number and the larger the
pressure drop over the TUFC, the more nonsymmetric the pres-
sure distribution becomes and the larger the contribution of con-
vective inertia. Meanwhile, for increasing pressure drop over the
TUFC, the pressure flow factor #px drops to slightly lower values
as shown in Fig. 9. The dotted line gives the flow factor #px
calculated by using the Reynolds equation to solve the TUFC
problem.

Note that for Re approaching a value of 1000, the flow becomes
turbulent and the results presented here may loose their validity.

Fig. 5 2D TUFC geometry. Boundary a and b are periodic in
terms of the velocity field. The nominal film height h0< <Lx.

Fig. 6 Pressure distribution at the upper surface for pure
pressure induced flow. The solid curve represents the solution
when the Navier–Stokes equations are used; the dotted curve
gives the Reynolds solution. The linear curve is the solution for
the macroscopic „smooth… representation of the unit cell, the
GUFC.

Fig. 7 Streamlines for pure pressure induced flow at "p /"x=
−1 MPa/m „a… and "p /"x=−8.5 MPa/m „b… correspond to the
solution in Fig. 6
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Calculation of !s. Calculation of the shear flow factor is simi-
lar to the method that was used to determine the pressure flow
factors. Suitable boundary conditions for this problem are shown
in Fig. 10. Periodical boundary conditions are prescribed for the
velocity component and also for the pressure this time. To fix the
pressure solution, zero pressure is prescribed in one corner of the

TUFC.
The shear flow factor #s is calculated using Eq. #12$, as previ-

ously used for the calculation of #px, however with different
boundary conditions

#s =
QTUFC#!p/!x = 0$
QGUFC#!p/!x = 0$

#13$

The mass flow QTUFC has been defined in Eq. #9$. For the pure
shear boundary conditions, the mass flow through the GUFC is

QGUFC#!p/!x = 0$ = Ly
U1ht

2
#14$

Calculation of !s: 2D Simulation Results. For the 2D case
the same boundary conditions were used as we used for the cal-
culation of #px in 2D as shown in Fig. 5, except for the upper
surface velocity U1. Furthermore, periodical boundary conditions
with respect to the pressure are necessary at boundaries a and b.
Again, the pressure must be fixed in one point in the domain. In
Fig. 11, the pressure solution at the upper smooth surface for pure
shear driven flow is shown. The surface velocities U1 are 1, 2 and
4 m/s, respectively. For the lowest velocity, the pressure distribu-
tion is almost antisymmetric and approaches the Reynolds solu-
tion. For increasing surface velocity #Re number$ the pressure
distribution tends to become more asymmetric. Please note that
the pressure amplitude is two orders of magnitude smaller com-
pared to Fig. 8. In Fig. 12, streamlines are plotted for the pure
shear driven flow at surface velocity U1=4 m/s. A large slightly
asymmetric recirculation zone is located inside the pocket.

The shear flow factor is displayed as a function of the surface
velocity U1 in Fig. 13. For low surface velocity, the flow factor
approaches the Reynolds limit. At increasing surface velocity, the
flow factor drops to a lower value again, i.e., the flow resistance
increases.

Calculation of !sp,x and !sp,y. The factors #sp,x and #sp,y take
into account how the flow resistance is affected by a combination
of a moving surface and a pressure gradient over the TUFC. In-
stead of no-flow boundary conditions in y direction, a mass flow
in y direction must also be prescribed. The pressure gradient
!p /!y follows from the solution. For the flow in x direction holds

#sp,x =
QTUFC#U1,!p/!x,!p/!y$

#pxQGUFC#U1 = 0$ + #sQGUFC#!p/!x = 0$
#15$

The y-flow correction factor #sp,y shows how the flow resistance
in y direction is affected by a surface velocity U1 and pressure
gradient in x direction

Fig. 8 Pressure distribution at the upper surface of the TUFC
for pure pressure induced flow „U1=0 m/s… at different Rey-
nolds numbers

Fig. 9 Pressure flow factor !px as a function of the pressure
gradient over the TUFC

Fig. 10 Computational domain for the 2D GUFC „a… and for the
3D TUFC „b… with suitable boundary conditions for calculation
of !s. The boundaries a and b are periodical, both for the ve-
locity variables and the pressure.

Fig. 11 Pressure distribution at the upper surface of the TUFC
for pure shear boundary conditions at different Reynolds
numbers
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#sp,y =
QTUFC,y#U1,!p/!x,!p/!y$

#pyQGUFC,y#U1 = 0$
#16$

Calculation of !sp,x: 2D Simulation Results. The flow factor
#sp,x represents how the flow resistance in x direction depends on
a combination of a surface velocity U1, a pressure gradient !p /!x
and a pressure gradient !p /!y. In Fig. 14, the results are shown for
the 2D TUFC of Fig. 5. The factor #sp,x is displayed as a function
of the pressure gradient !p /!x at different surface velocity U1. For
increasing pressure gradient and increasing surface velocity, an
increasing flow resistance is found ##sp,x)1$.

The solution for the marked point in Fig. 14 is shown in Figs.
15 and 16. Again, an asymmetric recirculation zone is located
inside the pocket.

Pressure Gain. The bearing pressure at macrolevel is given by
!1"

p = pc + pf #17$
with pc the contact pressure and pf the fluid pressure. Two mecha-
nisms have been pointed out contributing to the pressure generat-
ing effect of surface texture in full film lubrication, i.e., convec-

Fig. 14 Pressure flow factor !sp,x as a function of the pressure
drop over the TUFC for different surface velocities

Fig. 15 Pressure distribution at the upper surface of the
TUFC. Operating conditions: U1=1 m/s, "p /"x=−7.1 MPa/m

Fig. 16 Streamlines for a flow that is driven both by an upper
surface velocity U1 and pressure gradient over the TUFC. Op-
erating conditions: "p /"x=−7.1 MPa/m, U1=1 m/s „a…, U1
=4 m/s „b….

Fig. 12 Streamlines at pure shear driven flow: „top… U1
=1 m/s; „bottom… U1=4 m/s. A slightly asymmetric recircula-
tion zone is located inside the pocket for increasing surface
velocity.

Fig. 13 Shear flow factor !s as a function of the upper surface
velocity U1
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tive inertia effects and microcavitation. Both phenomena result in
an asymmetric pressure distribution over the TUFC. Therefore,
the average pressure at macrolevel is incorrect and has to be
modified

p = pc + pf + p+ #18$
with p+ an additional pressure gain

p+ =
1

LxLy
*

'

max#pf + pTUFC,0$d' − pf #19$

with the term under the integral the pressure solution with half-
Sommerfeld cavitation boundary condition. Hence, p+ is not only
a function of the TUFC geometry, !p /!x and !p /!y at macrolevel,
but also of the average pressure at macrolevel pf. Figure 17 shows
how the pressure gain p+ as a result of convective inertia only
depends on the surface velocity and pressure gradient for the 2D
case with h0 /dp=1.

Pocket Squeeze Effect
Qs is an additional source term that reflects the average addi-

tional fluid inflow per unit surface area, resulting from the pocket-
squeeze effect. This effect is present if the textured surface is
moving #U2"0$ and deformable. The effect also exists for a mov-
ing rigid textured surface in combination with a deformable coun-
tersurface. However, this will be less effective. In this section, we
restrict ourselves to a moving deformable textured surface. All
variables and parameters that related to the microscale and have
an equivalent at the macroscale are provided with a tilde, e.g., h̃
denotes the film height at the microscale.

The source term Qs can also be interpreted as a squeeze term
−dh̃av/dt with hav the average distance between a unit piece of
surface with a pocket and the counter surface

h̃av =
1

A*
'

h̃ d' #20$

with A the surface area of a unit piece of surface containing a
single pocket #see Fig. 18$. The average additional fluid inflow Qs
is given by the change of the average height per unit time

Qs = −
!h̃av

!t
= −

1

A

!V

!t
= −

1

A

!V

!x

!x

!t
#21$

with V the pocket volume. Replacing !V /!x by

!V

!x
=

!V

!pc

!pc

!x
#22$

and replacing !x /!t by the the surface velocity U2 gives the fol-
lowing expression for Qs

Qs = −
1

A

!V

!pc

!pc

!x
#U2$ #23$

The fraction !V /!pc is assumed not to be a function of x, such that
this equation can be rewritten

Qs = −
!

!x
% !V

!pc

#U2$pc

A
& #24$

Substituting this equation into Eq. #6$ and rearranging gives the
modified Reynolds equation for the macroproblem

!

!x
'− #sp,x#px

ht
3

12!

!pf

!x
+ #sp,x#s

U1ht

2
+

!V

!pc

U2pc

A
(

+
!

!y
'− #sp,y#py

ht
3

12!

!pf

!y
( = 0 #25$

The additional source term that appears at the left-hand side is a
function of the contact pressure pc only. The contact pressure is a
macroscopic quantity and follows from the solution of the macro-
journal bearing model. The factor !V /!pc may be a function of the
material parameters and the shape of the pocket. In the next sec-
tion, we show that the factor !V /!pc is not a function of the
contact pressure pc itself. The value for !V /!pc has to be derived
by the solution of a 3D structure deformation problem for a piece
of material containing a single pocket: a texture unit deformation
cell #TUDC$.

Calculation of "V /"pc. A standard finite-element routine is
used to descretise the linear structure deformation equations on
the TUDC domain as shown in Fig. 19. The following boundary
conditions are used: zero displacement at the bottom surface and
zero normal displacement at the side walls. The contact model that
was used in Ref. !1" is applied here as well. With h0 the z coor-
dinate of the counter surface, the distance h̃ between the surfaces
is

h̃ = h0 − ũz − z̃s #26$

with ũz the normal deformation of the surface and z̃s the surface z
coordinate. Throughout this paper, we use the following function
for the shape of the pocket

z̃s = − dp cos' "

Rp

)x2 + y2

2
(2

∀ x2 + y2 * Rp

Fig. 17 Pressure gain as result of convective inertia as a func-
tion of the pressure gradient for different surface velocities

Fig. 18 Surface area of the texture unit cell
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z̃s = 0 ∀ x2 + y2 $ Rp #27$
with dp the maximum pocket depth. The pocket shape is illus-
trated in Fig. 16. For a negative distance h̃, contact occurs. Ac-
cording to the model of Chengwei !2", the effective height be-
tween Gaussian distributed rough surfaces is

h̃t

Sq
=

1
2

h̃

Sq
%1 + erf' 1

)2

h̃

Sq
(& +

1
)2"

e−1/2#h̃/Sq$2
#28$

with Sq the composite rms surface roughness. We assume a plastic
asperity deformation mode, such that the contact pressure follows
from Ref. !1"

p̃c = Hāc =
H

2
%1 − erf' 1

)2

h̃

Sq
(& #29$

To solve this contact problem, a staggered numerical scheme is
used, shown in Fig. 20. Artificial damping was used to stabilize

the solution. From the solution, we compute the pocket volume
change by

(V = Vp − V0 #30$
with Vp the final pocket volume and V0 the original pocket vol-
ume.

Pocket Squeeze Effect: Preliminary Simulation Results. Pre-
liminary results for the pocket volume change (V as a function of
the contact pressuree pc are shown in Fig. 21. Table 1 lists the
dimensions and material parameters that were used. The volume
change is found to be a linear function of the contact pressure.
This means that the geometric nonlinearity #growing contact area
for a smooth pocket shape$ is unimportant. From these results, the
derivative dV /dpc can easily be derived. For the examples shown
in Fig. 21, the value for dV /dpc is 0.041 mm3/MPa and
0.05 mm3/MPa, respectively. It is also clear from Fig. 21 that
dV /dpc is larger for more compressible materials #+=0.3$. This is
due to the fact that the effective stiffness of the TUDC is larger for
more incompressible materials.

Conclusions
In this paper, a micro–macro multiscale method is presented

that includes the effects of surface texture in a macroscopic bear-
ing model. Two effects are included: pocket flow effects and
squeezing of the pocket when the surfaces are in contact.

The method including the flow effects is very similar to the
flow factor method introduced by Patir and Cheng !3". The
method proposed here differs from that of Patir and Cheng by the
equations that are used to solve the flow in the microscopic cell
#TUFC in our case$. Patir and Cheng used the Reynolds equation
for a piece of surface with random roughness height distribution
and compared the flow to that for a smooth surface with identical

Fig. 19 TUDC: 3D domain for fem solution of structure defor-
mation equations

Fig. 20 Numerical scheme

Fig. 21 Numerical solution for the pocket volume change as a
function of the average contact pressure

Table 1 Dimensions and material parameters for the TUDC

Description Parameter Value Dimension

TUDC dimension Lx
9 #mm$

TUDC dimension Ly
9 #mm$

TUDC thickness t 9 #mm$
Pocket area ratio , 0.3 #-$
Pocket depth dp

0.045 #mm$
Composite roughness Sq

0.424 #-m$

Young’s modulus E 1 #GPa$
Poisson ratio + 0.45 #-$
Hardness H 50 #MPa$
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average film gap. The method discussed in this work uses the
Navier–Stokes equations since convective inertia #that has been
dropped in the Reynolds equation$ might become important.

The flow factors #sp,x and #sp,y have to be solved by the
Navier–Stokes equations since a relation between pressure flow
resistance in x direction and the surface velocity U1 or pressure
gradient !p /!y cannot be solved from the Reynolds equation. The
antisymmetric character of the pressure distribution #that contrib-
utes to the load carrying capacity$, evolving from the contribution
of convective inertia, has to be solved by the Navier–Stokes equa-
tions.

It has become clear that for h0.dp, microcavitation is the
dominant flow effect. In this case, the Reynolds equation with
half-Sommerfeld boundary conditions appears to be sufficient to
solve the microproblem.

Microcavitation and its numerical treatment are subject of fur-
ther study. It has, however, been shown that the multiscale method
proposed in this paper allows us to include a local caviation algo-
rithm. The pressure gain can be calculated as a function of the
pressure solution at macrolevel.

For film heights that are in the same order or larger than the
pocket depth, the pressure variation is relatively small and cavita-
tion is not likely to occur. In this case, convective inertia effects
are important and the Navier–Stokes equations are necessary to
solve the problem.

Enclosed surface pockets that come into contact can squeeze
out some of the fluid caught in the pocket. The pocket volume
change is computed by numerically simulating the deformation of
a 3D unit piece of surface, containing a single pocket, that comes
into contact with the counter surface. This effect is included at
macrolevel by an additional source term.

In future research flow factors, pressure gain #as a result of
microcavitation and convective invertia$ and pocket squeeze fac-
tors will be determined by numerical simulation as a function of
the pocket geometry, film height and macroscopic operating con-
ditions such as surface velocity and the global bearing pressure
gradient. Implementing these results in the macroscopic bearing
model allows us to evaluate the net effect of the surface texuture.
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Nomenclature
A / surface area
āc / contact area fraction
c / radial clearance

dp / pocket depth
E / Young’s modulus
e / eccentricity

H / hardness
h , h̃ / film height

ht , h̃t / effective film height
h0 / nominal film heigt
p / pressure

pc , p̃c / contact pressure
pf / fluid pressure
Q / mass flow
R / bearing radius

Re / Reynolds number
Rp / pocket radius
Sq / surface roughness parameter

t / time
U / sum velocity

U1 / upper surface velocity
U2 / lower surface velocity

uz , ũz / normal surface deformation
V / pocket volume

#x ,y ,z$ / Cartesian coordinate system
! / viscosity
+ / Poisson ratio
# / angular journal bearing coordinate

#px ,#py / pressure flow factor
#s / shear flow factor

#sp,x ,#sp,y / flow correction factor
& / fluid density
, / pocket area ratio

References
!1" de Kraker, A., Ostayen, R. A. J., and Rixen, D. J., 2006, “Calculation of

Stribeck Curves for #Water$ Lubricated Journal Bearings,” Tribol. Trans., in
press.

!2" Chengwei, W., and Linqing, Z., 1989, “An Average Reynolds Equation for
Partial Film Lubrication With a Contact Factor,” J. Tribol., 111, pp. 188–191.

!3" Patir, N., and Cheng, H. S., 1978, “Application of Average Flow Model to
Lubrication Between Rough Sliding Surfaces,” J. Lubr. Technol., 101, pp.
220–230.

!4" Segal, A., 1993, “SEPRAN Users Manual,” Technical Report, Ingenieursbureau
SEPRA, Leidschendam, The Netherlands.

!5" Kovalchenko, A., Ajayi, O., Erdemir, A., Fenske, G., and Etsion, I., 2005,
“The Effect of Laser Surface Texturing on Transitions in Lubrication Regimes
during Unidirectional Sliding Contact,” Tribol. Int., 38, pp. 219–225.

!6" Burstein, L., and Ingman, D., 1999, “Effect of Pore Ensemble Statistics on
Load Support of Mechanical Seal With Pore-Covered Faces,” J. Tribol., 121,
pp. 927–932.

!7" Ronen, A., Etsion, I., and Kligerman, Y., 2001, “Friction-Reducing Surface-
Texturing in Reciprocating Automotive Components,” Tribol. Trans., 44#3$,
pp. 359–366.

!8" Brizmer, V., Kligerman, Y., and Etsion, I., 2003, “A Laser Textured Parallel
Thrust Bearing,” Tribol. Trans., 46#3$, pp. 397–403.

!9" Siripuram, R. B., and Stephens, L. S., 2004, “Effect of Deterministic Asperity
Geometry on Hydrodynamic Lubrication,” J. Tribol., 126, pp. 527–534.

!10" Etsion, I., 2005, “State of the Art in Laser Surface Texturing,” J. Tribol., 127,
pp. 248–253.

!11" Feldman, Y., Kligerman, Y., Etsion, I., and Haber, S., 2006, “The Validity of
the Reynolds Equation in Modeling Hydrostatic Effects in Gas Lubricated
Textured Parallel Surfaces,” J. Tribol., 128, pp. 345–350.

!12" Brajdic-Mitidieri, P., Gosman, A. D., Loannides, E., and Spikes, H. A., 2005,
“CFD Analysis of a Low Friction Pocketed Pad Bearing,” J. Tribol., 127, pp.
803–812.

!13" Arghir, M., Roucou, N., Helene, M., and Frene, J., 2003, “Theoretical Analysis
of the Incompressible Laminar Flow in a Macro-Roughness Cell,” J. Tribol.,
125, pp. 309–318.

!14" Sahlin, F., Glavatskih, S. B., Almqvist, T., and Larsson, R., 2005, “Two-
Dimensional CFD-Analysis of Micro-Patterned Surfaces in Hydrodynamic Lu-
brication,” J. Tribol., 127, pp. 96–102.

!15" Ostayen van, R. A. J., 2002, “The Hydro-Support: An Elasto-Hydrostatic
Thrust Bearing With Mixed Lubrication,” PhD thesis, Delft University of
Technology, Delft, The Netherlands.

230 / Vol. 129, APRIL 2007 Transactions of the ASME

Downloaded 23 Mar 2012 to 145.94.112.51. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfmView publication statsView publication stats

https://www.researchgate.net/publication/245371198

