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A multiscale Molecular Dynamics approach to Contact Mechanics

C. Yang, U. Tartaglino∗ and B.N.J. Persson
IFF, FZ-Jülich, 52425 Jülich, Germany

The friction and adhesion between elastic bodies are strongly influenced by the roughness of the
surfaces in contact. Here we develop a multiscale molecular dynamics approach to contact mechanics,
which can be used also when the surfaces have roughness on many different length-scales, e.g., for
self affine fractal surfaces. As an illustration we consider the contact between randomly rough
surfaces, and show that the contact area varies linearly with the load for small load. We also
analyze the contact morphology and the pressure distribution at different magnification, both with
and without adhesion. The calculations are compared with analytical contact mechanics models
based on continuum mechanics.

1. Introduction

Adhesion and friction between solid surfaces are com-
mon phenomenons in nature and of extreme importance
in biology and technology. Most surfaces of solids have
roughness on many different length scales[1, 2], and it
is usually necessary to consider many decades in length
scale when describing the contact between solids[3]. This
makes it very hard to describe accurately the contact me-
chanics between macroscopic solids using computer sim-
ulation methods, e.g., atomistic molecular dynamics, or
finite element calculations based on continuum mechan-
ics.
Consider a solid with a nominally flat surface. Let

x, y, z be a coordinate system with the x, y plane parallel
to the surface plane. Assume that z = h(x) describe the
surface height profile, where x = (x, y) is the position
vector within the surface plane. The most important
property characterizing a randomly rough surface is the
surface roughness power spectrum C(q) defined by[3, 4]

C(q) =
1

(2π)2

∫

d2x 〈h(x)h(0)〉eiq·x. (1)

Here 〈...〉 stands for ensemble average and we have as-
sumed that h(x) is measured from the average surface
plane so that 〈h〉 = 0. In what follows we will assume
that the statistical properties of the surface are isotropic,
in which case C(q) will only depend on the magnitude
q = |q| of the wave vector q.
Many surfaces tend to be nearly self-affine fractal. A

self-affine fractal surface has the property that if part
of the surface is magnified, with a magnification which
in general is appropriately different in the perpendicu-
lar direction to the surface as compared to the lateral
directions, then the surface “looks the same”, i.e., the
statistical properties of the surface are invariant under
the scale transformation[3]. For a self-affine surface the
power spectrum has the power-law behavior

C(q) ∼ q−2(H+1),

∗Present address: DEMOCRITOS National Simulation Center,

Via Beirut 2-4, I-34014 Trieste, Italy; e-mail: tartagli@sissa.it

log q

lo
g 

C

q0 q1Lq

FIG. 1: Surface roughness power spectrum of a surface which
is self affine fractal for q1 > q > q0. The long-distance roll-
off wave vector q0 and the short distance cut-off wave vector
q1 depend on the system under consideration. The slope of
the logC − logq relation for q > q0 determines the fractal
exponent of the surface. The lateral size L of the surface (or
of the studied surface region) determines the smallest possible
wave vector qL = 2π/L.

where the Hurst exponent H is related to the fractal di-
mension Df of the surface via H = 3 − Df . Of course,
for real surfaces this relation only holds in some finite
wave vector region q0 < q < q1, and in a typical case
C(q) has the form shown in Fig. 1. Note that in many
cases there is a roll-off wavevector q0 below which C(q)
is approximately constant.

Let us consider the contact between an elastic solid
with a flat surface and a hard randomly rough substrate.
Fig. 2 shows the contact between the solids at increas-
ing magnification ζ. At low magnification (ζ = 1) it
looks as if complete contact occurs between the solids at
many macro asperity contact regions, but when the mag-
nification is increased smaller length scale roughness is
detected, and it is observed that only partial contact oc-
curs at the asperities. In fact, if there would be no short
distance cut-off the true contact area would vanish. In
reality, however, a short distance cut-off will always exist
since the shortest possible length is an atomic distance.
In many cases the local pressure at asperity contact re-
gions at high magnification will become so high that the
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material yields plastically before reaching the atomic di-
mension. In these cases the size of the real contact area
will be determined mainly by the yield stress of the solid.
The magnification ζ refers to some (arbitrary) chosen

reference length scale. This could be, e.g., the lateral size
L of the nominal contact area in which case ζ = L/λ,
where λ is the shortest wavelength roughness which can
be resolved at magnification ζ. In this paper we will
instead use the roll-off wavelength λ0 = 2π/q0 as the
reference length so that ζ = λ0/λ.
Recently, a very general contact mechanics theory has

been developed which can be applied to both stationary
and sliding contact for viscoelastic solids (which includes
elastic solids as a special case)[4]. The theory was orig-
inally developed in order to describe rubber friction on
rough substrates. For elastic solids the theory can also
be applied when the adhesional interaction is taken into
account[5]. In contrast to earlier contact mechanics the-
ories, the theory presented in Ref. [4, 5] is particularly
accurate close to complete contact, as would be the case
for, e.g., rubber on smooth surfaces. The basic idea be-
hind the theory is to study the contact at different mag-
nification. In particular, the theory describes the change
in the stress distribution P (σ, ζ) as the magnifications ζ
increases. Here

P (σ, ζ) = 〈δ(σ − σ(x, ζ))〉 (2)

is the stress distribution at the interface when the sur-
face roughness with wavelength smaller than λ = λ0/ζ
has been removed. In (2), 〈. . .〉 stands for ensemble av-
erage, and σ(x, ζ) is the perpendicular stress at the in-
terface when surface roughness with wavelength shorter
than λ = λ0/ζ has been removed. It is clear that as the
magnification ζ increases, the distribution P (σ, ζ) will be
broader and broader and the theory describes this in de-
tail. The (normalized) area of real contact (projected on
the xy-plane) at the magnification ζ can be written as

A(ζ)

A0
=

∫

∞

0+
dσ P (σ, ζ). (3)

where the lower integration limit 0+ indicate that the
delta function at the origin σ = 0 (arising from the non-
contact area) should be excluded from the integral. The
rubber friction theory described in Ref. [4] depends on
the function A(ζ)/A0 for all magnifications. This just re-
flects the fact that the friction force results from the vis-
coelastic deformations of the rubber on all length scales,
and when evaluating the contribution to the friction from
the viscoelastic deformations on the length scale λ, it is
necessary to know the contact between the rubber and
the substrate at the magnification ζ = λ0/λ. Thus, not
just the area of real (atomic) contact is of great inter-
est, but many important applications require the whole
function A(ζ), and the pressure distribution P (σ, ζ).
In order to accurately reproduce the contact mechan-

ics between elastic solids, it is in general necessary to

FIG. 2: A rubber block (dotted area) in adhesive contact
with a hard rough substrate (dashed area). The substrate
has roughness on many different length scales and the rubber
makes partial contact with the substrate on all length scales.
When a contact area is studied at low magnification (ζ = 1)
it appears as if complete contact occurs in the macro asperity
contact regions, but when the magnification is increased it is
observed that in reality only partial contact occurs.

consider solid blocks which extend a similar distance in
the direction normal to the nominal contact area as the
linear size of the contact area. This leads to an enor-
mous number of atoms or dynamical variables already
for relatively small systems. In this paper we develop
a multiscale approach to contact mechanics where the
number of dynamical variables scales like ∼ N2 rather
than as ∼ N3, where N × N is the number of atoms
in the nominal contact area. As application we consider
the contact mechanics between randomly rough surfaces
both with and without adhesion, and compare the results
with analytical contact mechanics theories.

2. Multiscale molecular dynamics

Let us discuss the minimum block-size necessary in a
computer simulation for an accurate description of the
contact mechanics between two semi-infinite elastic solids
with nominal flat surfaces. Assume that the surface
roughness power spectrum has a roll-off wavevector q =
q0 corresponding to the roll-off wavelength λ0 = 2π/q0.
In this case the minimum block must extend Lx ≈ λ0

and Ly ≈ λ0 along the x and y-directions. Furthermore,
the block must extend at least a distance Lz ≈ λ0 in
the direction perpendicular to the nominal contact area.
The latter follows from the fact that a periodic stress
distribution with wavelength λ acting on the surface of a
semi-infinite elastic solid gives rise to a deformation field
which extends a distance ∼ λ into the solid. Thus, the
minimum block is a cube with the side L = λ0.

As an example, if λ0 corresponds to 1000 atomic spac-
ings, one must at least consider a block with 1000× 1000
atoms within the xy-contact plane, i.e., one would need
to study the elastic deformation in a cubic block with
at least 109 atoms. However, it is possible to drasti-
cally reduce the number of dynamical variables without



(a) (b)

FIG. 3: Schematic structure of the model. (a) The fully
atomistic model. (b) The multiscale smartblock model, where
the solid in (a) is coarse grained by replacing groups of atoms
with bigger “atoms”.

loss of accuracy if one notes that an interfacial roughness
with wavelength λ will give rise to a deformation field
in the block which extends a distance λ into the solid,
and which varies spatially over a typical length scale λ.
Thus when we study the deformation a distance z into
the block we do not need to describe the solid on the
atomistic level, but we can coarse-grain the solid by re-
placing groups of atoms with bigger “atoms” as indicated
schematically in Fig. 3. If there are N ×N atoms in the
nominal contact area one need n ≈ lnN “atomic” lay-
ers in the z-direction. Moreover the number of atoms
in each layer decreases in a geometric progression every
time the coarse graining procedure is applied, so that the
total number of particles is of order N2 instead of N3.
This results in a huge reduction in the computation time
for large systems. This multiscale approach may be im-
plemented in various ways, and in the Appendix A we
outline the procedure we have used in this paper which
we refer to as the smartblock. Another implementation
similar to our approach can be found in Ref. [6].

The smartblock model should accurately describe the
deformations in the solids as long as the deformations
varies slowly enough with time. However, the model can-
not accurately describe the propagation of short wave-
length phonons. This is, in fact, true with all forms
of Hamiltonian multiscale descriptions of solids, because
of the energy conservation together and the unavoid-
able loss of information in the coarse grained region. In
principle it should be possible to prevent the back re-
flection of short wavelength phonons by describing the
coarse grained region as a continuum, where the numer-
ical calculation can be carried on through a Finite Ele-
ment scheme.[7, 8, 9, 10] This indeed would require no
coarse graining at all in the region treated with molecular
dynamics, and a proper choice of the matching conditions
between the atomistic and the continuum region. How-
ever, with respect to contact mechanics and adhesion the
back reflection of short wavelength phonons is not an im-

portant limitation. With respect to sliding friction it may
be a more severe limitation in some cases.

Figure 3 illustrates a case where the block is in the
form of a cube with atomically flat surfaces. It is possi-
ble to obtain curved surfaces of nearly arbitrary shape
by “gluing” the upper surface of the block to a hard
curved surface profile. This was described in detail in
Ref. [4]. The elastic modulus and the shear modulus of
the solid can be fixed at any value by proper choice of the
elongation and bending spring constants for the springs
between the atoms (see Ref. [4] and Appendix A). The
upper surface of the smartblock can be moved with ar-
bitrary velocity in any direction, or an external force of
arbitrary magnitude can be applied to the upper surface
of the smartblock. We have also studied sliding friction
problems where the upper surface of the smartblock is
connected to a spring which is pulled in some prescribed
way. The computer code also allows for various lubricant
fluids between the solid surfaces of the block and the
substrate. Thus the present model is extremely flexible
and can be used to study many interesting adhesion and
friction phenomena, which we will report on elsewhere.

We note that with respect to contact mechanics, when
the slopes of the surfaces are small, i.e. when the surfaces
are almost horizontal, one of the two surfaces can be con-
sidered flat, while the profile of the other surface has to be
replaced by the difference of the two original profiles[11].
Thus, if the substrate has the profile z = h1(x) and the
block has the profile z = h2(x), then we can replace
the actual system with a fictive one where the block has
an atomically smooth surface while the substrate profile
h(x) = h2(x)− h1(x). Furthermore, if the original solids
have the elastic modulus E1 and E2, and the Poisson ra-
tio ν1 and ν2, then the substrate in the fictive system
can be treated as rigid and the block as elastic with the
elastic modulus E and Poisson ratio ν chosen so that
(1− ν2)/E = (1− ν21 )/E1 + (1− ν22 )/E2.

The results presented below have been obtained for
a rigid and rough substrate. The atoms in the bottom
layer of the block form a simple square lattice with lattice
constant a. The lateral dimensions Lx = Nxa and Ly =
Nya. For the block, Nx = 400 and Ny = 400. Periodic
boundary conditions are applied in the xy plane. The
lateral size of the block is equal to that of substrate, but
we use different lattice constant b ≈ a/φ, where φ =
(1 +

√
5)/2 is the golden mean, in order to avoid the

formation of commensurate structures at the interface.
The mass of a block atom is 197 a.m.u. and the lattice
constant of the block is a = 2.6 Å, reproducing the atomic
mass and the density of gold. We consider solid blocks
with two different Young’s moduli: a hard solid with
E = 77 GPa, like in gold, and a soft one with 0.5 GPa.
The corresponding shear moduli were G = 27 GPa and
0.18 GPa, respectively.

The atoms at the interface between the block and the



substrate interact with the potential

U(r) = 4ǫ

[

(r0
r

)12

− α
(r0
r

)6
]

(4)

where r is the distance between a pair of atoms. When
α = 1, Eq. (4) is the standard Lennard-Jones poten-
tial. The parameter ǫ is the binding energy between two
atoms at the separation r = 21/6r0. When we study con-
tact mechanics without adhesion we put α = 0. In the
calculations presented below we have used r0 = 3.28 Å
and ǫ = 18.6 meV, which (when α = 1) gives an inter-
facial binding energy (per unit area)[12] ∆γ ≈ 4ǫ/a2 ≈
11 meV/Å

2
.

3. Self affine fractal surfaces

In our calculations we have used self affine fractal sur-
faces generated as outlined in Ref. [3]. Thus, the surface
height is written as

h(x) =
∑

q

B(q)ei[q·x+φ(q)] (5)

where, since h(x) is real, B(−q) = B(q) and φ(−q) =
−φ(q). If φ(q) are independent random variables, uni-
formly distributed in the interval [0, 2π[, then one can
easily show that higher order correlation functions in-
volving h(x) can be decomposed into a product of pair
correlations, which implies that the height probability
distribution Ph = 〈δ(h−h(x))〉 is Gaussian[3]. However,
such surfaces can have arbitrary surface roughness power

spectrum. To prove this, substitute (5) into (1) and use
that

〈eiφ(q′)eiφ(q
′′)〉 = δq′,−q′′

gives

C(q) =
1

(2π)2

∫

d2x
∑

q′

|B(q′)|2ei(q−q
′)·x

=
∑

q′

|B(q′)|2δ(q− q′)

Replacing

∑

q

→ A0

(2π)2

∫

d2q,

where A0 is the nominal surface area, gives

C(q) =
A0

(2π)2
|B(q)|2.

Thus, if we choose

B(q) = (2π/L)[C(q)]1/2, (6)

(a)

(b)

FIG. 4: (a) Fractal surface with the large wavevector cut-off
q1 = 2π/b ≈ 216 q0. (b) The same surface as in (a) but at
lower resolution with q1 = 4q0. For a square 1040 Å× 1040 Å
surface area. The fractal dimension Df = 2.2 and the root-
mean-square roughness amplitude is 10 Å.

where L = A
1/2
0 , then the surface roughness profile (5)

has the surface roughness power density C(q). If we as-
sume that the statistical properties of the rough surface
are isotropic, then C(q) = C(q) is a function of the mag-
nitude q = |q|, but not of the direction of q. The ran-
domly rough substrate surfaces used in our numerical cal-
culations where generated using (5) and (6) and assuming
that the surface roughness power spectra have the form
shown in Fig. 1, with the fractal dimension Df = 2.2
and the roll-off wavevector q0 = 3qL, where qL = 2π/Lx.
We have chosen q0 = 3qL rather than q0 = qL since
the former value gives some self-averaging and less noisy
numerical results. We also used q1 = 2π/b ≈ 216q0 (to-
pography (a) in Fig. 4) and some surfaces with several
smaller values for q1 (Fig. 4 (b) shows the topography
when q1 = 4q0), corresponding to lower magnification
(see Sec. 4).

4. Numerical results

In this section we illustrate our multiscale molecular
dynamics (MD) approach by some applications. We first
compare the MD results to two known contact mechan-
ics results from continuum mechanics. Next we discuss
contact mechanics for randomly rough surfaces both with
and without adhesion.

4.1. Test cases: Hertz contact and complete

contact

In 1881 Hertz presented an exact solution for the
contact between two perfectly elastic solids with local
quadratic profiles. The results were derived using the
elastic continuum model and neglecting the adhesion be-



tween the solids. In addition, Hertz assumed that the
interfacial friction vanishes so that no shear stress can de-
velop at the interface between the solids. When a spher-
ical asperity is squeezed against a flat surface a circular
contact area (radius rH) is formed, where the pressure
decreases continuously from the center r = 0 to the pe-
riphery r = rH of the contact according to

σ = σH

[

1−
(

r

rH

)2
]1/2

. (7)

Let us compare the prediction of our atomistic model
with the Hertz theory. We use the Lennard-Jones poten-
tial with α = 0, i.e. without the attractive term. In Fig.
5 we compare the Hertz contact pressure (green line) with
our numerical data (red data points). The numerical data
were obtained for a rigid spherical tip squeezed against
a flat elastic surface. Note that the pressure obtained
from the MD calculation has a tail beyond the Hertz
contact radius rH. Similar “pressure tails” were recently
observed in molecular dynamics simulations by Luan and
Robbins[13]. The tail reflects the non-zero extent of the
atom-atom interaction potential. The deviation between
the molecular dynamics results and the continuum me-
chanics results should decrease continuously as the size
of the system increases.
At the atomic level there is no unique way to define

when two solids are in contact, and one may use sev-
eral different criteria. One method is based on the force
acting between the atoms at the interface and works best
when the adhesional interaction is neglected. Thus, when
two surfaces approach each other, the repulsive force be-
tween the atoms increases. We may define contact when
the repulsive force is above some critical value. When ad-
hesion is included the interaction between the wall atoms
becomes more long-ranged and it is less obvious how to
define contact based on a force criterion, and we find it
more convenient to use a criteria based on the nearest
neighbor distance between atoms on the two surfaces.
Thus, when the separation between two opposing surface
atoms is less than some critical value, contact is defined
to occur. However, we have found that neither of these
two criteria gives fully satisfactory results. The reason
is that if the critical force or the critical distance used
to define when contact occurs is determined by fitting
the Hertz pressure profile (7) to the numerical data as in
Fig. 5, then the resulting values depend on the radius of
curvature of the asperity. For example, for the Hertz con-
tact in Fig. 5 the contact area deduced from the atom-
istic MD calculation agree with the Hertz theory if we
choose the cut-off pressure pc ≈ 0.7 GPa. However, if
the radius of curvature of the asperity is 10 times smaller
(R = 104 Å) then, for the same penetration, the cut-
off would be pc ≈ 2.5 GPa, i.e., more than three times
larger. On the other hand randomly rough surfaces have
a wide distribution of curvatures and it is not clear how

FIG. 5: The pressure in the contact region between a spher-
ical tip and a flat elastic surface. We show the simulation
data and the theoretical Hertz result. The spherical tip has
the radius of curvature R = 1040 Å and the loading force
4.6× 10−7 N.

to choose the optimum cut-off distance or force. In this
paper we have therefore used another way of determin-
ing the contact area which turned out to be more unique.
We will now describe this method.
Let us consider the pressure distribution P (σ, ζ) at the

interface. For Hertz contact we get the pressure distri-
bution

P (σ) =
1

A0

∫

A0

d2x δ(σ − σ(x)) (8)

Using σ(x) from (7) for r < rH and σ(x) = 0 for r > rH
gives

P (σ) =

(

1− A

A0

)

δ(σ) +
2σ

σ2
H

A

A0
(9)

where A = πr2H is the Hertz contact area. In Fig. 6 we
show the pressure distribution in the contact region be-
tween a hard spherical tip and an elastic solid with a flat
surface. The red curve shows the simulation data, while
the green curve is the theoretical Hertz result obtained
by a suitable choice of A in Eq. (9). Note that while
the Hertz solution and the atomic MD simulation results
agree very well for large pressure, there is a fundamental
difference for small pressure. Thus, for the Hertz solu-
tion, for small pressure σ → 0, P (σ) ∼ σ, while in the
atomistic model P (σ) increase monotonically as σ → 0.
This difference is due to the long-range interaction be-
tween the solid walls in the atomistic model, which is
absent in the Hertz model. When the long range wall-
wall interaction is taken into account the delta function
at σ = 0 in the Hertz solution (9) will broaden, resulting
in a P (σ) which (for the small systems considered here)
will decay monotonically with increasing σ as observed
for the atomistic model. Note that this effect is of exactly



FIG. 6: The pressure distribution in the contact region be-
tween a spherical tip and a flat surface. We show the simula-
tion data (red curves) and the theoretical Hertz result (green
curves). Loading force in (a) is 4.6 × 10−7 N and in (b)
7.3× 10−7 N.

the same origin as the “pressure tail” for r > rH in Fig.
5.
The fact that P (σ, ζ) vanish linearly with σ as σ → 0

is an exact result in continuum mechanics with contact
interaction (no long range wall-wall interaction), and is
valid not just for the Hertz contact case, but holds in
general [14]. However, as explained above, this effect will
never be observed in the atomistic model if the wall-wall
interaction is long-ranged.
Note that the contact area A can be determined di-

rectly by fitting the analytical expression for P (σ) for
the Hertz contact (Eq. (9)) to the numerical MD results
for large enough pressures (see Fig. 6). In the present
case, for FN = 4.6× 10−7 N (Fig. 6(a)) this gives a con-
tact area A = πr2H which is nearly identical to the one
deduced from the fit in Fig. 5. A similar procedure can
be used to determine the contact area between randomly
rough surfaces using the following analytical expression
derived from the contact mechanics theory of Persson
(see Eq. (10) below):

P (σ, ζ) =
1

2(πG)1/2

(

e−(σ−σ0)
2/4G − e−(σ+σ0)

2/4G
)

,

where σ0 is the nominal contact stress, and where the
fitting parameter G = G(ζ) can be related to the con-
tact area using Eq. (3). Thus, if A/A0 ≪ 1 we have
G = (σ2

0/π)(A/A0)
−2. We have found (see below) that
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FIG. 7: The normalized pressure distribution P (σ) at the
interface between an elastic block (elastic modulus E =
0.5 GPa) with a flat surface and a rigid randomly rough
substrate. Because of adhesion complete contact occurs at
the interface. The red curve is the simulation result and the
green line is the Gaussian fit to the simulation data with the
root-mean-square width σrms = 0.229 GPa. The blue line is
the theoretical Gaussian distribution obtained using contin-
uum mechanics (see Appendix B). The theoretical rms width
σrms = 0.164 GPa.

this expression for P (σ, ζ) can fit the numerical MD data
very well (lending support for the accuracy of the Pers-
son theory), and we have used this method to determine
the contact area as a function of the squeezing force for
randomly rough substrates.
Let us consider the pressure distribution at the inter-

face between a rigid randomly rough substrate and a flat
elastic surface when the solids are in complete contact.
Complete contact can result either by squeezing the solids
together by high enough force, or if the adhesional inter-
action between the solids is high enough (or the elastic
modulus small enough). However, when complete con-
tact occurs the pressure distribution is the same.
For an elastic solid with a flat surface in perfect contact

with a hard randomly rough surface, continuum mechan-
ics predict a Gaussian pressure distribution of the form
(see Appendix B):

P (σ) =
1

(2π)1/2σrms
e−(σ−σ0)

2/2σ2
rms

where the root-mean-square width σrms is determined by
the power spectrum:

σ2
rms = 〈σ2〉 = π

2

E2

(1− ν2)2

∫ q1

q0

dq q3C(q)

In Fig. 7 we compare the theoretical pressure distribu-
tion (blue curve) with the pressure distribution obtained
from the atomistic model for the case where the com-
plete contact results from the adhesive interaction be-
tween the solids. The MD data are well fitted by a Gaus-
sian curve, but the width of the curve is slightly larger



FIG. 8: Contact morphology for two different magnifications.
The red color denotes contact regions for the low magnifica-
tion ζ = 4, while the blue color corresponds to the contact
regions for the high magnification ζ = 216.

than expected from the continuum mechanics theory
σrms(MD) = 0.229 GPa while σrms(theory) = 0.164 GPa.
The randomly rough surface used in the MD calculation
is self affine fractal the whole way down to the atomic dis-
tance, and one can therefore not expect the continuum
mechanics result for P (σ), which assumes “smooth” sur-
face roughness, to agree perfectly with the MD result.

4.2. Contact mechanics without adhesion

Here we study contact mechanics without adhesion as
obtained with α = 0 in Eq. (4), corresponding to purely
repulsive interaction between the walls. Fig. 8 shows the
contact morphologies at different magnifications ζ for the
same load. The red and blue color indicate the contact
area at low (ζ = 4) and high (ζ = 216) magnification, re-
spectively. Note that with increasing magnification the
contact area decreases, and the boundary line of the con-
tact islands becomes rougher. In Ref. [15] and [16] it has
been shown that the statistical properties of the contact
regions exhibit power-law scaling behavior. At low mag-
nification (ζ = 4) it looks as if complete contact occurs
between the solids at asperity contact regions. However,
when the magnification is increased, smaller length scale
roughness is detected and it is observed that only partial
contact occurs at the asperities. In fact, if there were no
short distance cut-off in the surface roughness, the true
contact area would eventually vanish. But in reality a
short distance cut-off always exists, e.g. the interatomic
distance.

Fig. 9 shows the pressure distribution in the contact
area for two different magnifications. When we study
contact on shorter and shorter length scale, which corre-
sponds to increasing magnification ζ, the pressure distri-

FIG. 9: The pressure distribution in the contact area for
two different magnifications. The red line corresponds to the
pressure distribution for low magnification ζ = 4, while the
green line is for high magnification ζ = 216.

FIG. 10: The relative contact area A/A0, as a function of
applied stress FN/A0. Results are presented for two different
magnifications ζ = λ0/λ = 4 and 32. The fractal dimension
is Df = 2.2.

bution becomes broader and broader.

Fig. 10 shows that the contact area varies (approxi-
mately) linearly with the load for the small load at two
different magnifications ζ = 4 and 32. The contact area
was determined as described in Sec. 4.1. by fitting the
pressure distribution to a function of the form (10). The
pressure distributions and the fitting functions are shown
in Fig. 11 and 12 for ζ = 4 and 32, respectively. The
slope of the lines in Fig. 10 is only a factor 1.14 larger
than predicted by the contact theory of Persson (see Sec.
5).

In Fig. 13 we show the variation of the contact area
with the nominal squeezing pressure for the highest mag-
nification case ζ = 216. In this case we have defined con-
tact to occur when the separation between the surfaces
is below some critical value rc = 4.3615 Å. In contrast to
the definition used above, this definition does not give a
strict linear dependence of the contact area on the load
for small load as found above when the contact area is



FIG. 11: The stress distribution for ζ = 4 for three different
nominal pressure.

FIG. 12: The stress distribution for ζ = 32 for three different
nominal pressure.

FIG. 13: The relative contact area A/A0, as a function of
applied stress FN/A0. Results are presented for the highest
magnification ζ = 216. Contact is defined when the separa-
tion between the surfaces is below a critical value. The fractal
dimension is Df = 2.2.

FIG. 14: Contact morphology with adhesion and without
adhesion. The blue color region denotes the contact without
adhesion. The red color region denote the additional contact
area when the adhesional interaction is included.

defined using the stress distribution.

4.3. Contact mechanics with adhesion

In this section we include the adhesive interaction i.e.
we put α = 1 in Eq. (4). Fig. 14 presents the contact
morphology both with and without the adhesion at the
highest magnification (ζ = 216). The regions with blue
color denotes the contact area without adhesion. The
red color region denotes the additional contact area when
adhesion is included. The contact area with adhesion is,
of course, larger than that without adhesion since the
attractive adhesional interaction will effectively increase
the external load[17, 18, 19].
Fig. 15 shows the pressure distribution P (σ, ζ) at high



FIG. 15: The pressure distribution with and without adhe-
sion. The red curve denotes the pressure distribution with
adhesion while the green curve is without adhesion.

magnification with and without adhesion. When adhe-
sion is neglected (corresponding to the α = 0 in (4)), the
pressure is positive in the contact area and P (σ, ζ) = 0
for σ < 0. When the adhesive interaction is included, the
stress becomes tensile close to the edges of every contact
region and P (σ, ζ) is in general finite also for σ < 0.

5. Discussion

Several analytical theories, based on continuum me-
chanics, have been developed to describe the contact
between elastic bodies both with and without the ad-
hesional interaction. Here we will compare the results
presented above with the predictions of some of these
theories.

Persson[4, 5] has developed a contact mechanics theory
where the surfaces are studied at different magnification
ζ = λ0/λ, where λ0 is the roll-off wavelength and λ the
shortest wavelength roughness which can be observed at
the magnification ζ. In this theory[4] the stress distri-
bution P (σ, ζ) at the interface between the block and
the substrate has been shown to obey (approximately)
a diffusion-like equation where time is replaced by mag-
nification and spatial coordinate by the stress σ. When
the magnification is so small that no atomic structure
can be detected, the surface roughness will be smooth
(no abrupt or step-like changes in the height profile) and
one can then show[14] that in the absence of adhesion
P (0, ζ) = 0. Using this boundary condition the solution
to the diffusion-like equation gives the pressure distribu-
tion at the interface (σ > 0):

P (σ, ζ) =
1

2(πG)1/2

(

e−(σ−σ0)
2/4G − e−(σ+σ0)

2/4G
)

(10)

where

G =
π

4

(

E

1− ν2

)2 ∫ ζq0

qL

dq q3C(q) . (11)

The relative contact area

A

A0
=

∫

∞

0

dσ P (σ, ζ) . (12)

Substituting (10) into (12) gives after some simplifica-
tions

A

A0
=

1

(πG)1/2

∫ σ0

0

dσ e−σ2/4G. (13)

Thus, for small nominal squeezing pressure σ0 ≪ G1/2

we get

A

A0
=

σ0

(πG)1/2
. (14)

Since the squeezing force FN = σ0A0 we can also write

A = κ
FN

E∗

(
∫

d2q q2C(q)

)

−1/2

(15)

where E∗ = E/(1 − ν2) and κ = (8/π)1/2. Thus, for
small squeezing force FN the theory predicts a linear de-
pendence of the area of real contact on the load.
For very high squeezing force σ0 ≫ G1/2 complete con-

tact will occur at the interface. In this case the second
term on the rhs in (10) can be neglected, so the pressure
distribution is a Gaussian centered at σ0 and with the
root-mean-square width σrms = (2G)1/2. This result is
exact (see Appendix B). Thus, the theory of Persson is
expected to give a good description of the contact me-
chanics for all squeezing forces. All other analytical con-
tact mechanics theories are only valid when the squeezing
force is so small that the area of real contact is (nearly)
proportional to FN. But in many important applications,
e.g., in the context of rubber friction and rubber adhe-
sion, the area of real contact for smooth surfaces is often
close to the nominal contact area.
The standard theory of Greenwood and Williamson

[20] describe the contact between rough surfaces (in the
absence of adhesion), where the asperities are approxi-
mated by spherical cups with equal radius of curvature
but with Gaussian distributed heights. In this theory
the area of real contact dependent (slightly) non-linearly
on the load for small load, and can therefore not be di-
rectly compared with the Persson result (15). Bush et al
[21] developed a more general and accurate contact the-
ory. They assumed that the rough surface consists of a
mean plane with hills and valleys randomly distributed
on it. The summits of these hills are approximated by
paraboloids, whose distributions and principal curvatures
are obtained from the random precess theory. As a result



of more random nature of the surface, Bush et al found
that at small load the area of contact depends linearly on
the load according to (15) but with κ = (2π)1/2. Thus
the contact area of Persson’s theory is a factor of 2/π
smaller than that predicted by Bush. Both the theory
of Greenwood and Williamson and the theory of Bush
et al assume that the asperity contact regions are inde-
pendent. However, as discussed in [14], for real surfaces
(which always have surface roughness on many different
length scales) this will never be the case even at a very
low nominal contact pressure, which may be the origin
of difference of 2/π between Persson’s theory and Bush’s
theory.

Hyun et al performed a finite-element analysis of con-
tact between elastic self-affine fractal surfaces [16]. The
simulations were done for rough elastic surface contact-
ing a perfectly rigid flat surface. They found that the
contact area varies linearly with the load for small load.
The factor κ was found to be between the results of the
Bush and Persson theories for all fractal dimensions Df .
For Df = 2.2 (corresponding to H = 0.8) they found that
κ was only ∼ 13% larger than predicted by the Persson
theory.

The red curves in Fig. 16 shows the pressure distri-
bution from the simulations for several different values
of the magnification ζ = q1/q0 = 4, 8, 32 and 216, ne-
glecting the adhesion. In the simulations the nominal
squeezing pressure σ0 = 800 MPa. The best fit (green
curves in Fig. 16) of the pressure distribution (10) to the
numerical results is obtained if G−1/2 is taken to be a
factor 1.14 larger than predicted by the Persson theory
[Eq. (10)], corresponding to a contact area which is 14%
larger than predicted by the analytical theory, in good
agreement with the results obtained by Hyun et al.

Our simulations show that the contact area varies lin-
early with the load for small load, see Fig. 10. Figs. 10
and 16 show that the slope α(ζ) of the line A = α(ζ)F de-
creases with increasing magnification ζ, as predicted by
the analytical theory [14, 15]. Thus, while A/A0 = 0.072
for ζ = 4 we get A/A0 = 0.038 for ζ = 32, which both
are 14% larger than predicted by Eq. (13).

6. Summary and conclusion

In this paper we have developed a Molecular Dynamics
multiscale model, which we have used to study the con-
tact between surfaces which are rough on many different
length scales. We have studied the contact morphologies
both at high and low magnification, with and without
adhesion. We have shown that in atomistic models it is
a non-trivial problem how to define the area of real con-
tact between two solids. Our study shows that the area
of real contact is best defined by studying the interfacial
pressure distribution, and fitting it to an analytical ex-
pression. The numerical results are consistent with the
theoretical results that the contact area varies linearly

FIG. 16: The pressure distribution at four different magnifi-
cations ζ = q1/q0 = 4, 8, 32 and 216 for the squeezing pressure
σ0 = 800 MPa. The red curves is the pressure distribution ob-
tained from the computer simulation, while the green curves
is from the analytical theory assuming that G−1/2, and hence
the relative contact area, is a factor of 1.14 larger than pre-
dicted by the analytical theory, Eq. (10).

with the load for small load, where the proportionality
constant depends on the magnification L/λ. For a ran-
domly rough surfaces with the fractal dimensionDf = 2.2
(which is typical for many real surfaces, e.g., produced
by fracture or by blasting with small particles) we have
found that for small load (where the contact area is pro-
portional to the load) the numerical study gives an area
of atomic contact which is only ∼ 14% larger than pre-
dicted by the analytical theory of Persson. Since the
Persson’s theory is exact in the limit of complete con-
tact, it is likely that the Persson theory is even better for
higher squeezing loads.
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FIG. 17: The model of Persson and Ballone with long range
elasticity. Side view.
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Appendix A: The “smartblock” model for mul-

tiscale molecular dynamics

Here we present a detailed description of the multiscale
model implemented in our Molecular Dynamics (MD)
simulations. Persson and Ballone[22] introduced a sim-
ple and effective model to study the boundary lubrication
between elastic walls. For each wall only the outermost
layer of atoms was considered. These atoms were able to
interact with the lubricant or with the atoms of the other
wall with Lennard-Jones potentials. The walls’ atoms
were connected to a rigid surface through special springs
which exert an elastic reaction not only to elongation,
but also to lateral bending. The walls’ atoms are cou-
pled with their in-plane neighbors with similar springs.
It is also possible to use curved elastic walls by connect-
ing the vertical springs to a curved rigid surface rather
than a flat surface as in Fig. 17.

The model of Persson and Ballone catches two essen-
tial features: Firstly the walls are not rigid, they can de-
form (differently from previous models) and the descrip-
tion takes into account the elastic energy stored during
compression or stretching, which is an essential ingredi-
ent for the study of the squeeze-out. Secondly both the
Young modulus and the shear modulus can be indepen-
dently tuned via the choice of the elastic constants of the
springs.

The model of Persson and Ballone works well when the
solid is exposed to uniform shear or uniform elongation
or compression. However, when there are spatial varia-
tions in the stress at the surface of the solid, for instance
when the displacement at the interface comprises short
wavelength Fourier components, then the model does not
allow a proper description of the elastic deformation field.
In particular, when a periodic stress acts on the surface
of an elastic solid, the displacement field decays expo-

nentially into the solid, and this aspect is absent in the
Persson-Ballone model.
The solution to overcome this limitation is straight-

forward: we explicitly introduce many layers of atoms,
placed on the points of a simple cubic lattice, and cou-
pled with springs to their nearest neighbors.
The “springs”, as in the previous model, are special,

since they can resist to lateral bending. The force due to
a vertical spring connecting two consecutive atoms 1 and
2 along the z axis is given by the formulas below, where
a is the lattice spacing, that is the equilibrium length of
the spring:

Fx = −kb∆x = −kb(x2 − x1), (A1)

Fy = −kb∆y = −kb(y2 − y1), (A2)

Fz = −k(∆z − a) = −k[z2 − (z1 + a)]. (A3)

Analogous formulas hold for the springs parallel to the y
and to the z axes. The two elastic constants of the spring,
namely k and kb, are related to the Young modulus E and
the shear modulus G respectively: k = Ea and kb = Ga.
In some circumstances it is useful to simulate quite

large and thick samples. Moreover high resolution up to
the atomic level is needed in part of the sample, typically
at the interface. The solution to avoid excessive compu-
tational time is a multiscale approach: high resolution is
achieved where it is needed, but a coarse grained descrip-
tion is employed when it is feasible. The coarse graining
can happen more times, and to various degrees of res-
olution, so that a multilevel description of the system
comprising many hierarchies is implemented.
The grid structure of the smartblock allows a simple

procedure to achieve a multiscale description: groups of
atoms can be replaced by single, bigger atoms, and the
elastic constants of the springs are redefined to guaran-
tee the same elastic response. In many calculations per-
formed by our group we used to replace a cube of 2×2×2
particles with a single particle, repeating this merging
procedure every two layers. More generally any change
of resolution involves merging together a box made of
mx×my×mz particles. The three numbers mx, my and
mz are called merging factors along the three axes.
The equilibrium position of the new particle is in the

center of mass of the group of particles merged together.
Its mass is mxmymz times the mass of the original par-
ticles, so that the density does not change. In fact the
masses are only important to study the kinetic, but they
do not influence the static equilibrium configuration.
The three merging factors can be chosen indepen-

dently. The easiest way to calculate the new springs’
elastic constants is by considering the merging only along
one of the axes. Fig. 18 sketches the case mz = 2,
mx = my = 1 (no change of lattice constant along x



FIG. 18: The grid of particles is coarse grained by replacing
two atoms with a single one. Merging factors mx = my = 1,
mz = 2. Masses, equilibrium positions and spring constants
are changed accordingly.

and y). Along the direction of merging the new spring
constants for elongation and bending are k′ = k/mz and
k′b = kb/mz respectively. The longer springs get pro-
portionally smaller elastic constants, as it happens when
springs are connected in series. In the two directions or-
thogonal each spring replaces mz old springs in parallel
configuration, so the elastic constants increase propor-
tionally: k′ = mxk, k′b = mxkb. Below there is the
general formula giving the new elastic constants of the
springs along the z axis, with arbitrary merging factors:

k′ =
mxmy

mz
k ; k′b =

mxmy

mz
kb (A4)

Analogous formulas hold for the springs parallel to the x
and y axes.
To get the whole picture we have to characterize the

springs at the interface between the two lattices, e.g.,
the ones crossing the dashed line in Fig. 18. When the
merging is in the direction z orthogonal to the interface
both elastic constants k and kb get multiplied by the
factor 2/(1 +mz). Actually their length is 1

2 (mz + 1)az,
az being the old lattice constant along z. Each of these
interface springs can be thought as half a spring of the
old grid connected with half a spring of the new grid.
When the merging is along a direction orthogonal

to the interface between the two grids, as sketched in
Fig. 19, then the spring constants do not change, but

FIG. 19: Change of lattice spacing along a direction parallel
to the interface between the two grids.

the forces between the particles are calculated taking
into account the in-plane shift between the atoms of
the two grids. Each interface particle of the upper lat-
tice interacts with mx × my particles of the lower lat-
tice. The equations (A1) and (A2) are modified: Fx =
−kb(∆x+ x-shift), Fy = −kb(∆x+ y-shift). The two in-
plane shifts depend on the pair of particles considered.

Appendix B: Pressure distribution at complete

contact between randomly rough surfaces

Here we calculate the pressure distribution at the inter-
face between two solids in complete contact. We assume
that one solid is rigid and randomly rough and the other
solid elastic with a flat surface. The pressure distribution

P (σ) = 〈δ(σ − σ(x))〉 = 1

2π

∫

∞

−∞

dα 〈eiα(σ−σ(x))〉

=
1

2π

∫

∞

−∞

dα eiασF (α) (B1)

where

F (α) = 〈e−iασ(x))〉

where σ(x) is the fluctuating pressure at the interface.
Next, writing

σ(x) =

∫

d2q σ(q)eiq·x

=

∫

d2q
Eq

2(1− ν2)
h(q)eiq·x

where we have used the relation between σ(q) and the
Fourier transform h(q) of the height profile h(x) derived
in Ref. [4], we get

F =

〈

exp

(

−iα

∫

d2q
Eq

2(1− ν2)
h(q)eiq·x

)〉



Next, using that h(q) are independent random variables
we get

F = e−α2ξ2/2 (B2)

where

ξ2 =

∫

d2qd2q′
(

E

2(1− ν2)

)2

qq′〈h(q)h(q′)〉ei(q+q
′)·x

However (see Ref. [4])

〈h(q)h(q′)〉 = C(q)δ(q + q′)

so that

ξ2 =

∫

d2q

(

Eq

2(1− ν2)

)2

C(q) (B3)

Substituting (B2) in (B1) and performing the α-integral
and using (B3) gives

P (σ) =
1

(2π)1/2σrms
e−σ2/2σ2

rms

where the root-mean-square width σrms is determined by
the power spectrum:

σ2
rms = 〈σ2〉 = π

2

E2

(1− ν2)2

∫ q1

q0

dq q3C(q)
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