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ABSTRACT

The present study proposed a time-space framework using discrete wavelet transform-based

multiscale entropy (DWE) approach to analyze and spatially categorize the precipitation variation in

Iran. To this end, historical monthly precipitation time series during 1960–2010 from 31 rain gauges

were used in this study. First, wavelet-based de-noising approach was applied to diminish the effect

of noise in precipitation time series which may affect the entropy values. Next, Daubechies (db)

mother wavelets (db5–db10) were used to decompose the precipitation time series. Subsequently,

entropy concept was applied to the sub-series to measure the uncertainty and disorderliness at

multiple scales. According to the pattern of entropy across scales, each cluster was assigned an

entropy signature that provided an estimation of the entropy pattern of precipitation in each cluster.

Spatial categorization of rain gauges was performed using DWE values as input data to k-means and

self-organizing map (SOM) clustering techniques. According to evaluation criteria, it was proved that

k-means with clustering number equal to 5 with Silhouette coefficient¼ 0.33, Davis–Bouldin¼ 1.18

and Dunn index¼ 1.52 performed better in determining homogenous areas. Finally, investigating

spatial structure of precipitation variation revealed that the DWE had a decreasing and increasing

relationship with longitude and latitude, respectively, in Iran.
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INTRODUCTION

Assessment of precipitation variation over a large area

(e.g., Iran) could provide valuable information for water

resources management and engineering issues, particularly

in a changing climate. The impact of global warming on

different water cycle components is strongly variable

across the globe and causes increases in average global pre-

cipitation, evaporation, and runoff (Clark et al. ;

Pechlivanidis et al. ; Salvia et al. ; Sattari et al.

; Wei et al. ; Ba et al. ). Alteration of the hydro-

logic cycle will have significant impacts on the rate, timing,

and distribution of rain, evaporation, temperature, snowfall,

and runoff, the main causes of change in the accessibility of

water resources (Mishra et al. ). The example of precipi-

tation variation in Iran (during 1966–2005) could be

referred to the rate of the significant decreasing trends in

annual precipitation that varied from (�)1.999 mm/year in

the northwest to (þ)4.261 mm/year in the west of Iran.

The significant negative trends mainly occurred in the north-

west of Iran. These negative trends can affect agriculture

and water supply of the regions. On the contrary, no signifi-

cant trends were detected in the eastern, southern, and

central parts of the country (Tabari & Hosseinzadeh

Talaee ; Raziei ). By considering the high spatial

and temporal variability of precipitation and frequent dry
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periods, the increasing water demands for growing popu-

lation as well as for industry and economic development,

including irrigation, aggravating water scarcity makes it

difficult for a rationale water management. Hence, determi-

nation of sub-regions according to different precipitation

regimes is important for water resources management and

land use planning.

In recent decades, some studies have focused on study-

ing precipitation across Iran (Domroes et al. ;

Dinpashoh et al. ; Modarres ; Soltani et al. ;

Raziei et al. ; Modarres & Sarhadi ; Tabari &

Hosseinzadeh Talaee ). Domroes et al. () applied

principal component analysis (PCA) and cluster analysis

(CA) on mean monthly precipitation of 71 stations and

classified the precipitation regimes into five different sub-

regions. On the other hand, applying the PCA and CA to

12 variables selected from 57 candidate variables for 77

stations distributed across the entire country, Dinpashoh

et al. () divided the country into seven climate sub-

regions. Rainfall climates in Iran were also analyzed by

Soltani et al. () using monthly precipitation time series

from 28 main sites. To determine regional climates, a hier-

archical CA was applied to the autocorrelation coefficients

at different lags, and three main climatic groups were

found. Tabari & Hosseinzadeh Talaee () analyzed

trend over different sub-regions of Iran during 1966–2005.

Raziei et al. () analyzed the spatial distribution of the

seasonal and annual precipitation in western Iran using

data from 140 stations covering the period 1965–2000.

Applying the precipitation concentration index (PCI), the

intra-annual precipitation variability was also studied. The

results suggest that five homogenous sub-regions can be

identified based on different precipitation regimes.

Modarres & Sarhadi () performed spatial and temporal

trend analysis of the annual and 24-hr maximum rainfall

of a set of 145 precipitation gauging stations of Iran during

the period of 1955–2000. The study showed that the

annual rainfall is decreasing at 67% of the stations while

the 24-hr maximum rainfall is increasing at 50% of the

stations.

Wavelet analysis (WA), which has been widely applied

in hydrology and hydrogeology, is capable of elucidating

the localized characteristics of non-stationary time series

both in temporal and frequency domains (Nourani et al.

, ; Kisi & Shiri ; Danandeh Mehr et al. ;

Karimi et al. ; Danesh-Yazdi et al. ), and it is just

suitable for hydrologic time series analyses. The wavelet

entropy, combined by WA and information theory, is an

important concept of describing the variability and com-

plexity of hydrologic time series with non-stationary and

multi-temporal characteristics (Zunino et al. ). It is

used to first analyze a time series by WA, such as continu-

ous wavelet transform (CWT) and multi-resolution analysis,

and then calculate the entropy measures, mainly including

Shannon entropy (Jaynes ), mutual information (Molini

et al. ), and relative entropy (Abramov et al. ).

Various studies have manifested the better performance

of wavelet entropy in analyzing the variability and com-

plexity of hydrologic variables compared with traditional

methods (Simpson’s index, McIntosh index, Berger–

Parker index, Brillouin index, etc.) (Mishra et al. ;

Brunsell ).

The proposed technique combines discrete wavelet

transform (DWT) based multiscale entropy approach with

k-means and self-organizing map (SOM) clustering tech-

niques. The discrete wavelet multiscale entropy (DWE)

which is a measure of the degree of order/disorder of the

signal and carries information associated with multi-fre-

quency signal, can provide useful information about the

underlying dynamic processes associated with the signal

and can help in precipitation-based studies (Cazelles

et al. ). Therefore, this study tried to develop a precipi-

tation-based regionalization-based DWE approach. In this

study, the DWE method was applied to monthly precipi-

tation data observed at 31 rain gauges in Iran. Higher

entropy reflects more random and complicated systems

and vice versa. Traditional entropy measures usually pro-

vide inaccurate or incomplete descriptions of climatic

systems which generally operate over multi-resolution

scales (Li & Zhang ). DWT was used to decompose

each of the observed precipitation time series using the

Daubechies (db) wavelet to capture the multiscale variabil-

ity of the precipitation based on wavelet coefficients. Next,

these wavelet coefficients for each scale are used to obtain

the entropy for the respective scales (Sang ; Agarwal

et al. ). The spatial organization of this multiscale

variability in terms of DWE is identified using clustering

methods.
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MATERIAL AND METHODS

Case study and climatological dataset

This study used monthly climate data of 31 precipitation

gauges all over Iran for studying precipitation regionaliza-

tion (1960–2010) (Figure 1 and Table 1). Due to the

variety of information involved in hydrologic processes

and need to have accurate models, monthly precipitation

time series was used which include various multivariate

properties such as seasonality of process. Iran is a large

country (approximately 1,600,000 km2), in which climate

is mostly affected by the wide latitudinal extent. Iran is

located in Southwest Asia (25� to 40�N and 44� to 63�E).

Figure 1 | (a) Climate map of Iran and (b) geographic location of rain gauges used in this study.
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There are three seas in Iran, in the north the Caspian Sea

and in the south the Persian Gulf and Oman Sea (Araghi

et al. ). The moisture coming from the Persian Gulf is

usually trapped by the Zagros Mountains. The plateau is

open to the cold (dry) continental currents flowing from

the northeast and the mitigating influence of the Caspian

Sea is limited to the northern regions of the Alborz Moun-

tains. The Zagros chain, which stretches from northwest to

southeast, is the source of several large rivers such as the

Karkheh, Dez, and Karoon. Lowland areas receive surface

water from these basins and are of great importance for agri-

cultural applications (Raziei et al. ). Iran’s climate is

generally recognized as arid or semi-arid with an annual

average precipitation of about 250 mm; however, its climate

is very diverse, with annual precipitation and temperature

variation over the country (Figure 1(a)). For instance, in

different areas of the country annual precipitation changes

from 0 to 2,000 mm (Domroes et al. ; Dinpashoh et al.

). The Caspian Sea coastal areas along with the north-

ern and northwestern regions of the country are subjected

to higher precipitation. On the other hand, the lowest

values of annual precipitation are found in the southern,

eastern, and the central desert regions (Ashraf et al. ).

Generally, Iran is categorized as hyper-arid (35.5%), arid

(29.2%), semi-arid (20.1%), Mediterranean (5%), and wet cli-

mate (10%). Also, temperature in Iran varies widely (�20 to

þ50 �C) (Saboohi et al. ). On the northern edge of the

country (the Caspian coastal plain) temperatures rarely fall

below freezing and the area remains humid for all of the

year. Summer temperatures rarely exceed 29 �C (Nagarajan

; Weather & Climate Information ). To the west,

settlements in the Zagros basin experience lower tempera-

tures, severe winters with below zero average daily

temperatures and heavy snowfall. The eastern and central

basins are arid and have occasional deserts. Average

summer temperatures rarely exceed 38 �C (Nagarajan

). The coastal plains of the Persian Gulf and Gulf of

Oman in southern Iran have mild winters, and very humid

and hot summers (Figure 1(a)). The dataset applied in this

study was provided by the Iran Meteorological Organization

(http://www.irimo.ir).

Discrete wavelet transform (DWT)

The wavelet transform (WT) is a popular method and a very

precise method for time series processing (Kisi & Shiri ;

Nourani et al. ; Farajzadeh & Alizadeh ). While the

general theory behind WT is quite analogous to that of the

short-time Fourier transform (STFT), WT allows for a com-

pletely flexible window function (called the mother

wavelet), which can be changed over time based on the

shape and compactness of the signal. Given this property,

WT can be used to analyze the time-frequency character-

istics of any kind of time series. In recent years, WT has

been widely used for the analysis of many hydro-meteorolo-

gical time series (Adamowski et al. ; Partal ; Shiri &

Kisi ; Nourani et al. , ; Mehr et al. ). As the

mother wavelet moves across the time series during the WT

process, it generates several coefficients that represent the

similarity between the time series and the mother wavelet

(at any specific scale). There are two main types of WT: con-

tinuous and discrete. Use of the CWT can generate a large

number of (often unnecessary) coefficients, making its use

and interpretation more complicated. On the other hand,

the DWT method simplifies the transformation process

while still providing a very effective and precise analysis,

Table 1 | Selection of optimum number of clusters based on Dunn, Davies–Bouldin, and Silhouette indices

Clustering technique Validity indices

Cluster number

2 3 4 5 6 7 8 9 10

SOM Silhouette index 0.19 0.28 0.27 0.28 0.34 0.30 0.21 0.18 0.09
Davies–Bouldin index 1.59 1.10 1.45 1.40 1.20 1.48 1.7 1.62 1.35
Dunn index 0.96 1.12 1.07 1.36 1.49 1.24 1.14 0.99 0.97

K-means Silhouette index 0.22 0.23 0.26 0.33 0.21 0.25 0.25 0.22 0.22
Davies–Bouldin index 1.34 1.33 1.33 1.18 1.18 1.51 1.14 1.42 1.34
Dunn index 1.37 1.19 1.32 1.52 1.2 0.83 0.90 0.78 1.07
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since DWT is normally based on the dyadic calculation.

DWT coefficients can be calculated by the following

equation (Partal ):

Wψ (a, b) ¼
1

(2)a=2
X

N�1

t¼0

x(t)ψ
t

2a
� b

� �

(1)

where 2a represents the dyadic scale of the DWT. Applying

DWT to a time series decomposes that time series into two

ancillary time series shape components, called the approxi-

mation (A) and detail (D) components. Component A

comprises the large-scale, low-frequency component of the

time series, while component D represents the small-scale,

high-frequency component.

Signal de-noising with wavelets

De-noising a signal using WT is based on the observation

that in many signals (e.g., rainfall signals) energy is mostly

concentrated in a small number of wavelet dimensions.

The coefficients of these dimensions are relatively large

compared to the other dimensions or to noise, which has

its energy spread over a large number of coefficients.

Hence, by setting to zero, the coefficients smaller than a cer-

tain threshold, noise can nearly be optimally eliminated

while preserving the important information of the original

signal (Donoho ). Because amplitude de-noising is per-

formed instead of frequency de-noising, the low frequency

noise can also be suppressed (Nourani & Partoviyan ).

To de-noise a signal using WT, the detail coefficients are

thresholded, since they represent mainly noise. One way to

threshold the detail coefficients is to use ‘soft’ thresholding.

In this case, the thresholded details are given by the follow-

ing equation:

Dth(i) ¼
sign(D(i))(jD(i)j � λ) ifjD(i)j> λ

0 ifjD(i)j � λ

�

(2)

In Equation (2), λ and D(i) ( j¼ 1, 2,… , M) indicate

threshold value and absolute value of detailed sub-series at

ith resolution level, respectively. The algorithm to de-noise

a signal f(k) corrupted by a noise signal n(k) can be summar-

ized by the following three steps:

1. Apply DWT to a noisy signal to obtain approximations

A(i) and details D(i).

2. Apply a thresholding technique to detail coefficients D(i)

to obtain the thresholded coefficients Dth(i).

3. Transform the signal back based on A(i) and Dth(i) to

obtain the de-noised signal (reconstruction).

According to Donoho (), in the case of white Gaus-

sian noise, the threshold (λ) can be estimated as follows

(Donoho ):

λ ¼ σ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 log (N)
p

(3)

where N is the length of the signal and σ is the noise level,

which is calculated as σ¼MAD/0.6745; and MAD is the

median absolute value of the details coefficients estimated

for the first level.

Time series decomposition via the discrete wavelet

transform

The conventional discrete WA of time series was performed

on each rain gauge using the multilevel 1-D wavelet

decomposition function in MATLAB (MATLAB Wavelet

Toolbox). This produces the WT of the time series of the

interest at all dyadic scales. The monthly precipitation

input time series are all one-dimensional. Decomposing

the time series using specified filters (wavelet and scaling

functions) produces two types of coefficients: the approxi-

mation or residual, and detail vectors (Chou ). These

coefficients resulted from the convolution of the original

time series with a low-pass filter and a high-pass filter. The

low-pass filter is the scaling function and the high-pass

filter is the wavelet function. The convolutions of time

series with the low-pass filter produced the approximation

coefficients, which represent the large-scale or low-fre-

quency components of the original time series.

Convolutions with the high-pass filter produced the detail

coefficients, which represent the low-scale or high-frequency

components (Bruce et al. ). The process of time series

decomposition was repeated multiple times, decomposing

the original time series into several different lower-resol-

ution components (Partal ). The detail and

approximation coefficients produced from the time series
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decomposition were then reconstructed since they are

merely intermediate coefficients. These have to be re-

adjusted to the entire one-dimensional signal in order to

enable the investigation of their contribution to the original

time series (Dong et al. ). This contribution may be

reflected in the different time scales such as intra-annual,

inter-annual, decadal, and multi-decadal.

Selection of an appropriate wavelet function poses sig-

nificant challenges and is governed largely by the problem

at hand and some of the distinctive properties of the wavelet

function such as (i) its region of support and (ii) the number

of vanishing moments (Maheswaran & Khosa ).

The region of support implies the length span of the

given wavelet, which in turn affects its feature localization

capabilities as it is understandable that a long and widely

distributed wavelet function will calculate the instantaneous

process amplitude while, at the same time, spanning a wider

window of the underlying process resulting in a high degree

of averaging of the process states. Vanishing moment, on the

other hand, limits the wavelet’s ability to suitably represent

polynomial behavior or information in a time series. For

example, the db2 wavelet encodes polynomials with two

coefficients, i.e., a process having one constant and one

linear time series component, and the db3 wavelet encodes

a process having a constant, linear, and quadratic time series

components. Within each family of wavelets are wavelet

subclasses distinguished by their respective number of coef-

ficients and the number of vanishing moments, as discussed

below (Maheswaran & Khosa ).

The db wavelets were used in this study because they

are commonly used mother wavelets for the DWT in

hydro-meteorological wavelet-based studies (Mehr et al.

). The db wavelets provide compact support with

extreme phase and highest number of vanishing moments

for a given support width (Vonesch et al. ), indicating

that the wavelets have non-zero basis functions over a

finite interval, as well as full scaling and translational ortho-

normality properties (Popivanov & Miller ; de Artigas

et al. ). These features are very important for localizing

events in the time-dependent signals (Popivanov & Miller

). These properties are unique and cannot be found in

other mother wavelets (i.e., Haar, Coife, Symlet, etc.). For

the period of 612 months (51 years), in order to avoid

unnecessary levels of time series decomposition in these

larger datasets, the number of decomposition levels had to

be determined first. This number is based upon the

number of data points, as well as the mother wavelet used.

The highest decomposition level should correspond to the

data point at which the last subsampling becomes smaller

than the filter length (de Artigas et al. ). There are sev-

eral recommended methods to determine the most

appropriate number of decomposition levels, of which one

of the most commonly used is given by the following

equation (de Artigas et al. ; Araghi et al. ):

L ¼
log

n

2υ� 1

� �

log (2)
(4)

where L is the number of decomposition levels, n is the

number of data points in the time series and v is the

number of vanishing moments of the db mother wavelet.

In MATLAB, v is equal to the type number of the db.

Smoother db wavelets (db5–db10) were then tried for each

monthly time series. Smoother wavelets are preferred here

because the trends are supposed to be gradual and represent

slowly changing processes. Smoother wavelets should be

better at detecting long-term time-varying behavior (good

frequency-localization properties) (Adamowski et al. ).

In addition to this, several trend studies used smoother db

mother wavelets (e.g., Kallache et al. () used least asym-

metric LA(8); de Artigas et al. () used db7). The border

conditions were also taken into consideration when per-

forming the DWT. This is because for time series with a

limited length, convolution processes cannot proceed at

both ends of the time series since there is no information

available outside these boundaries (Su et al. ). This is

referred to as the border effect (Su et al. ). As a result,

an extension at both edges is needed. Border extensions

that are commonly used are zero-padding, periodic exten-

sion, and symmetrization – all of which have their

drawbacks, due to the discontinuities introduced at both

ends of the time series (de Artigas et al. ; Su et al.

). The default extension method used in MATLAB is

symmetrization, which assumes that time series outside

the original support can be recovered by symmetric bound-

ary replication (de Artigas et al. ). Zero-padding pads

the time series with zeros beyond the original support of

the wavelet; periodic padding assumes that time series can
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be recovered outside of the original support by periodic

extension (de Artigas et al. ). The inverse discrete wave-

let transform (IDWT) was then computed to ensure perfect

signal reconstruction. There were three main parameters to

determine for the DWT used in this study: (i) the appropri-

ate type of db wavelet; (ii) the best method for time series

border extension; and (iii) the most appropriate number of

decomposition levels. In order to determine the smooth

mother wavelet, optimal level of decomposition level, and

the extension mode to be used in the time series analysis

for each data type and dataset, two criteria were used. The

first criterion used was proposed by de Artigas et al.

(): all three extension modes for each db wavelet were

employed in order to determine the extension method, and

the db type, that would produce the lowest mean relative

error (MRE). The MRE was calculated using Equation (5)

(Popivanov & Miller ; de Artigas et al. ):

MRE ¼
1
n

X

n

1

aj � xj
�

�

�

�

xj
�

�

�

�

(5)

where xj is the original time series value of a time series

whose number of records is n, and aj is the approximation

value of xj. The second criterion used in this study is based

on the relative error (er). Each of the extension modes for

each of the smooth db wavelets was examined in order to

determine the combination (of border condition and the

mother wavelet) that would produce the lowest approxi-

mation Mann–Kendall Z-value relative error (er). The

computation of the relative error was done using the follow-

ing equation:

er ¼
Za � Zoj j

Zoj j
(6)

where Za is the MK Z-value of the last approximation for the

decomposition level used, and Zo is the MK Z-value of the

original time series. For the monthly time series, the MREs

of the different border conditions did not show substantial

differences. The differences in the relative errors were also

more noticeable among the different border extensions

and the different db wavelets. Since the monthly time

series have 612 months of records, and according to the

optimal MRE and er values, they could be decomposed up

to six levels, which correspond to 64 months.

Discrete wavelet-based multiscale entropy approach

(DWE)

This study proposed an approach based on hybrid DWT,

entropy and k-means models to investigate the variation

and regionalize the precipitation in Iran. Figure 2 shows

the schematic of modeling in this study. The monthly time

series of rain gauges used in this study were firstly pre-

processed using DWT. For this end, Daubechies mother

wavelet (db) and proper related parameters were selected

for each precipitation time series.

Furthermore, DWE was used to quantify the variability

and complexity of monthly precipitation processes. In the

information theories, the Shannon entropy (H ) is calculated

as (Brunsell ):

H(x) ¼ �
X

n

i¼1

p(xi)log2p(xi) (7)

where p(xi) is the probability density function (PDF) used to

describe the random characters of variable x with the length

of n. H is a measure of information; more information

results in lower entropy and vice versa. Therefore, bigger

H value presents more disordered and complicated precipi-

tation processes. When using the measure of DWE, the H

value is calculated based on dyadic DWT results, and

Equation (8) is used to compute the PDF, which is estimated

Figure 2 | Schematic of proposed DWE-based analysis and regionalization of rain gauges

in this study.
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according to the wavelet energy (i.e., variance) (Sang ):

PE(m, n) ¼
E(m, n)
E(m)

¼
T (m, n)2

P

m (T(m, n))2
(8)

The entropy of a random variable is a measure of the

uncertainty of the random variable; it is a measure of the

amount of information required on average to describe

the random variable (Termini & Moramarco ; Werstuck

& Coulibaly ). Next, entropy values of decomposed time

series (detail (D1, D2… Di) and approximation (Ai) com-

ponents) were fed into k-means approaches in order to

perform spatial clustering. Different statistical evaluation

criteria were used to verify the validity of clustering, which

is explained below.

K-means clustering

One of the most popular clustering algorithms is the

k-means method, in which the data is partitioned into k clus-

ters, with each cluster represented by its centroid, which is

the mean (weighted or otherwise) of feature vectors within

the cluster (Agarwal et al. ). If Nk represents the

number of feature vectors in cluster k, Ck is the mean of clus-

ter k and Xp represents observed precipitation time series,

then the centroid of each cluster is calculated using

Equation (9):

Ck ¼
1
Nk

X

Nk

p¼1

Xp (9)

The procedure follows a simple and easy way to classify

a given dataset through a certain number of clusters (assume

k clusters). The main idea is to define k centers, one for each

cluster. The algorithm starts with the pre-defined initial

number of clusters k chosen according to some criteria or

some heuristic procedure. In each iteration, each cluster is

assigned to its nearest cluster center according to the Eucli-

dian distance measure between the two, and then the cluster

centers (CC) are re-calculated (Rokach & Maimon )

until convergence of the algorithm occurs as per the defined

criteria, e.g., when the algorithm exceeds the pre-defined

number of iterations or when partitioning error is not

going to reduce further on re-allocating cluster centroid,

indicating that solution is locally optimal. The method is

known for its low run time, its efficiency in clustering

large datasets with numerical attributes (Rao & Srinivas

), and simple implementation and interpretation since

no parameters (except the number of clusters) are involved.

The linear complexity is also one of the reasons for the

popularity of the k-means algorithm. In other words, since

there are computational complexities in finding the optimal

solution to the k-means clustering problem, a variety of

heuristic algorithms such as Lloyd’s algorithm (linear com-

plexity) are generally used. More detailed information

about the k-means clustering method can be obtained

from Ball & Hall () and MacQueen (), among

others.

Self-organizing maps (SOM)

The self-organizing map is a powerful method used to

explore and extract the inter-relationships of high-

dimensional multivariate systems, and it is beneficial for

clustering and forecasting in a widespread range of disci-

plines (Kohonen ). One of the main advantages of the

SOM is its ability to extract implicit patterns from high-

dimensional input dataset and classify the obtained patterns

into a low-dimensional output layer, where similar inputs

remain close together in the output neurons while preser-

ving data structure (Hsu & Li ; Nourani et al. ).

The neurons in the output layer are commonly arranged in

two-dimensional grids so that the constructed topology

can be visualized to give an insight into the system under

investigation. The SOM has gained increasing interest and

been successfully applied to hydrology and water resources

management (Kalteh et al. ; Hsu & Li ; Nourani

et al. ; Chang et al. ; Iwashita et al. ).

Evaluation criteria

In the present study, three validation metrics, namely,

Davies–Bouldin index (DBi), Dunn index, and Silhouette

coefficient (SC) were utilized to validate the outcome of

spatial clustering via k-means technique.

In hydrology,DBi is a widely applied internal evaluation

criterion (Davies & Bouldin ; Kasturi et al. ), which
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is applied to distinguish the number of optimal clusters that

are well-detached and well-set based on content and specifi-

cation of dataset. A lower DBi value represents better

clustering results. On the other hand, DBi has a disadvan-

tage in that best information detection cannot be implied

by a good reported DBi value.

The Dunn index’s goal is to distinguish a category of

clusters that are well-set, with a small variance among com-

ponents of the cluster, and well detached, where the

averages of the various clusters are adequately far apart

when compared to the within cluster variance (Dunn

). A higher Dunn index’s value shows better clustering

outcome as it shows a well-compacted cluster (Agarwal

et al. ). Computational cost increases when the

number of clusters and dimensionality increases, which is

a disadvantage for the Dunn index.

The SC index’s goal is to show how analogous a member

is to the related cluster (cohesion) in comparison to the

other clusters (separation). The SC values vary from �1 to

1, where a high SC indicates that the member is well-

adapted to the related cluster and insignificantly adapted

to neighboring clusters.

If most members have a high SC value, then the for-

mation of the clustering is suitable. On the other hand, if

many members have a low or negative SC value, accordingly

the clustering formation may have too many or too few clus-

ters. Generally, studies have offered the applicability of SC

(Hsu & Li ; Nourani et al. ). Nevertheless, the pre-

sent study evaluated the outcome of spatial clustering

based on all three indices to take advantage of them.

RESULTS AND DISCUSSION

Precipitation time series pre-processing via DWT

The precipitation time series might include a degree of

noise-contamination which could influence the calculation

of wavelet-based entropy values. Hence, the noise in the

time series was removed by WT de-noising approach;

afterwards, the DWT was applied to the de-noised time

series using the chosen db mother wavelet to decompose

precipitation time series into approximation and detail

components.

After selecting the proper mother wavelet, boundary

extensions, and decomposition level for each precipitation

time series, an adequate threshold value should be chosen

for the de-noising procedure. The range of threshold

values within the local vicinity of the universal threshold

value was acquired by Donoho’s formula (Equation (3)) to

determine ‘appropriate threshold value’ for precipitation

decomposition via db mother wavelet. As an illustration,

de-noised time series of rain gauge 4 (RG 4) is shown in

Figure 3(a). Existence of noise in a time series can result

in corruption and uncertainty by adding complexity to

hydrologic time series, and the aforementioned issue

becomes worse when the signal to noise ratio (SNR) value

decreases. Therefore, the existence of noise in precipitation

time series can significantly affect the results of the proposed

model in both temporal pre-processing and spatial clustering

stages. Besides, because the energy of noise mainly concen-

trates in small temporal scales, it has a more severe

influence on the entropy values under small temporal

scales than those under large temporal scales (Sang et al.

). Figure 3(b) and 3(c) show the power spectrum of orig-

inal and de-noised time series, respectively. It is clearly

observed that the power of de-noised time series in higher

frequencies (lower temporal scales) has remarkably

decreased in comparison to the original time series.

Although WA analysis as a time series pre-processing

method can also handle some degrees of noise included in

the time series, as demonstrated in Figure 3, WD approach

handle the noise in time series better, especially in higher

frequencies.

Figure 4 shows the results of decomposing RG 4 precipi-

tation time series using db9 mother wavelet and zero-

padding boundary extension. Each monthly precipitation

dataset was decomposed into six lower resolution levels

via the DWT approach. The detail components represent

the 2-month periodicity (D1), 4-month periodicity (D2),

8-month periodicity (D3), 16-month periodicity (D4),

32-month periodicity (D5), and 64-month periodicity (D6).

The A6 represents the approximation component (including

the trend) at the sixth level of decomposition.

It was observed that as the transform progressed from

low to high scale (short to long time scale), more boundary

points became distorted due to the decimation process. In

other words, as filter length increased, more points at the
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boundary become affected. For higher scales (trend), the dis-

tortion becomes visibly worse. Application of boundary

extension can cause inconsistency in computations of sub-

series captured from DWT since it can add some uncertain-

ties into time series (Mun ). This inconsistency could

affect the performance of the proposed model. Hence, it

was attempted to minimize the effect of applied boundary

extension by using the MRE and er criteria in order to

select the efficient border extension (see the ‘Time series

decomposition via the DWT’ section).

Regionalization of rain gauges using the proposed

model

At this stage, entropy-based values of the decomposed com-

ponents of precipitation time series were calculated to be

used as input layer of k-means. Spatial distribution of the

seven entropy values of the sub-series (A6, D6, D5…D1)

in Iran are demonstrated in Figure 5. Based on Figure 5,

highest DWE values generally were for A6 and D3 sub-

series, whereas D1 sub-series had the least DWE values

among all values calculated. It can be observed that there

are compact counter lines on the north and northern west

parts of Iran. It means that DWE values of various scales

change rapidly on north and northern west parts of Iran

and these zones are located in rainy and cold regions of

Iran. Spatial changes of DWE becomes smoother for wes-

tern and southern zones which are semi-arid and arid

regions of Iran. Generally, it could be stated that rapid

changes of entropy pattern are observed for the northern

west parts of Iran, which are mostly cold areas.

These seven values as signature of decomposed time

series were used as input data to SOM and k-means in

order to perform precipitation regionalization. The number

Figure 3 | (a) De-noised precipitation time series of rain gauge 4 (RG 4) via DWT, (b) power spectrum of original time series, and (c) power spectrum of de-noised time series.
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of clusters for the dynamic features of monthly precipitation

time series was determined by three validity indices’ values.

Table 1 shows the validity values for various numbers of

DWE-based clustering approaches.

As discussed, for spatial clustering of 31 rain gauges in

Iran, the DWE value of each rain gauge was used as input

data of k-means clustering technique. At first, k-means

approach with a 1,000 trial was trained based on DWE

values. The optimal number of clusters was determined

using validation indices. The clustering number 5 with

SC¼ 0.33, DBi¼ 1.18, and Dunn¼ 1.52 showed a better

performance in determining homogenous areas in compari-

son to other clustering numbers for the k-means approach.

Therefore, clustering number equal to 5 was selected as

the optimum value to categorize the rain gauges.

On the other hand, SOM models were used to cluster

the 31 rain gauges into a visible 2-dimensional topology of

regional RGL maps. For this end, map sizes of 2 × 2 to

10 × 10 were tried. The constructed topological maps

coupled with related key features showed that clustering

number 6 with SC¼ 0.34, DBi¼ 1.20, and Dunn¼ 1.49 led

to a better performance in determining homogenous areas

of precipitation variation in comparison to other clustering

numbers for the SOM approach. However, there was a fail-

ure in outcome of SOM with six clusters. It was observed

that two clusters had only one rain gauge, and two clusters

had more than ten rain gauges. Results of k-means in

means of both evaluation criteria and classification of rain

gauges in various clusters proved to be better than SOM,

and therefore was applied for further analysis.

Some studies took advantage of DWT-based clustering

approaches as a modeling approach. For example, Hsu &

Li () used the WT and self-organizing map (WTSOM)

framework to spatially cluster the precipitation time series.

In the proposed approach, they combined the WT and a

SOM neural network. WT was used to extract dynamic

and multiscale features of the non-stationary precipitation

time series, and SOM was employed to objectively identify

spatially homogeneous clusters on the high-dimensional

wavelet transformed feature space. Haar and Morlet wave-

lets were selected in the data pre-processing stage to

preserve the desired characteristics of the precipitation

data. In this study, decomposition was performed using

smoother db mother wavelets (db5–db10) along with

Figure 4 | Decomposition of monthly precipitation time series via db(9,6) and zero padding boundary extension for RG 4 (Ramsar).
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optimum parameters. The entropy-based dynamic features

of the time series could improve the performance of the clus-

tering approach. Sub-series (i.e., Ai, Di i¼ 1, 2… 6)

represent various monthly scales. Nevertheless, some of

these components might not demonstrate enough corre-

lation with rainfall original time series. For this end, DWE

was calculated and used as input to k-means to perform

spatial clustering.

Geographic location of rain gauges based on clustering

via DWE as input into k-means approaches is

demonstrated in Figure 6. Also in Figure 6, the CC based

on validity indices are presented. It was seen that some

of the stations in a given cluster are spread across the

study area, revealing that the basis of clustering is not geo-

graphic proximity. For example, the rain gauges located

near the Caspian Sea (rain gauges 19, 18, 4, and 11) with

highest precipitation values and geographical proximity,

are assigned to various clusters due to the differences in

entropies calculated for each rain gauge. The stations in

each of these clusters are further examined for any

Figure 5 | Spatial distribution of discreet wavelet multiscale entropy (DWE) values over Iran.
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common characteristics (in terms of multiscale entropy)

they may have among themselves.

Raziei et al. () regionalized the precipitation of the

western part of Iran. They found five zones based on the be-

havior of precipitation. As can be seen from Figure 7, the

rain gauges located in the west of Iran were placed in five

different clusters. Different from results of spatial classifi-

cation of rain gauges, Raziei () found eight sub-regions

of precipitation in Iran, namely, mountainous regime (cover-

ing Zagrom and some part of Alborz mountains), central

Alborz regime, monsoonal southeastern regime, Caspian

regime, northwestern regime, central-eastern regime, south

and southwestern regime, and costal southeastern regime

(geographic neighborhood). Also, Domroes et al. ();

Modarres (), and Raziei () separated Iran’s rainfall

regions into eight groups. The outcome of these studies are

very analogous to each other. Similar to the present study,

precipitation in the west of Iran was subjected to various

precipitation changes for these studies (Figure 5). However,

the results of the clustering in this study are very different,

since the aforementioned studies classified the precipitation

regime in Iran based on neighborhood approximates. As can

be seen, the clustering shows that there is hydrologic

similarity (in terms of multiscale variation of precipitation)

in the clusters apart from the geographic neighborhood. It

was observed that some of the rain gauges in a given cluster

are spread across the study area showing that the basis of

clustering is not the geographic contiguity.

As can be seen in Figure 7, the multiscale entropy values

are, to a great extent, similar within any given cluster and

the basis of the clustering is the entropy signature of the pre-

cipitation observed at all the rain gauges for all clusters. For

example, in Cluster 1 (Figure 7(a)), the entropy signatures

for all the rain gauges are similar and the peaks in the

plots indicate high values of entropy, which corresponds

to high variability of the precipitation features at the specific

scale across time. In addition, the pattern of the entropy in a

given cluster across all scales for the rain gauges is unique

for that cluster (homogeneity) but also different from every

other cluster.

In order to ensure a more sensible and simpler analysis,

the average entropies for all clusters were used instead of

entropy values of single rain gauges, and this was considered

as the representative value of entropy for all clusters at a

specific scale. Figure 8 shows the DWE values obtained

for detail and approximation components. It was observed

Figure 6 | Geographic location of rain gauges (RG) in each cluster along with cluster centers (CC) for WT-k-means approach.
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that entropy values of D3 and approximation components

had the highest values and lowest variation whereas D1

had lowest entropy values with highest variation among all

components. The DWE values increased from D1 to D3,

then decreased from D3 to D4. However, variation of

DWE from D4 to D6 and A6 (Figures 7 and 8) was not con-

stant. In order to prove the outcome of Figure 8, the wavelet

power spectrum of central rain gauges of each cluster are

presented in Figure 9. It can be observed, that for all the

rain gauges, that there are very rapid changes for the

period of 1 to 16 months. For the period of 1 month,

mostly low powers were observed; however, for the periods

up to 8 months, the change in power spectrum becomes

rapid from low to high and vice versa was observed. These

changes become smoother for the period of the 16-month

band in comparison to the 8-month band. For the bands

beyond 16 months, the changes become smoother in com-

parison to previous bands and also, power spectrum

values are higher than the 1-month band. Therefore, it can

be inferred that these entropies of D1 to D4 sub-series are

the key variables in precipitation regionalization. Also, it

can be stated that the precipitation variation is affected by

Figure 7 | Multiscale entropy values for five clusters (k-means): (a) Cluster 1, (b) Cluster 2, (c) Cluster 3, (d) Cluster 4, and (e) Cluster 5.
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different variables, such as timing, amount, and temporal

distribution.

Based on these observations, three distinct bands were

determined for further analysis. Band 1 considered the fea-

tures up to 8-month scales (D1, D2, and D3). Band 2

considered the features from 8 to 16 months. The features

having a scale beyond 16 months were categorized as

Band 3 (D5 and D6). Figure 10 shows the average normal-

ized DWE for all the clusters at different bands (the DWE

values were normalized for better comparisons). There is a

clear distinction in the values of DWE for different clusters

in the first two bands and, in view of this, information from

the first two bands was further analyzed. The DWE of each

cluster was further classified into ‘High’, ‘Medium’, and

Figure 8 | Variation of DWE values for all scales of all rain gauges.

Figure 9 | Wavelet power spectrum of central rain gauges of each cluster.
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‘Low’, by considering the condition of the individual DWE

plot according to the mean level for that band. For instance,

if the DWE of a cluster in a specific band fell below the

mean of DWE of all clusters, then that particular cluster

was assigned a signature of ‘Low’. Using this classification,

an entropy signature was given to each cluster based on

the entropy values in the three scale-based bands. For nota-

tional simplicity, the classifications ‘High’, ‘Medium’, and

‘Low’ were represented by ‘1’, ‘0’, and ‘� 1’, respectively.

This means, for example, that an entropy signature of

(0, �1) would indicate that the cluster had a relatively mod-

erate entropy up to 8 months and low entropy for 8–16

months. Based on these notations, the entropy signature

for each of the 14 clusters is given in Table 2.

As a further step, it was attempted to connect the DWE

values at different scale-based bands to their respective

mean monthly precipitation of rain gauges. Boxplots of

mean monthly precipitation (Figure 11) suggest that the clus-

ters with ‘High’ entropy for the scale 9–13 months (i.e.,

Clusters 2 and 5) had smaller precipitation values. Clusters

characterized by ‘Medium’ or ‘High’ entropy for the scale

8–16 months (i.e., Clusters 1, 3, and 4) had larger precipi-

tation values. Hence, mean monthly precipitation values

and relative entropy showed an inverse relationship.

As an important issue, the connection between the DWE

with latitude and longitude was investigated to indicate the

spatial structure of the precipitation variation, which is

shown in Figure 12. For DWE latitude, R2¼ 0.227 and

Figure 10 | Comparison of normalized DWE values for each scale for all clusters according to segregated bands: (a) Band 1: 2–8 months, (b) Band 2: 8–16 months, and (c) Band 3: 16–64

months.

Table 2 | Entropy signature of five clusters for 31 rain gauges in Iran

Cluster no.

Comparative observation

of DWE

Entropy signatureBand 1 Band 2

1 H M (1,0)

2 L M (� 1,0)

3 H L (1,� 1)

4 M L (0,� 1)

5 L L (� 1,� 1)
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P-value¼ 0.37 (not significant) were calculated and a down-

ward relation was observed; however, for DWE longitude,

R2¼ 0.22 and P-value¼ 0.34 (not significant) were calculated

and an upward relation was observed. For both of the

relations no significant trend was detected. It can be inferred

from Figure 12 that multiscale precipitation variation (DWE)

possesses the latitude zonality, which implies that precipi-

tation variability increases with the latitude from the west

to the east. On the other hand, decrease of DWE values

from north to south was observed.

Results showed the capability of the present methodology

for precipitation regionalization. When accessibility to

recorded precipitation time series is limited at the region of

interest, regionalization methods might lead to incorrect

results. For the case of the discrete wavelet, although the

wavelet power spectrum has successfully been used for cap-

turing hydrological time series behavior, it becomes difficult

to use the wavelet spectrum in cases of limited or incomplete

time series. Nevertheless, entropy provides information about

the uncertainty at a given scale, which can highlight the level

of variation present at that scale. Further, entropy enables the

determination of least-biased probability distributions with

limited time series knowledge. Entropy theory can serve as

a useful approach to study hydrologic and meteorological

Figure 11 | Distribution of mean monthly precipitation values for the five clusters.

Figure 12 | Spatial structure of DWE values (in latitude and longitude directions) and related trends in Iran.
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processes (Mishra et al. ; Agarwal et al. ). Sang ()

also showed the usefulness of applying DWE in precipitation-

based studies.

The obtained results are applicable in local scale, since

various factors can affect the outcome of the proposed

model (e.g., geographic location, precipitation variation,

effect of climatic phenomena, precipitation gauges network,

etc.). Due to the existence of uncertainties and various fac-

tors it is suggested to apply the proposed model for

various case studies and to compare the outcome. Also, it

is suggested to validate the capability of the proposed

model on other hydrologic and climatic variables (i.e., eva-

potranspiration, temperature, runoff, etc.) with various

time scales (e.g., daily, annual, etc.).

CONCLUSION

In this study, the spatio-temporal variability of monthly pre-

cipitation in Iran during 1960–2010 was investigated using

DWE, and the pattern of DWE changes along with regiona-

lization of rain gauges were further analyzed. In order to

meet the objectives of this study 31 rain gauges were

selected.

In order to have a correct vision of decomposing pre-

cipitation time series, smoother db mother wavelets were

applied (db5–db10). Also, optimal decomposition level and

boundary extension treatment were applied. In order to clas-

sify the rain gauges, SOM and k-means clustering models

were used. The methodology based on the DWE approach

k-means clustering technique for precipitation regionaliza-

tion proved to be robust for hydrologic regionalization.

Wavelet-based multiscale entropy values showed the dis-

tinct variation of precipitation dynamics at each rain gauge

and allowed for the establishment of homogeneous areas

(with no prior assumptions). Most of the previous studies

in precipitation regionalization delineated the rain gauges

based on geographic proximity; however, the present study

categorized rain gauges according to the uncertainties

(entropy) in a multiscale approach. The DWE was useful cir-

cumstantial evidence in capturing the precipitation

characteristics. The 31 rain gauges studied were clustered

into five groups, each one having a unique DWE pattern

across different time scales. Based on the pattern of mean

DWE for each cluster, a characteristic signature was

assigned, which provided an estimation of DWE of a cluster

across scales 2–8, 8–16, and 32–64 months relative to other

stations. Fluctuations in DWE at different scales in this

study were related to monthly precipitation.

Results showed the capability of the present method-

ology for precipitation regionalization. When accessibility

to recorded precipitation time series is limited at the

region of interest, regionalization methods might lead to

incorrect results. For the case of the discrete wavelet,

although the wavelet power spectrum has successfully

been used for capturing hydrological time series behavior,

it becomes difficult to use the wavelet spectrum in cases of

limited time series. Nevertheless, entropy provides infor-

mation about the uncertainty at a given scale, which can

highlight the level of variation present at that scale. Further,

entropy enables the determination of least-biased probability

distributions with limited time series knowledge. Entropy

theory can serve as a useful approach to study hydrologic

and meteorological processes (Mishra et al. ; Agarwal

et al. ). Sang () also showed the usefulness of apply-

ing DWE in precipitation-based studies.
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Danandeh Mehr, A., Kahya, E., Şahin, A. & Nazemosadat, M. J.
 Successive-station monthly streamflow prediction using
different artificial neural network algorithms. International
Journal of Environmental Science and Technology 12 (7),
2191–2200.

Danesh-Yazdi, M., Tejedor, A. & Foufoula-Georgiou, E.  Self-
dissimilar landscapes: probing into the causes and
consequences via multi-scale analysis and synthesis.
Geomorphology 296, 16–27.

Davies, D. L. & Bouldin, D. W.  A cluster separation measure.
IEEE Transactions on Pattern Analysis and Machine

Intelligence 1 (2), 224–227.
de Artigas, M. Z., Elias, A. G. & de Campra, P. F.  Discrete

wavelet analysis to assess long-term trends in geomagnetic
activity. Physics and Chemistry of the Earth 31 (1–3), 77–80.

Dinpashoh, Y., Fakheri-Fard, A., Moghaddam, M., Jahanbakhsh,
S. & Mirnia, M.  Selection of variables for the purpose of
regionalization of Iran’s precipitation climate using
multivariate methods. Journal of Hydrology 29, 109–123.

Domroes, M., Kaviani, M. & Schaefer, D.  An analysis of
regional and intra-annual precipitation variability over Iran
using multivariate statistical methods. Theoretical and
Applied Climatology 61, 151–159.

Dong, X., Nyren, P., Patton, B., Nyren, A., Richardson, J. &Maresca,
T. Wavelets for agriculture and biology: a tutorial with
applications and outlook. Bioscience 58 (5), 445–453.

Donoho, D. H.  De-noising by soft-thresholding. IEEE
Transactions on Information Theory 41 (3), 613–617.

Dunn, J. C.  A fuzzy relative of the ISODATA process and its
use in detecting compact well separated clusters. Journal of
Cybernetics 3 (3), 32–57.

Farajzadeh, J. & Alizadeh, F.  A hybrid linear-nonlinear
approach to predict the monthly rainfall over the Urmia Lake
watershed using Wavelet-SARIMAX-LSSVM conjugated
model. Journal of Hydroinformatics 20 (1), 246–262.

Hsu, K. C. & Li, S. T.  Clustering spatial–temporal
precipitation data using wavelet transform and self-
organizing map neural network. Advances in Water

Resources 33, 190–200.
Iwashita, F., Friede, M. J., Francisco, J. & Ferreira, J. F.  A

self-organizing map approach to characterize hydrogeology
of the fractured Serra-Geral transboundary aquifer. Hydrology

Research 49 (3), 794–814. doi:10.2166/nh.2017.221.
Jaynes, E. T.  Information theory and statistical mechanics.

Physics Review 106, 620–630.
Kallache, M., Rust, H. W. & Kropp, J.  Trend assessment:

applications for hydrology and climate research. Nonlinear

Processes in Geophysics 12 (2), 201–210.
Kalteh, A. M., Hjorth, P. & Berndtsson, R.  Review of self-

organizing map in water resources: analysis, modeling,
and application. Environmental Modelling and Software 23,
835–845.

Karimi, S., Shiri, J., Kisi, O. & Shiri, A. A.  Short-term and
long-term streamflow prediction by using ‘wavelet-gene
expression’ programming approach. ISH Journal of

Hydraulic Engineering 22 (2), 148–162.
Kasturi, J., Acharya, J. & Ramanathan, M.  An information

theoretic approach for analyzing temporal patterns of gene
expression. Bioinformatics 19 (4), 449–458.

Kisi, O. & Shiri, J.  Precipitation forecasting using wavelet-
genetic programming and wavelet-neuro-fuzzy conjunction
models. Water Resources Management 25 (13), 3135–3152.

Kisi, O. & Shiri, J.  Wavelet and neuro-fuzzy conjunction
model for predicting water table depth fluctuations.
Hydrology Research 43 (3), 286–300.

Kohonen, T.  Self-organizing Maps. Springer-Verlag, Berlin.
Li, Z. W. & Zhang, Y. K.  Multi-scale entropy analysis of

Mississippi River flow. Stochastic Environmental Research

and Risk Assessment 22, 507–512.
MacQueen, J.  Some methods for classification and analysis of

multivariate observations. Proceeding of Fifth Berkeley

Symposium on Mathematical Statistics and Probability 1,
281–297.

Maheswaran, R. & Khosa, R.  Comparative study of different
wavelets for hydrologic forecasting. Computers and

Geosciences 46, 284–295.
Mehr, A. D., Kahya, E. & Olyaei, E.  Streamflow prediction

using linear genetic programming in comparison with a
neuro-wavelet technique. Journal of Hydrology 505,
240–249.

Mehr, A. D., Kahya, E. & Ozger, M.  A gene–wavelet model
for long lead time drought forecasting. Journal of Hydrology

517, 691–699.
Mishra, A. K., Özger, M. & Singh, V. P.  An entropy-based

investigation into the variability of precipitation. Journal of
Hydrology 370, 139–154.

742 K. Roushangar et al. | A multiscale time-space approach to analyze the precipitation fluctuation Hydrology Research | 49.3 | 2018

Downloaded from http://iwaponline.com/hr/article-pdf/49/3/724/233848/nh0490724.pdf
by guest
on 20 August 2022

http://dx.doi.org/10.2166/nh.2017.048
http://dx.doi.org/10.1002/bs.3830120210
http://dx.doi.org/10.1002/bs.3830120210
http://dx.doi.org/10.1109/TGRS.2002.804721
http://dx.doi.org/10.1109/TGRS.2002.804721
http://dx.doi.org/10.1109/TGRS.2002.804721
http://dx.doi.org/10.1016/j.jhydrol.2010.02.016
http://dx.doi.org/10.1016/j.jhydrol.2010.02.016
http://dx.doi.org/10.1007/s00442-008-0993-2
http://dx.doi.org/10.1007/s00442-008-0993-2
http://dx.doi.org/10.1016/j.jhydrol.2016.08.006
http://dx.doi.org/10.1016/j.jhydrol.2016.08.006
http://dx.doi.org/10.1016/j.jhydrol.2016.08.006
http://dx.doi.org/10.1016/j.jhydrol.2006.06.031
http://dx.doi.org/10.1016/j.jhydrol.2006.06.031
http://dx.doi.org/10.1126/science.286.5442.1104
http://dx.doi.org/10.1126/science.286.5442.1104
http://dx.doi.org/10.1007/s13762-014-0613-0
http://dx.doi.org/10.1007/s13762-014-0613-0
http://dx.doi.org/10.1016/j.geomorph.2017.06.009
http://dx.doi.org/10.1016/j.geomorph.2017.06.009
http://dx.doi.org/10.1016/j.geomorph.2017.06.009
http://dx.doi.org/10.1109/TPAMI.1979.4766909
http://dx.doi.org/10.1016/j.pce.2005.03.009
http://dx.doi.org/10.1016/j.pce.2005.03.009
http://dx.doi.org/10.1016/j.pce.2005.03.009
http://dx.doi.org/10.1016/j.jhydrol.2004.04.009
http://dx.doi.org/10.1016/j.jhydrol.2004.04.009
http://dx.doi.org/10.1016/j.jhydrol.2004.04.009
http://dx.doi.org/10.1007/s007040050060
http://dx.doi.org/10.1007/s007040050060
http://dx.doi.org/10.1007/s007040050060
http://dx.doi.org/10.1641/B580512
http://dx.doi.org/10.1641/B580512
http://dx.doi.org/10.1109/18.382009
http://dx.doi.org/10.1080/01969727308546046
http://dx.doi.org/10.1080/01969727308546046
http://dx.doi.org/10.2166/hydro.2017.013
http://dx.doi.org/10.2166/hydro.2017.013
http://dx.doi.org/10.2166/hydro.2017.013
http://dx.doi.org/10.2166/hydro.2017.013
http://dx.doi.org/10.1016/j.advwatres.2009.11.005
http://dx.doi.org/10.1016/j.advwatres.2009.11.005
http://dx.doi.org/10.1016/j.advwatres.2009.11.005
http://dx.doi.org/10.2166/nh.2017.221
http://dx.doi.org/10.2166/nh.2017.221
http://dx.doi.org/10.2166/nh.2017.221
http://dx.doi.org/10.1103/PhysRev.106.620
http://dx.doi.org/10.5194/npg-12-201-2005
http://dx.doi.org/10.5194/npg-12-201-2005
http://dx.doi.org/10.1016/j.envsoft.2007.10.001
http://dx.doi.org/10.1016/j.envsoft.2007.10.001
http://dx.doi.org/10.1016/j.envsoft.2007.10.001
http://dx.doi.org/10.1080/09715010.2015.1103201
http://dx.doi.org/10.1080/09715010.2015.1103201
http://dx.doi.org/10.1080/09715010.2015.1103201
http://dx.doi.org/10.1093/bioinformatics/btg020
http://dx.doi.org/10.1093/bioinformatics/btg020
http://dx.doi.org/10.1093/bioinformatics/btg020
http://dx.doi.org/10.1007/s11269-011-9849-3
http://dx.doi.org/10.1007/s11269-011-9849-3
http://dx.doi.org/10.1007/s11269-011-9849-3
http://dx.doi.org/10.2166/nh.2012.104
http://dx.doi.org/10.2166/nh.2012.104
http://dx.doi.org/10.1007/s00477-007-0161-y
http://dx.doi.org/10.1007/s00477-007-0161-y
http://dx.doi.org/10.1016/j.cageo.2011.12.015
http://dx.doi.org/10.1016/j.cageo.2011.12.015
http://dx.doi.org/10.1016/j.jhydrol.2013.10.003
http://dx.doi.org/10.1016/j.jhydrol.2013.10.003
http://dx.doi.org/10.1016/j.jhydrol.2013.10.003
http://dx.doi.org/10.1016/j.jhydrol.2014.06.012
http://dx.doi.org/10.1016/j.jhydrol.2014.06.012
http://dx.doi.org/10.1016/j.jhydrol.2009.03.006
http://dx.doi.org/10.1016/j.jhydrol.2009.03.006


Modarres, R.  Regional precipitation climates of Iran. Journal
of Hydrology: New Zealand 45 (1), 13–27.

Modarres, R. & Sarhadi, A.  Rainfall trends analysis of Iran in
the last half of the twentieth century. Journal of Geophysical

Research 114, D03101.
Molini, A., Barbera, P. L. & Lanza, L. G.  Correlation patterns

and information flows in rainfall fields. Journal of Hydrology

322, 89–104.
Mun, F. K.  Time Series Forecasting Using Wavelet and

Support Vector Machine. MS Thesis, National University of
Singapore, Singapore.

Nagarajan, R.  Drought Assessment. Springer Science &
Business Media, New York, p. 383.

Nourani, V. & Partoviyan, A.  Hybrid denoising-jittering data
pre-processing approach to enhance multi-step-ahead
rainfall–runoff modeling. Stochastic Environmental Research

and Risk Assessment 1–18.
Nourani, V., Komasi, M. & Mano, A.  A multivariate ANN-

wavelet approach for rainfall–runoff modeling. Water

Resources Management 23 (14), 2877–2894.
Nourani, V., Hosseini Baghanam, A., Adamowski, J. &

Gebremichael, M.  Using self-organizing maps and
wavelet transforms for space–time pre-processing of satellite
precipitation and runoff data in neural network based
rainfall–runoff modeling. Journal of Hydrology 476, 228–243.

Nourani, V., Hosseini Baghanam, A., Adamowski, J. & Kisi, O.
 Applications of hybrid wavelet – Artificial intelligence
models in hydrology: a review. Journal of Hydrology 514,
358–377.

Nourani, V., Alami, M. T. & Vousoughi Daneshvar, F. 
Wavelet-entropy data pre-processing approach for ANN-based
groundwater level modeling. Journal ofHydrology 524, 255–269.

Partal, T.  Wavelet transform-based analysis of periodicities
and trends of Sakarya basin (Turkey) streamflow data. River
Research and Applications 26 (6), 695–711.

Pechlivanidis, I. G., McIntyre, N. & Wheater, H. S.  The
significance of spatial variability of rainfall on simulated
runoff: an evaluation based on the Upper Lee catchment,
UK. Hydrology Research 48 (4), 1118–1130.

Popivanov, I. & Miller, R. J.  Similarity search over time-series
data using wavelets. In: Proceedings 18th International

Conference on Data Engineering, Washington, DC, pp.
212–221.

Rao, A. R. & Srinivas, V. V.  Regionalization of Watersheds:

an Approach Based on Cluster Analysis, Vol. 58. Springer
Science & Business Media, New York.

Raziei, T.  A precipitation regionalization and regime for Iran
based on multivariate analysis. Theoretical and Applied

Climatology 131 (3–4), 1429–1448.
Raziei, T., Bordi, I. & Pereira, L. S.  A precipitation-based

regionalization for Western Iran and regional drought
variability. Hydrology and Earth System Sciences 12,
1309–1321.

Rokach, L. & Maimon, O. (eds).  Clustering methods. In:
Data Mining and Knowledge Discovery Handbook. Springer,
New York, pp. 321–352.

Saboohi, R., Soltani, S. & Khodagholi, M.  Trend analysis of
temperature parameters in Iran. Theoretical and Applied

Climatology 109, 529–547.
Salvia, K., Villarinia, G. & Vecchib, G. A.  High resolution

decadal precipitation predictions over the continental United
States for impacts assessment. Journal of Hydrology 553,
559–573.

Sang, Y. F.  Wavelet entropy-based investigation into the daily
precipitation variability in the Yangtze River Delta, China,
with rapid urbanizations. Theoretical and Applied

Climatology 111, 361–370.
Sang, Y. F., Wang, D., Wu, J. C., Zhu, Q. P. & Wang, L. 

Wavelet-based analysis on the complexity of hydrologic series
data under multi-temporal scales. Entropy 13, 195–210.

Sattari, M.-T., Rezazadeh-Joudi, A. & Kusiak, A.  Assessment
of different methods for estimation of missing data in
precipitation studies. Hydrology Research 48 (4), 1032–1044.

Shiri, J. & Kisi, O.  Short-term and long-term streamflow
forecasting using a wavelet and neuro-fuzzy conjunction
model. Journal of Hydrology 394, 486–493.

Soltani, S., Modarres, R. & Eslamian, S. S.  The use of time
series modelling for the determination of rainfall climates of
Iran. International Journal of Climatology 27, 819–829.

Su, H., Liu, Q. & Li, J.  Alleviating border effects in wavelet
transforms for nonlinear time-varying signal analysis.
Advances in Electrical and Computer Engineering 11 (3),
55–60.

Tabari, H. & Hosseinzadeh Talaee, P.  Analysis of trends in
temperature data in arid and semi-arid regions of Iran.
Global and Planetary Change 79, 1–10.

Termini, D. & Moramarco, T.  Application of entropic
approach to estimate the mean flow velocity and Manning
roughness coefficient in a high-curvature flume. Hydrology

Research nh2016106. doi: 10.2166/nh.2016.106.
Vonesch, C., Blu, T. & Unser, M.  Generalized Daubechies

wavelet families. IEEE Transactions on Signal Processing

55 (9), 4415–4429.
Weather and Climate Information Weather and Climate: Iran,

Average Monthly Rainfall, Sunshine, Temperature, Humidity

and Wind Speed. World Weather and Climate Information,
The Netherlands.

Wei, Q., Sun, C., Wu, G. & Pan, L.  Haihe River discharge to
Bohai Bay, North China: trends, climate, and human
activities. Hydrology Research 48 (4), 1058–1070.

Werstuck, C. & Coulibaly, P.  Hydrometric network design
using dual entropy multi-objective optimization in the
Ottawa River Basin. Hydrology Research nh2016344. doi: 10.
2166/nh.2016.344.

Zunino, L., Perez,D.G., Garavaglia,M.&Rosso,O.A. Wavelet
entropy of stochastic processes. Physics A 379, 503–512.

First received 27 August 2017; accepted in revised form 16 January 2018. Available online 12 February 2018

743 K. Roushangar et al. | A multiscale time-space approach to analyze the precipitation fluctuation Hydrology Research | 49.3 | 2018

Downloaded from http://iwaponline.com/hr/article-pdf/49/3/724/233848/nh0490724.pdf
by guest
on 20 August 2022

http://dx.doi.org/10.1029/2008JD010707
http://dx.doi.org/10.1029/2008JD010707
http://dx.doi.org/10.1016/j.jhydrol.2005.02.041
http://dx.doi.org/10.1016/j.jhydrol.2005.02.041
http://dx.doi.org/10.1007/s11269-009-9414-5
http://dx.doi.org/10.1007/s11269-009-9414-5
http://dx.doi.org/10.1016/j.jhydrol.2012.10.054
http://dx.doi.org/10.1016/j.jhydrol.2012.10.054
http://dx.doi.org/10.1016/j.jhydrol.2012.10.054
http://dx.doi.org/10.1016/j.jhydrol.2012.10.054
http://dx.doi.org/10.1016/j.jhydrol.2014.03.057
http://dx.doi.org/10.1016/j.jhydrol.2014.03.057
http://dx.doi.org/10.1016/j.jhydrol.2015.02.048
http://dx.doi.org/10.1016/j.jhydrol.2015.02.048
http://dx.doi.org/10.2166/nh.2016.038
http://dx.doi.org/10.2166/nh.2016.038
http://dx.doi.org/10.2166/nh.2016.038
http://dx.doi.org/10.2166/nh.2016.038
http://dx.doi.org/10.1007/s00704-017-2065-1
http://dx.doi.org/10.1007/s00704-017-2065-1
http://dx.doi.org/10.5194/hess-12-1309-2008
http://dx.doi.org/10.5194/hess-12-1309-2008
http://dx.doi.org/10.5194/hess-12-1309-2008
http://dx.doi.org/10.1007/s00704-012-0590-5
http://dx.doi.org/10.1007/s00704-012-0590-5
http://dx.doi.org/10.1016/j.jhydrol.2017.07.043
http://dx.doi.org/10.1016/j.jhydrol.2017.07.043
http://dx.doi.org/10.1016/j.jhydrol.2017.07.043
http://dx.doi.org/10.1007/s00704-012-0671-5
http://dx.doi.org/10.1007/s00704-012-0671-5
http://dx.doi.org/10.1007/s00704-012-0671-5
http://dx.doi.org/10.3390/e13010195
http://dx.doi.org/10.3390/e13010195
http://dx.doi.org/10.2166/nh.2016.364
http://dx.doi.org/10.2166/nh.2016.364
http://dx.doi.org/10.2166/nh.2016.364
http://dx.doi.org/10.1016/j.jhydrol.2010.10.008
http://dx.doi.org/10.1016/j.jhydrol.2010.10.008
http://dx.doi.org/10.1016/j.jhydrol.2010.10.008
http://dx.doi.org/10.1002/joc.1427
http://dx.doi.org/10.1002/joc.1427
http://dx.doi.org/10.1002/joc.1427
http://dx.doi.org/10.4316/aece.2011.03009
http://dx.doi.org/10.4316/aece.2011.03009
http://dx.doi.org/10.1016/j.gloplacha.2011.07.008
http://dx.doi.org/10.1016/j.gloplacha.2011.07.008
http://dx.doi.org/10.2166/nh.2016.106
http://dx.doi.org/10.2166/nh.2016.106
http://dx.doi.org/10.2166/nh.2016.106
http://dx.doi.org/10.1109/TSP.2007.896255
http://dx.doi.org/10.1109/TSP.2007.896255
http://dx.doi.org/10.2166/nh.2016.142
http://dx.doi.org/10.2166/nh.2016.142
http://dx.doi.org/10.2166/nh.2016.142
http://dx.doi.org/10.2166/nh.2016.344
http://dx.doi.org/10.2166/nh.2016.344
http://dx.doi.org/10.2166/nh.2016.344
http://dx.doi.org/10.1016/j.physa.2006.12.057
http://dx.doi.org/10.1016/j.physa.2006.12.057

	A multiscale time-space approach to analyze and categorize the precipitation fluctuation based on the wavelet transform and information theory concept
	INTRODUCTION
	MATERIAL AND METHODS
	Case study and climatological dataset
	Discrete wavelet transform (DWT)
	Signal de-noising with wavelets
	Time series decomposition via the discrete wavelet transform
	Discrete wavelet-based multiscale entropy approach (DWE)
	K-means clustering
	Self-organizing maps (SOM)
	Evaluation criteria

	RESULTS AND DISCUSSION
	Precipitation time series pre-processing via DWT
	Regionalization of rain gauges using the proposed model

	CONCLUSION
	REFERENCES


