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Abstract

We present a multiscale approach for minimizing the en-

ergy associated with Markov Random Fields (MRFs) with

energy functions that include arbitrary pairwise potentials.

The MRF is represented on a hierarchy of successively

coarser scales, where the problem on each scale is itself

an MRF with suitably defined potentials. These representa-

tions are used to construct an efficient multiscale algorithm

that seeks a minimal-energy solution to the original prob-

lem. The algorithm is iterative and features a bidirectional

crosstalk between fine and coarse representations. We use

consistency criteria to guarantee that the energy is non-

increasing throughout the iterative process. The algorithm

is evaluated on real-world datasets, achieving competitive

performance in relatively short run-times.

1. Introduction

In recent years Markov random fields (MRFs) have be-

come an increasingly popular tool for image modeling, with

applications ranging from image denoising, inpainting and

segmentation, to stereo matching and optical flow estima-

tion, and many more. An MRF is commonly constructed by

modeling the pixels (or regional “superpixels”) of an image

as variables that take values in a discrete label space, and by

formulating an energy function that suits the application.

An expressive model used often is the pairwise model,

which is specified by an energy function E : X → R,

E(x) =
∑

v∈V

φv(xv) +
∑

(u,v)∈E

φuv(xu, xv), (1)

where x ∈ X is a label assignment of all variables v ∈ V .

The first term in this function is the sum of unary potentials,

φv(xv), which reflect the cost of assigning label xv to vari-

able v. The second term is the sum of pairwise potentials,
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φuv(xu, xv), which model the interaction between pairs of

variables by reflecting the cost of assigning labels xu, xv to

variables u, v, respectively. Here V denotes the set of vari-

ables and E is the set of pairs of interacting variables. The

inference task then is to find a label assignment that mini-

mizes the energy.

Considerable research has been reported in the literature

on approximating (1) in a coarse-to-fine framework [4, 6, 9,

11, 14, 15, 16, 17, 18]. Coarse-to-fine methods have been

shown to be beneficial in terms of running time [6, 9, 16,

18]. Furthermore, it is generally agreed that coarse-to-fine

schemes are less sensitive to local minima and can produce

higher-quality label assignments [4, 11, 16]. These benefits

follow from the fact that, although only local interactions

are encoded, the model is global in nature, and by working

at multiple scales information is propagated more efficiently

[9, 16].

Until recently, coarse-to-fine schemes were confined to

geometric structures, i.e., grouping together square patches

of variables in a grid [9, 11]. Recent works [4, 14] suggest

to group variables which are likely to end up with the same

label in the minimum energy solution, rather than by ad-

hering to a geometric structure. Such grouping may lead to

over-smoothing [6, 15]. Methods for dealing with the prob-

lem of over-smoothing include applying a multi-resolution

scheme in areas around boundaries at a segmentation task

[15, 18], or pruning the label space of fine scales with a

pre-trained classifier [6].

In this paper we present a multiscale framework for solv-

ing MRFs with multi-label arbitrary pairwise potentials.

The algorithm has been designed with the intention of opti-

mizing “hard” energies which may arise, for example, when

the parameters of the model are learned from data or when

the model accounts for negative affinities between neigh-

boring variables. Our approach uses existing inference al-

gorithms together with a variable grouping procedure re-

ferred to as coarsening, which is aimed at producing a hi-

erarchy of successively coarser representations of the MRF

problem, in order to efficiently explore relevant subsets of

the space of possible label assignments. Our method is it-
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erative and monotonic, that is, the energy is guaranteed not

to increase at any point during the iterative process. The

method can efficiently incorporate any initializeable infer-

ence algorithm that can deal with general pairwise poten-

tials, e.g., QPBO-I [20] and LSA-TR [10], yielding signif-

icantly lower energy values than those obtained with stan-

dard use of these methods.

Unlike existing multiscale methods, which employ only

coarse-to-fine strategies, our framework features a bidi-

rectional crosstalk between fine and coarse representations

of the optimization problem. Furthermore, we suggest to

group variables based on the magnitude of their statistical

correlation, regardless of whether the variables are assumed

to take the same label at the minimum energy. The method

is evaluated on real-world datasets yielding promising re-

sults in relatively short run-times.

2. The multiscale framework

An inference algorithm is one which seeks a labeling of

the variables that minimizes the energy of Eq. (1). We re-

fer to the set of possible label assignments, X , as a search

space, and note that this set is of exponential size in the

number of variables. In our approach we construct a hi-

erarchy of n additional search sub-spaces of successively

lower cardinality by coarsening the graphical model. We

denote the complete search space X by X (0) and the hi-

erarchy of auxiliary search sub-spaces by X (1), ...,X (n),

with |X (t+1)| < |X (t)| for all t = 0, 1, ..., n − 1.

We furthermore associate energies with the search spaces,

E(0), E(1), ..., E(n), with E(t) : X (t) → R, and E(0) = E.

The hierarchy of search spaces is employed to efficiently

seek lower energy assignments in X .

2.1. The coarsening procedure

The coarsening procedure is a fundamental module in

the construction of coarse scales and we now describe it

in detail, see Alg. 1 for an overview. We denote the MRF

(or its graph) whose energy we aim to minimize, and its

corresponding search space by G(0)(V(0), E(0), φ(0)) and

X (0), respectively, and use a shorthand notation G(0) to re-

fer to these elements. Scales of the hierarchy are denoted

by G(t), t = 0, 1, 2, ..., n, such that a larger t corresponds

to a coarser scale, with a smaller graph and search space.

We next define the construction of a coarser graph

G(t+1) from a finer graph G(t), relate between their search

spaces, and define the energy on the coarse graph. To sim-

plify notations we use u, v to denote variables (or vertices)

at level t, i.e., u, v ∈ V(t), and ũ, ṽ to denote variables at

level t + 1. A label assignment to variable u (or ũ) is de-

noted xu (respectively xũ). An assignment to all variables

at levels t, t + 1 is denoted by x ∈ X (t) and x̃ ∈ X (t+1),

respectively.

Algorithm 1 [G(t+1),x(t+1)] = COARSENING(G(t),x(t))

Input: Graphical model G(t), optional initial labels x(t)

Output: Coarse-scale graphical model and labels G(t+1), x(t+1)

1: x
(t+1) ← ∅

2: select a variable-grouping (Sec. 2.4)

3: set an interpolation rule f (t+1) : X (t+1) → X (t) (Eq. (2),(3))

4: if x
(t) is initialized then

5: modify f (t+1) to ensure monotonicity (Sec. 2.3)

6: x
(t+1) ← inherits1

x
(t)

7: end if

8: define the coarse potentials φ
(t+1)
ũ

, φ
(t+1)
ũṽ

(Eq. (4),(5))

9: return G(t+1), x(t+1)

Variable-grouping and graph-coarsening. To derive

G(t+1) from G(t), we begin by partitioning the variables of

G(t) into a disjoint set of groups. Then, in each such group

we select one vertex to be the “seed variable” (or seed ver-

tex) of the group. As explained below, it is necessary that

the seed vertex be connected by an edge to each of the other

vertices in its group. Next, we eliminate all but the seed

vertex in each group and define the coarser graph, G(t+1),

whose vertices correspond to the seed vertices of the fine

graph G(t). To set the notation, let ṽ ∈ V(t+1) represent a

variable of G(t+1), and denote by [ṽ] ⊂ V(t) the subset of

variables of V(t) which were grouped to form ṽ. The col-

lection of subsets [ṽ] ⊂ V(t) forms a partitioning of the set

V(t), i.e., V(t) = ∪ṽ∈V(t+1) [ṽ] and [ũ]∩[ṽ] = ∅, ∀ũ 6= ṽ. In

Subsection 2.4, we shall provide details on how the group-

ings are selected.

Once the groups have been selected, the coarse-scale

graph topology is determined as follows. An edge is in-

troduced between vertices ũ and ṽ in G(t+1) if there exists

at least one pair of fine-scale vertices, one in [ũ] and the

other in [ṽ], that are connected by an edge. See Fig. 1 for an

illustration of variable grouping.

Interpolation rule. Next we define a coarse-to-fine inter-

polation rule, f (t+1) : X (t+1) → X (t), which maps each

labeling assignment of the coarser scale t + 1 to a labeling

of the finer scale t. We consider here only a simple inter-

polation rule, where the label of any fine variable is com-

pletely determined by the coarse-scale variable of its group

and is independent of all other coarse variables. That is,

if x = f (t+1)(x̃) and xṽ denotes the label associated with

coarse variable ṽ, then for any fine variable u ∈ [ṽ], xu

depends only on xṽ . More specifically, if s ∈ [ṽ] is the

seed variable of the group [ṽ], then the interpolation rule is

defined as follows:

i. The label assigned to the seed variable s is equal to that

1For any coarse-scale variable ṽ, xṽ ← xs, where xs is the label of

the seed variable of the group [ṽ].

1806



Figure 1. An illustration of variable-grouping, with seed variables denoted by black disks. Note that each seed variable is connected by an

edge to each other variable in its group, as required by the interpolation rule. Right panel: the coarse graph, whose vertices correspond to

the fine-scale seed vertices, and their coarse unary potentials account for all the internal energy potentials in their group. Edges connect

pairs of coarse-vertices according to topology at the fine scale.

of the coarse variable,

xs ← xṽ . (2)

ii. Once the seed label has been assigned, the label as-

signed to any other variable in the group, u ∈ [ṽ], is

that which minimizes the local energy generated by the

pair (u, s):

xu ← argmin
x

{φ(t)
u (x) + φ(t)

us (x, xs)}. (3)

A single exception to this rule is elaborated in Sec. 2.3. As

we produce the coarse graph we store these interpolation as-

signments (3) in a lookup table so that they can be retrieved

when we return to the finer scale. Finally, we henceforth

use the shorthand notation xu|xṽ to denote that the interpo-

lation rule assigns the label xu to u ∈ [ṽ] when the label of

ṽ is xṽ .

Coarse-scale energy. The energy associated with G(t+1),

denoted E(t+1)(x̃), depends on the interpolation rule. We

require that, for any coarse-scale labeling, the coarse-scale

energy be equal to the fine-scale energy obtained after in-

terpolation, that is, E(t+1)(x̃) = E(t)(f (t+1)(x̃)). We call

this consistency.

To ensure consistency, all fine potentials are accounted

for exactly once; see Fig. 1. We define the unary potential

of a coarse variable ṽ ∈ V(t+1) to reflect the internal fine-

scale energy of its group [ṽ], according to the interpolation

rule:

φ
(t+1)
ṽ (xṽ) =

∑

u∈[ṽ]

φ(t)
u (xu|xṽ) + (4)

∑

u,w∈[ṽ]

φ(t)
uw(xu|xṽ, xw|xṽ).

Note that all the energy potentials of the subgraph induced

by [ṽ] are accounted for in Eq. (4). The first term sums up

the unary potentials of variables in [ṽ], and the second term

takes into account the energy of pairwise potentials of all

internal pairs u,w ∈ [ṽ].
The pairwise potential of a coarse pair ũ, ṽ ∈ V(t+1)

accounts for all finer-scale pairwise potentials that have one

variable in [ũ] ⊂ V(t) and the other variable in [ṽ] ⊂ V(t),

φ
(t+1)
ũṽ (xũ, xṽ) =

∑

u∈[ũ]
v∈[ṽ]

φ(t)
uv(xu|xũ, xv|xṽ). (5)

Note that the definition in Eq. (5) is consistent with the

topology of the graph, as was previously defined. The

coarse scale energy E(t+1)(x̃) is obtained by summing the

unary (4) and pairwise (5) potentials for all coarse variables

ṽ ∈ V(t+1) and coarse pairs ũ, ṽ ∈ V(t+1).

It is readily seen that consistency is satisfied by the coars-

ening procedure, by substituting a labeling assignment of

G(t+1) into Eqs. (4) and (5) to verify that the energy at

scale t of the interpolated labeling is equal to the coarse-

scale energy for any interpolation rule. Consistency guar-

antees that if we reduce the coarse-scale energy, say by

applying an inference algorithm to the coarse-scale MRF,

then this reduction is translated to an equal reduction in the

fine-scale energy via interpolation. Indeed if we minimize

the coarse-scale energy and apply interpolation to this so-

lution, then we will have minimized the fine-scale energy

over the subset of fine-scale labeling assignments that are

in the range of the interpolation, i.e., all label assignments

in f (t+1)(X (t+1)) ⊂ X (t).

2.2. The multiscale algorithm

The key ingredient of this paper is the multiscale al-

gorithm which takes after the classical V-cycle employed

in multigrid numerical solvers for partial differential equa-

tions [5, 21]. We describe it informally first. Our V-cycle

is driven by a standard inference algorithm, which is em-

ployed at all scales of the hierarchy, beginning with the
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finest level (t = 0), traversing down to the coarsest level

(t = n), and back up to the finest level. This process com-

prises a single iteration or cycle. The cycle begins at level

t = 0 with a given label assignment. One or more itera-

tions of the inference algorithm are applied. Then, a coars-

ening step is performed: the variables are partitioned into

groups, a seed variable is selected for each group, a coarse

graph is defined and its variables inherit1 the labels of the

seed variables. This routine of inference iterations followed

by coarsening is repeated on the next-coarser level, and so

on. Coarsening halts when the number of variables is suffi-

ciently small, say |V(t)| < N , and an exact solution can be

easily recovered, e.g., via exhaustive search. The solution

of the coarse scale is interpolated to scale n − 1, replac-

ing the previous solution of that scale, and some number

of inference iterations is performed. This routine of inter-

polation followed by inference is repeated to the next-finer

scale, and so on, until we return to scale 0. As noted above,

this completes a single iteration or V-cycle; see illustration

in Fig. 2. A formal description in the form of a recursive

algorithm appears in Alg. 2. Some remarks follow.

Initialization. The algorithm can be warm-started with

any choice of label assignment, x(0), and with the modifi-

cations described in Sec. 2.3 it is guaranteed to maintain or

improve its energy. If an initial guess is unavailable our

algorithm readily computes a labeling in a coarse-to-fine

manner, similarly to existing works. This is done by skip-

ping the inference module that precedes a coarsening step

in the V-cycle, i.e., by skipping Step 6 of Alg. 2.

Computational complexity and choice of inference

module. The complexity of the algorithm is governed

largely by the complexity of the method used as the in-

ference module employed in Steps 6 and 11. Note that

the inference algorithm should not be run until conver-

gence, because its goal is not to find a global optimum of

the (restricted) search sub-space; rather, a small number

inference module

coarsening

interpolation

finest scale

coarsets scale

Figure 2. The multiscale V-cycle. Starting at the finest scale G(0)

(top left circle), a label assignment is improved by an inference

algorithm (Step 6 in Alg. 2) and the graph is coarsened (denoted

by an arrow pointing downwards). This repeats until the number

of variables is sufficiently small and exact solution can be easily

recovered. The labeling is then interpolated to the next finer scale

(denoted by an arrow pointing upwards), followed by an applica-

tion of the inference algorithm. Interpolation and inference repeat

until the finest scale is reached. This process, referred to as a V-

cycle, constitutes a single iteration.

Algorithm 2 x = V-CYCLE(G(t),x(t), t)

Input: Graphical model G(t), optional initial labels x(t), t ≥ 0
Output: x

(t), a label assignment for all v ∈ V(t)

1: if |V(t)| < N then

2: compute minimum-energy solution x
(t).

3: return x
(t)

4: end if

5: if x(t) is initialized then

6: x
(t) ← inference on G(t), x(t)

7: end if

8: G(t+1), x(t+1) ← COARSENING(G(t), x(t)) (Alg. 1)

9: x
(t+1) ← V-CYCLE(G(t+1),x(t+1), t+ 1) (recursive call)

10: x
(t) ← interpolate x

(t+1) (Sec. 2.1)

11: x
(t) ← inference on G(t), x(t)

12: return x
(t)

of iterations suffice in order to obtain a label assignment

for which the interpolation rule heuristic is useful and for

which a coarsening step is therefore efficient. The inference

method must satisfy two requirements. The first is that the

method can be warm-started, otherwise each scale would

be solved from scratch without utilizing information passed

from other scales of the hierarchy, so we would lose the

ability to improve iteratively. Second, the method must be

applicable to models with general potentials. Even when

the potentials of an initial problem are of a specific type

(e.g. submodular, semi-metric), it is not guaranteed that this

property is conserved in coarser scales due to the construc-

tion of the interpolation rule (3) and to the definition of

coarse potentials (5). Subject to these limitations we use

QPBO-I [20] and LSA-TR [10] for binary models. For mul-

tilabel models we use Swap/Expand-QPBO (αβ-swap/α-

expand with a QPBO-I binary step) [20] and Lazy-Flipper

with a search depth 2 [2].

Remark. Evidently, the search space of each MRF in the

hierarchy corresponds, via the interpolation, to a search sub-

space of the next finer MRF. When coarsening, we strive to

eliminate the less likely label assignments from the search

space, whereas more likely solutions should be represented

on the coarser scale. The locally minimal energy (3) is

chosen with this purpose in mind. It is assumed heuris-

tically that a neighboring variable of the seed variable is

more likely to end up with a label that minimizes the en-

ergy associated with this pair than with any other choice.

The approximation is exact if the subgraph is a star graph.

2.3. Monotonicity

The multiscale framework described so far is not mono-

tonic, due to the fact that the initial state at a coarse level

may incur a higher energy than that of the fine state from

which it is derived. To see this, let x(t) denote the state at

level t, right before the coarsening stage of a V-cycle. As
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noted above, coarse-scale variables inherit the current state

of seed variables. When we interpolate x
(t+1) back to level

t, it may well be the case that the state which we get back

to is different from x
(t), i.e. f (t+1)(x(t+1)) 6= x

(t). If the

energy associated with x
(t+1) happens to be higher than the

energy associated with x
(t) then monotonicity is compro-

mised.

To avoid this undesirable behavior we modify the inter-

polation rule such that if x(t+1) was inherited from x
(t) then

x
(t+1) will be mapped back to x

(t) by the interpolation.

Specifically, assume we are given a labeling x̂
(t) at level

t. Consider every seed variable s ∈ V(t) and let s̃ denote its

corresponding variable in G(t+1). Then, for all u ∈ [s̃] we

reset the interpolation rule (3),

xu|(xs̃ = x̂s̃)← x̂u, (6)

and coarse energy potentials are updated accordingly to re-

flect those changes. Now, consistency ensures that the initial

energy at level t+1, E(t+1)(x̂(t+1)), is equal to the energy

of x̂(t) at level t. Consequently, assuming that the inference

algorithm which is employed at every level of a V-cycle is

monotonic, the energy is non-increasing.

2.4. Variable­grouping by conditional entropy

We next describe our approach for variable-grouping and

the selection of a seed variable in each group. Heuristically,

we would like v to be a seed variable, whose labeling de-

termines that of u via the interpolation, if we are relatively

confident of what the label of u should be, given just the

label of v.

Conditional entropy measures the uncertainty in the state

of one random variable given the state of another random

variable [7]. We use conditional entropy to gauge our con-

fidence in the interpolation rule (3). Exact calculation of

conditional entropy,

H(u|v) =
∑

xu,xv

Puv(xu, xv) · log
Pv(xv)

Puv(xu, xv)
, (7)

involves having access to the marginal probabilities of the

variables and marginalization is in general NP-hard. In-

stead, we use an approximation of the marginal probabil-

ities for pairs of variables by defining the local energy of

two variables u, v,

Euv(xu, xv) = φu(xu) + φv(xv) + φuv(xu, xv). (8)

The local energy is used for the approximation of marginal

probabilities by applying the relation Pr(xu, xv) = 1
Zuv

·
exp {−Euv(xu, xv)}, where Zuv is a normalization factor,

ensuring that probabilities sum to 1.

Algorithm 3 VARIABLE-GROUPING(G(t))

Input: Graphical model G(t) at scale t

Output: A variable-grouping of G(t)

1: initialize: SCORES = ∅, SEEDS = ∅, VARS = V(t)

2: for each edge (u, v) ∈ E(t) do

3: calculate H(u|v) for (v, u), and H(v|u) for (u, v)
4: store the (directed) pair at the respective bin in SCORES

5: end for

6: while VARS 6= ∅ do

7: pop the next edge (u, v) ∈ SCORES

// check if we can define u to be v’s seed

8: if (v ∈ VARS & u ∈ VARS ∪ SEEDS) then

9: set u to be v′s seed

10: SEEDS← SEEDS ∪ {u}
11: VARS← VARS \ {u, v}
12: end if

13: end while

Our algorithm for selecting subgraphs and their respec-

tive seed variable is described below, see also Alg. 3. First,

the local conditional entropy is calculated for all edges in

both directions. A directed edge, whose direction deter-

mines that of the interpolation, is binned in a score-list ac-

cording to its local conditional entropy score. We then pro-

ceed with the variable-grouping procedure; for each vari-

able we must determine its status, namely whether it is a

seed variable or an interpolated variable whose seed must be

determined. This is achieved by examining directed edges

one-by-one according to the order by which they are stored

in the binned-score list. For a directed edge (u, v) we ver-

ify that the intended-to-be interpolated variable v has not

been set as a seed variable nor grouped with a seed vari-

able. Similarly, we ensure that the status of the designated

seed variable u is either undetermined or that u has already

been declared a seed variable. The process terminates when

the status of all the variables has been set. As a remark,

we point to the fact that the score-list’s range is known in

advance (it is the range of feasible entropy scores) and that

no ordering is maintained within its bins. The motivation to

use a binned-score list is twofold: refrain from sorting the

score-list and thus maintain a linear complexity in the num-

ber of edges, and introduce randomization to the variable-

grouping procedure. In our experiments we fixed the num-

ber of bins to 20.

3. Evaluation

The algorithm was implemented in the framework of

OpenGM [1], a C++ template library that offers several

inference algorithms and a collection of datasets to eval-

uate on. We use QPBO-I [20] and LSA-TR [10] for bi-

nary models and Swap/Expand-QPBO (αβ-swap/α-expand

with a QPBO-I binary step) and Lazy-Flipper with a search
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depth of 2 [2] for multilabel models. The recursion was

halted when the number of variables reached N ≤ 2. Un-

less otherwise indicated, 3 V-cycles were applied on “hard”

energy models (Sec. 3.1) and a single V-cycle on Potts mod-

els (Sec. 3.2).

Recent benchmark studies indicate that there is no one

algorithm that performs best on all types of models [12, 13].

Even when the model type is restricted to multilabel Potts,

different algorithms are optimal under different circum-

stances, see for example Table 5. The algorithm presented

in this work has been designed with the intention of opti-

mizing “hard” energies, e.g., when neighboring variables

are allowed to have negative affinities (repulsive poten-

tials), or arbitrary pairwise potentials in the general case.

These conditions may arise in various applications such as

boundary-driven image segmentation [3], or when the pa-

rameters of the model are learned from data [19].

Our goal is to establish that applying an inference

method within the proposed multiscale framework is supe-

rior to applying it in a single-scale fashion. Ideally, this

point would be demonstrated on any inference method. As

discussed earlier, not all algorithms are immediately appli-

cable in our framework. Hence, we resort to comparing

multiscale to single-scale inference for algorithms which

can be applied in our framework without modifications. For

each dataset we report also the “Ace” inference method for

that dataset, where algorithms are ranked according to the

percentage of instances on which they achieve the best en-

ergy and by their run-time.

3.1. Hard energies

The notion of hardness of optimization in MRFs is in-

formally discussed in [12]. A problem is considered hard if

it involves optimizing over many variables, if the graph is

highly-connected, or if it includes frustrated cycles. Con-

cretely, the datasets are split into 3 categories: those for

which (all/some/none) of the instances are solved to opti-

mality. We follow these notions when we refer to hard mod-

els, with special attention to the type of pairwise interaction.

The collection of hard datasets that we tested includes

10 datasets. Results are aggregated and presented in Table

1. Note how different models have different algorithms that

are best suit for them. Our multiscale algorithm improves

over single scale on the vast majority of these datasets and

achieves state of the art results on many of the instances.

The Chinese Character Inpainting dataset includes 100
instances of 64-connected grids with approximately 104 bi-

nary variables, and the parameters of the model are learned

from data [19]. One instance from the dataset is displayed

in Fig. 3. We further compare our approach to a coarse-to-

fine method that uses dynamic variable grouping [4], and

to a unified algorithm for message-passing in cluster graphs

[22]. Detailed results are presented in Table 2.

Multiscale Single scale “Ace”

scribble method QPBO QPBO ogm-LBP-LF2

[10 instances] value -192130.49 0 -184011.16

time 100.05sec 0.01sec 152.94sec

best 100% 0% 20%

chinese method LSA-TR LSA-TR MCBC-pct

[100 instances] value -49549.89 -49548.1 -49550.1

time 23.7sec 0.05sec 2053sec

best 53% 22% 66% (56%)

pic-grids method QPBO QPBO ogm-ILP-pct

[21 instances] value -19883.12 -10.33 -20108.61

time 1.9sec 0.01sec 3130sec

best 65% 0% 86% (19%)

pic-obj-det method Lazy-Flipper Lazy-Flipper ogm-TRBP-0.95

[37 instances] value -18009.94 -15333.18 -18776.75

time 8.84sec 7.6sec 58.16sec

best 30% 10% 76%

pic-DBN method LSA-TR LSA-TR ogm-LBP-0.95

[6 instances] value -2625.41 -1631.2 -2811.27

time 2.52sec 0.1sec 269sec

best 0% 0% 83%

matching method Lazy-Flipper Lazy-Flipper ogm-ATSAR

[4 instances] value 31.33 40.79 21.22

time 0.8sec 0.4sec 0.8sec

best 25% 0% 100% (100%)

modularity method Swap Swap MCR-CCFDB-OWC

[6 instances] value -0.4383 -0.327 -0.4652

time 14.1sec 3.6sec 602sec

best 17% 0% 83% (83%)

knott-3d-150 method Swap Swap MCI-CCIFD

[8 instances] value -4421.15 -3718.94 -4571.69

time 634 317 0.6

best 0% 0% 100% (100%)

stereo method Expand Expand ogm-CombiLP

[3 instances] value 1618904 1618904 1587560.67

time 138sec 35sec 835sec

best 0% 0% 66% (66%)

photomontage method Swap Swap mrf-a-Exp-TAB

[2 instances] value 190538 190538 168457

time 42.1sec 11.5sec 7.4sec

best 0% 0% 100%

Table 1. Results for hard energy models. The first column indi-

cates the name of a dataset and number of instances. What follows

is a comparison between multiscale and single-scale inference, as

well as a comparison to the “Ace” method for each dataset. We

report the average energy (value), run-time (time) and the percent-

age of instances on which the algorithm reported the best energy

(best), which sums to more than 100% in case of ties. Enclosed

in brackets at the best field is the percentage of instances in which

the “Ace” method had provided a certificate of global optimality.

Figure 3. An instance from the Chinese Character Inpainting

dataset. Left panel: ground truth image. Center: masked image

Right panel: result of applying LSA-TR within our framework.
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algorithm mean runtime mean value best

MCBC-pct 2053.89 sec -49550.1 66%

ogm-ILP-pct 3553.71 sec -49547.41 49%

ogm-LF-3 637.92 sec -49535.37 13%

SA -49533.02 12%

BPS-TAB 62.69 sec -49537.08 10%

Bagon&Galun [4] 41.8 sec -49547.65 10%

ogm-TRWS-LF 83.78 sec -49519.42 6%

ogm-LBP-0.5 482.00 sec -49509.81 3%

Wang&Koller [22] 3600 sec -49526.49 3%

LSA-TR (euc.) 0.05 sec -49548.1 22%

LSA-TR (multiscale), 5 V-cycles 12.4 sec -49549.68 40%

LSA-TR (multiscale), 10 V-cycles 23.7 sec -49549.89 53%

QPBO 0.14 sec 49501.95 0%

QPBO (multiscale) 8.85 sec -49542.78 9%

Lazy-Flipper 13 sec -49531.11 5%

Lazy-Flipper (multiscale) 41.9 sec -49544.82 11%

Table 2. Performance on the Chinese Character Inpainting dataset.

Five (ten) V-cycles of multiscale inference with LSA-TR reported

the best energy on 40% (53%) of the dataset with outstanding run-

times. Energy and run-times are as reported in [12]. The best value

can sum to more than 100% in case of ties.

Figure 4. Two instances from the Scribble dataset. Left panel:

user-annotated image. Center: segmentation results of single-

scale inference using LSA-TR. Right panel: segmentation attained

with 1 V-cycle of our algorithm using LSA-TR.

The Scribble dataset [3] is an image segmentation task

with a user-interactive interface, in which the user is asked

to mark boundaries of objects in the scene (see Fig. 4).

These boundaries are used for determining negative affini-

ties between pixels on different sides of the boundary. The

dataset contains 10 instances of approximately 7 · 104 vari-

ables and 1.5 · 106 edges each. Detailed results for this

dataset are reported in Table 3.

Datasets denoted with a pic- prefix were adapted from

the Probabilistic Inference Challenge (PIC2011) [8]. Two

of these involve a binary label space (grids, DBN), and the

third (obj-det) is a multilabel model with up to 21 labels.

Detailed results for obj-det are presented in Table 4.

algorithm mean runtime mean value best

ogm-LBP-LF2 152.94 sec -184011.16 20%

ogm-ADSAL 476.17 sec -183790.07 0%

TRWS-pct 3.62 sec -170092.79 0%

ogm-ILP-pct 3260.65 sec -3147 0%

Lazy-Flipper 151.99 sec -172753.21 0%

Lazy-Flipper (multiscale) 227.96 sec -191389.34 70%

LSA-TR 196.73 sec -188332.05 0%

LSA-TR (multiscale) 87.10 sec -191356.5 90%

QPBO 0.01 sec 0 0%

QPBO (long) 645.04 sec -190614.31 80%

QPBO (multiscale) 100.05 sec -192130.49 100%

Table 3. Results for the Scribble dataset. We compare single-scale

and multiscale inference and report results for a selection of com-

petitive methods that were not incorporated in our framework. On

this challenging large-scale dataset, multiscale inference was re-

peatedly superior to single-scale. QPBO (long) denotes a single-

scale, iterative application of QPBO-I; this highlights the advan-

tage of multiscale inference, as even when QPBO-I was run ex-

haustively it came short compared with multiscale inference.

algorithm mean runtime mean value best

ogm-TRBP-0.95 58.16 sec -18776.75 75.68%

ogm-TRBP-0.5 56.79 sec -18909.78 67.57%

ogm-LBP-LF2 10.56 sec -18909.47 64.86%

BPS-TAB 2.43 sec -18910.84 64.86%

ogm-LBP-0.5 6.17 sec -18907.58 64.86%

ogm-LBP-0.95 2.25 sec -18310.95 59.46%

ogm-ILP 3598.39 sec -11728.67 0%

Lazy-Flipper 7.58 sec -15333.18 10.81%

Lazy-Flipper (multiscale) 8.84 sec -18009.94 29.73%

Swap-QPBO 0.15 sec -10832.74 0%

Swap-QPBO (multiscale) 0.17 sec -14375.89 0%

Table 4. Results for the pic-obj-det dataset. We compare single-

scale and multiscale inference and report results for a selection

of competitive methods that were not incorporated in our frame-

work. Multiscale inference reached significantly better energies

than single-scale with a slight overhead in run-time.

3.2. Multilabel Potts model

Multilabel Potts datasets constitute a large portion of the

OpenGM benchmark but with only a small number of in-

stances for each dataset. In terms of the “hardness” notions

mentioned earlier, these models can be generally considered

easy.

Indeed, as can be seen in Table 5, nearly all of the in-

stances are solved to optimality by existing methods. Even

so, there is no one inference method that is consistently

ranked as “Ace”. While our algorithm does not qualify as

the top method for multilabel Potts model, it still improves

significantly over single-scale inference.
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4. Discussion

We have presented a multiscale framework for MRF

energy minimization that uses variable grouping to form

coarser levels of the problem. Our first contribution is the

advancement from a coarse-to-fine algorithm to a mono-

tonic, full multiscale algorithm. The advantage here is

twofold: the algorithm can be applied iteratively, and it can

be warm-started by an initial guess. Furthermore, we offer

to group variables regardless of whether they are assumed to

take the same label at the minimum energy or not, but rather

based on the magnitude of their statistical correlation.

We demonstrated these concepts with an algorithm that

groups variables based on a local approximation of their

conditional entropy, namely based on an estimate of their

statistical correlation. The algorithm was evaluated on a

collection of datasets and results indicate that it is beneficial

to apply existing single-scale methods within the presented

multiscale algorithm. Furthermore, on some of the datasets

results of our algorithm compete with state of the art.

A possible drawback of our framework is that it is re-

stricted to inference methods that can be warm-started.

Specifically, not every algorithm can be applied within the

framework. Adapting existing inference methods to render

them applicable in the presented framework is a direction

for future work.

There are many possible directions for further develop-

ments, beginning with the interpolation rule. The rule that

we present in this work is nothing but a local approxima-

tion that relies on the pairwise energy. A simple improve-

ment may be to take into account the pairwise potentials

between non-seed variables in the group. In fact, seed vari-

ables that coincide with coarse variables is not an essen-

tial feature; only the correspondence between a group and

its coarse variable is essential. Indeed, even the set of la-

bels can be expanded on a coarse scale to enrich the coarse

search sub-space. Consider for example the following in-

terpolation rule for a coarse-variable v: evaluate different

labeling assignments to the variables of the induced sub-

graph [v] ⊂ V(t), and sort the evaluated assignments ac-

cording to their energy value. Now, select the k assign-

ments of lowest energy values; produce a set of k labels for

v, and set the interpolation rule to map each of the k labels

to one of the selected assignments. In this way potentially

high-energy labeling assignments are discarded from coarse

search sub-spaces because they are no longer represented at

coarse scales. Generally, it may well be the case that dif-

ferent interpolation rules will be better-suited for different

models, just as different inference methods are good for dif-

ferent models.

Multiscale Single scale “Ace”

inpainting-n4 mrf-a-Exp-TL

[2 instances] value 472.81 3453.29 454.35

time 0.9sec 0.2sec 0.02sec

best 0% 0% 100%

inpainting-n8 FastPD-pct

[2 instances] value 469.11 3451.36 464.76

time 2.56sec 0.9sec 0.26sec

best 0% 0% 100%

color-seg-n4 ogm-CombiLP

[9 instances] value 20208.47 23775.38 20012.14

time 35.6sec 11.7sec 42.11sec

best 0% 0% 100% (100%)

color-seg-n8 ogm-CombiLP

[9 instances] value 20190.71 21129.07 19991.21

time 84sec 39.8sec 128.77sec

best 0% 0% 100% (100%)

object-seg TRWS-pct

[5 instances] value 31745.58 64937.24 31317.23

time 10.3sec 2.6sec 1.15sec

best 0% 0% 100% (100%)

color-seg MCR-pct

[3 instances] value 308482942.67 309850181 308472274.33

time 45sec 18.7sec 0.8sec

best 0% 0% 100% (100%)

brain-3mm MCI-pct

[4 instances] value 25214041 25238328.25 25162493

time 737sec 123sec 27.3sec

best 0% 0% 100% (100%)

brain-5mm MCI-pct

[4 instances] value 19124827.5 19140692.25 19087612.5

time 498sec 81sec 25.6sec

best 0% 0% 100% (100%)

brain-9mm MCI-pct

[4 instances] value 9201092 9207084 9185280.75

time 233sec 38sec 8.32sec

best 0% 0% 100% (100%)

Table 5. Results for multilabel Potts datasets. The first column in-

dicates the name of a dataset and the number of instances. What

follows is a comparison between multiscale and single-scale in-

ference of Lazy-Flipper, as well as a comparison to the “Ace”

method for each dataset. We report the average energy (value)

and run-time (time), the percentage of instances on which an al-

gorithm reported the best energy (best) and provided a certificate

of global optimality (enclosed in brackets). Note that nearly all of

the instances are solved to optimality, and that different inference

methods perform well on different datasets.
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