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Abstract

The Transformer is a sequence model that for-

goes traditional recurrent architectures in favor

of a fully attention-based approach. Besides

improving performance, an advantage of us-

ing attention is that it can also help to interpret

a model by showing how the model assigns

weight to different input elements. However,

the multi-layer, multi-head attention mecha-

nism in the Transformer model can be diffi-

cult to decipher. To make the model more ac-

cessible, we introduce an open-source tool that

visualizes attention at multiple scales, each of

which provides a unique perspective on the at-

tention mechanism. We demonstrate the tool

on BERT and OpenAI GPT-2 and present three

example use cases: detecting model bias, lo-

cating relevant attention heads, and linking

neurons to model behavior.

1 Introduction

In 2018, the BERT (Bidirectional Encoder Rep-

resentations from Transformers) language repre-

sentation model achieved state-of-the-art perfor-

mance across NLP tasks ranging from sentiment

analysis to question answering (Devlin et al.,

2018). Recently, the OpenAI GPT-2 (Generative

Pretrained Transformer-2) model outperformed

other models on several language modeling bench-

marks in a zero-shot setting (Radford et al., 2019).

Underlying BERT and GPT-2 is the Trans-

former model, which uses a fully attention-based

approach in contrast to traditional sequence mod-

els based on recurrent architectures (Vaswani

et al., 2017). An advantage of using attention

is that it can help interpret a model by showing

how the model assigns weight to different input

elements (Bahdanau et al., 2015; Belinkov and

Glass, 2019), although its value in explaining in-

dividual predictions may be limited (Jain and Wal-

lace, 2019). Various tools have been developed to

visualize attention in NLP models, ranging from

attention-matrix heatmaps (Bahdanau et al., 2015;

Rush et al., 2015; Rocktäschel et al., 2016) to bi-

partite graph representations (Liu et al., 2018; Lee

et al., 2017; Strobelt et al., 2018).

One challenge for visualizing attention in the

Transformer is that it uses a multi-layer, multi-

head attention mechanism, which produces dif-

ferent attention patterns for each layer and head.

BERT-Large, for example, which has 24 layers

and 16 heads, generates 24 × 16 = 384 unique at-

tention structures for each input. Jones (2017) de-

signed a visualization tool specifically for multi-

head attention, which visualizes attention over

multiple heads in a layer by superimposing their

attention patterns (Vaswani et al., 2017, 2018).

In this paper, we extend the work of Jones

(2017) by visualizing attention in the Transformer

at multiple scales. We introduce a high-level

model view, which visualizes all of the layers and

attention heads in a single interface, and a low-

level neuron view, which shows how individual

neurons interact to produce attention. We also

adapt the tool from the original encoder-decoder

implementation to the decoder-only GPT-2 model

and the encoder-only BERT model.

2 Visualization Tool

We now present a multiscale visualization tool

for the Transformer model, available at https:

//github.com/jessevig/bertviz. The

tool comprises three views: an attention-head

view, a model view, and a neuron view. Below, we

describe these views and demonstrate them on the

GPT-2 and BERT models. We also present three

use cases: detecting model bias, locating relevant

attention heads, and linking neurons to model be-

havior. A video demonstration of the tool can be

found at https://vimeo.com/340841955.

https://github.com/jessevig/bertviz
https://github.com/jessevig/bertviz
https://vimeo.com/340841955
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Figure 1: Attention-head view for GPT-2, for the input text The quick, brown fox jumps over the lazy. The left and

center figures represent different layers / attention heads. The right figure depicts the same layer/head as the center

figure, but with the token lazy selected.

Figure 2: Attention-head view for BERT, for inputs the cat sat on the mat (Sentence A) and the cat lay on the rug

(Sentence B). The left and center figures represent different layers / attention heads. The right figure depicts the

same layer/head as the center figure, but with Sentence A → Sentence B filter selected.

2.1 Attention-head view

The attention-head view visualizes the attention

patterns produced by one or more attention heads

in a given layer, as shown in Figure 1 (GPT-21) and

Figure 2 (BERT2). This view closely follows the

original implementation of Jones (2017), but has

been adapted from the original encoder-decoder

implementation to the encoder-only BERT and

decoder-only GPT-2 models.

In this view, self-attention is represented as lines

connecting the tokens that are attending (left) with

the tokens being attended to (right). Colors iden-

tify the corresponding attention head(s), while line

weight reflects the attention score. At the top of

the screen, the user can select the layer and one

or more attention heads (represented by the col-

ored squares). Users may also filter attention by

1GPT-2 small pretrained model.
2BERT-base, uncased pretrained model.

token, as shown in Figure 1 (right); in this case

the target tokens are also highlighted and shaded

based on attention weight. For BERT, which uses

an explicit sentence-pair model, users may spec-

ify a sentence-level attention filter; for example, in

Figure 2 (right), the user has selected the Sentence

A → Sentence B filter, which only shows attention

from tokens in Sentence A to tokens in Sentence B.

Since the attention heads do not share param-

eters, each head learns a unique attention mech-

anism. In the head shown in Figure 1 (left), for

example, each word attends to the previous word

in the sentence. The head in Figure 1 (center),

in contrast, generates attention that is dispersed

roughly evenly across previous words in the sen-

tence (excluding the first word). Figure 2 shows

attention heads for BERT that capture sentence-

pair patterns, including a within-sentence pattern

(left) and a between-sentence pattern (center).
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Figure 3: Examples of attention heads in GPT-2 that capture specific lexical patterns: list items (left); verbs

(center); and acronyms (right). Similar patterns were observed in these attention heads for other inputs. Attention

directed toward first token is likely null attention (Vig and Belinkov, 2019).

Figure 4: Attention pattern in GPT-2 related to coreference resolution suggests the model may encode gender bias.

Besides these coarse positional patterns, atten-

tion heads also capture specific lexical patterns,

such as those as shown in Figure 3. Other atten-

tion heads detected named entities (people, places,

companies), paired punctuation (quotes, brack-

ets, parentheses), subject-verb pairs, and other

syntactic and semantic relations. Recent work

shows that attention in the Transformer corre-

lates with syntactic constructs such as dependency

relations and part-of-speech tags (Raganato and

Tiedemann, 2018; Voita et al., 2019; Vig and Be-

linkov, 2019).

Use Case: Detecting Model Bias

One use case for the attention-head view is de-

tecting bias in the model, which we illustrate for

the case of conditional language generation using

GPT-2. Consider the following continuations gen-

erated3 from two input prompts that are identical

except for the gender of the pronouns (generated

text underlined):

• The doctor asked the nurse a question. She

said, “I’m not sure what you’re talking about.”

• The doctor asked the nurse a question. He

asked her if she ever had a heart attack.

In the first example, the model generates a con-

tinuation that implies She refers to nurse. In the

second example, the model generates text that

implies He refers to doctor. This suggests that

the model’s coreference mechanism may encode

gender bias (Zhao et al., 2018; Lu et al., 2018).

Figure 4 shows an attention head that appears to

3Using GPT-2 small model with greedy decoding.
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perform coreference resolution based on the per-

ceived gender of certain words. The two examples

from above are shown in Figure 4 (right), which

reveals that She strongly attends to nurse, while He

attends more to doctor. By identifying a source of

potential model bias, the tool could inform efforts

to detect and control for this bias.

2.2 Model View

The model view (Figure 5) provides a birds-eye

view of attention across all of the model’s lay-

ers and heads for a particular input. Attention

heads are presented in tabular form, with rows rep-

resenting layers and columns representing heads.

Each layer/head is visualized in a thumbnail form

that conveys the coarse shape of the attention pat-

tern, following the small multiples design pattern

(Tufte, 1990). Users may also click on any head to

enlarge it and see the tokens.

Figure 5: Model view of BERT, for same inputs as in

Figure 2. Excludes layers 4–11 and heads 6–11.

The model view enables users to quickly browse

the attention heads across all layers and to see how

attention patterns evolve throughout the model.

Use Case: Locating Relevant Attention Heads

As discussed earlier, attention heads in BERT ex-

hibit a broad range of behaviors, and some may be

more relevant for model interpretation than oth-

ers depending on the task. Consider the case of

paraphrase detection, which seeks to determine if

two input texts have the same meaning. For this

task, it may be useful to know which words the

model finds similar (or different) between the two

sentences. Attention heads that draw connections

between input sentences would thus be highly rel-

evant. The model view (Figure 5) makes it easy to

find these inter-sentence patterns, which are rec-

ognizable by their cross-hatch shape (e.g., layer 3,

head 0). These heads can be further explored by

clicking on them or accessing the attention-head

view, e.g., Figure 2 (center). This use case is de-

scribed in greater detail in Vig (2019).

2.3 Neuron View

The neuron view (Figure 6) visualizes the in-

dividual neurons in the query and key vectors

and shows how they interact to produce attention.

Given a token selected by the user (left), this view

traces the computation of attention from that token

to the other tokens in the sequence (right).

Note that the Transformer uses scaled dot-

product attention, where the attention distribution

at position i in a sequence x is defined as follows:

αi = softmax
(qi · k1√

d
,
qi · k2√

d
, ...,

qi · kN√
d

)

(1)

where qi is the query vector at position i, kj is the

key vector at position j, and d is the dimension of

k and q. N=i for GPT-2 and N=len(x) for BERT.4

All values are specific to a particular layer / head.

The columns in the visualization are defined as

follows:

• Query q: The query vector of the selected

token that is paying attention.

• Key k: The key vector of each token receiv-

ing attention.

• q×k (element-wise): The element-wise

product of the query vector and each key vec-

tor. This shows how individual neurons con-

tribute to the dot product (sum of element-

wise product) and hence attention.

• q · k: The dot product of the selected token’s

query vector and each key vector.

• Softmax: The softmax of the scaled dot-

product from previous column. This is the

attention score.

Whereas the attention-head view and the model

view show what attention patterns the model

learns, the neuron view shows how the model

forms these patterns. For example, it can help

identify neurons responsible for specific attention

patterns, as discussed in the following use case.

4GPT-2 only considers the context up to position i, while
BERT considers the entire sequence.
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Figure 6: Neuron view of BERT for layer 0, head 0 (same one depicted in Figure 2, left). Positive and negative

values are colored blue and orange, respectively, with color saturation based on magnitude of the value. As with

the attention-head view, connecting lines are weighted based on attention between the words.

Figure 7: Neuron view of GPT-2 for layer 1, head 10 (same one depicted in Figure 1, center) with last token

selected. Blue arrows mark positions in the element-wise products where values decrease with increasing distance

from the source token (becoming darker orange or lighter blue).

Use Case: Linking Neurons to Model Behavior

To see how the neuron view might provide ac-

tionable insights, consider the attention head in

Figure 7. For this head, the attention (rightmost

column) decays with increasing distance from the

source token. This pattern resembles a context

window, but instead of having a fixed cutoff, the

attention decays continuously with distance.

The neuron view provides two key insights

about this attention head. First, the attention

weights appear to be largely independent of the

content of the input text, based on the fact that

all the query vectors have very similar values (ex-

cept for the first token). Second, a small number

of neuron positions (highlighted with blue arrows)

appear to be mostly responsible for this distance-

decaying attention pattern. At these neuron posi-

tions, the element-wise product q× k decreases as

the distance from the source token increases (ei-

ther becoming darker orange or lighter blue).
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When specific neurons are linked to a tangi-

ble outcome, it presents an opportunity to inter-

vene in the model (Bau et al., 2019). By altering

the relevant neurons—or by modifying the model

weights that determine these neuron values—one

could control the attention decay rate, which might

be useful when generating texts of varying com-

plexity. For example, one might prefer a slower

decay rate (longer context window) for a scientific

text compared to a children’s story. Other heads

may afford different types of interventions.

3 Conclusion

In this paper, we introduced a tool for visualizing

attention in the Transformer at multiple scales. We

demonstrated the tool on GPT-2 and BERT, and

we presented three use cases. For future work, we

would like to develop a unified interface to nav-

igate all three views within the tool. We would

also like to expose other components of the model,

such as the value vectors and state activations. Fi-

nally, we would like to enable users to manipu-

late the model, either by modifying attention (Lee

et al., 2017; Liu et al., 2018; Strobelt et al., 2018)

or editing individual neurons (Bau et al., 2019).
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