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A Multisensor Technique for Gesture Recognition
Through Intelligent Skeletal Pose Analysis
Nathaniel Rossol, Irene Cheng, Senior Member, IEEE, and Anup Basu, Senior Member, IEEE

Abstract—Recent advances in smart sensor technology and
computer vision techniques have made the tracking of unmarked
human hand and finger movements possible with high accuracy
and at sampling rates of over 120 Hz. However, these new sensors
also present challenges for real-time gesture recognition due to the
frequent occlusion of fingers by other parts of the hand. We present
a novel multisensor technique that improves the pose estimation
accuracy during real-time computer vision gesture recognition. A
classifier is trained offline, using a premeasured artificial hand, to
learn which hand positions and orientations are likely to be associ-
ated with higher pose estimation error. During run-time, our algo-
rithm uses the prebuilt classifier to select the best sensor-generated
skeletal pose at each time step, which leads to a fused sequence of
optimal poses over time. The artificial hand used to establish the
ground truth is configured in a number of commonly used hand
poses such as pinches and taps. Experimental results demonstrate
that this new technique can reduce total pose estimation error
by over 30% compared with using a single sensor, while still
maintaining real-time performance. Our evaluations also demon-
strate that our approach significantly outperforms many other
alternative approaches such as weighted averaging of hand poses.
An analysis of our classifier performance shows that the offline
training time is insignificant, and our configuration achieves about
90.8% optimality for the dataset used. Our method effectively
increases the robustness of touchless display interactions, espe-
cially in high-occlusion situations by analyzing skeletal poses from
multiple views.

Index Terms—Depth sensors, gesture recognition, multisensor,
occlusion, pose estimation, user evaluation.

I. INTRODUCTION

INTERACTING with computer interfaces through mid-air
hand gestures is emerging as an intuitive and effective alter-

native to traditional touch-screen interfaces. For example, inter-
acting with medical displays via touch screens or a traditional
mouse and keyboard can present a major problem for medical
professionals wishing to keep equipment sterile. Even in small
clinical settings, examinations may often use fluids, such as ul-
trasound conductive gel, which users do not want to spread onto
a physical interface through touch [1].

Mid-air hand gestures allow individuals to interact freely with
computer interfaces without keyboard, mouse, or screen contact.
Instead, hand movements are tracked and interpreted through
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computer vision (CV) techniques [2]–[4]. This paper is focused
on the domain of markerless mid-air hand gestures (i.e., gestures
that are tracked with CV techniques alone and do not require the
placement of markers or tracking devices on the user’s hands).
Markerless approaches are much more desirable among users
because they allow for immediate interaction with a computer
interface. Time and resources are not wasted on additional setup
or calibration steps [5].

A. Problem

Previous work in markerless CV hand tracking has made use
of color and/or depth cameras (such as the Microsoft Kinect [6])
in order to analyze either static or dynamic hand gestures in real
time. Using raw depth/color data, features such as hand and fin-
ger positions/orientations can be extracted, from which an esti-
mate of the hand’s pose can be determined. The main drawback
of these past approaches is a large amount of noise associated
with the computed 3-D fingertip positions. In addition, low sam-
pling rates make it difficult to track quick hand movements due
to motion blur [7]. With the recent hardware advances in new
CV hand-tracking sensor systems (such as the Leap Motion
Sensor), millimeter-level precision can be achieved for track-
ing a fully articulated hand skeleton at sampling rates of over
120 frames/s [8]. However, these latest sensors still have low
pose estimation accuracy due to occlusion. These situations fre-
quently occur when the palm is not directly facing the camera,
or when performing certain gestures, such as pinches, where one
finger can be blocked by another. These problems can disrupt
accurate gesture interpretation and lead to unintended computer
operations.

B. Proposed Solution

We introduce a novel technique to improve hand pose es-
timation accuracy when using smart depth sensor technology
for tracking hand poses. In particular, our technique addresses
the issue of occlusion by using pose estimations from mul-
tiple sensors placed at different viewing angles. One of the
primary advantages of our approach is to avoid fusing sensor
data at the 3-D depth-map level, which is not available from
all modern sensors such as the Leap Motion Sensor. Instead,
we achieve wider flexibility by intelligently analyzing each sen-
sor system’s independently derived skeletal pose estimations. A
key challenge that makes skeletal pose fusion especially diffi-
cult is the tendency of the underlying pose estimation algorithms
being trapped in local minimas that can be substantially differ-
ent from each other. This explains why most classical sensor
fusion techniques, such as the Kalman filter [9], are ineffective
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Fig. 1. Example setup used in our lab to capture a single hand pose from two
different viewing angles.

in this problem domain, because there is no useful difference
in the generated noise profiles to make a meaningful quality
evaluation of the sensor data. To address this issue, we present
a more robust strategy, which demonstrates that by selecting an
appropriately designed subset of the skeletal pose estimation pa-
rameters, we can build an offline model. The offline model can
then be used in real time to intelligently select pose estimations,
while still running at over 120 frames/s. In our experimental
prototype involving dual sensors (see Fig. 1), we analyze the
pose estimation accuracy from different angles for a number of
hand gestures typically used to control displays (e.g., pinch, tap,
and open hand). In this context, we demonstrate that we are able
to achieve a 31.5% reduction in pose estimation error compared
with using only a single sensor. We are able to effectively elim-
inate the false hand poses that interfere with accurate gesture
recognition.

Our contributions are summarized as follows.
1) We improve pose estimation accuracy of state-of-the-art

hand-tracking systems through a novel technique for an-
alyzing skeletal hand poses from multiple sensors.

2) We experimentally demonstrate how the improved pose
estimations can have a meaningful improvement on rec-
ognizing gestures used for controlling display interfaces.

II. RELATED WORK

A. Real-Time Hand Pose Estimation

CV-based hand gesture recognition can be broken down into
two main categories: 1) model-based approaches concerned
with pose estimation; and 2) appearance-based approaches [10].
Model-based approaches involve determining and tracking the
entire articulated pose of the hand as it moves, including the 3-D
position and orientation of the wrist, and the deflection angles
of every joint. On the other hand, appearance-based approaches
use other characteristics in the captured images, such as the
silhouette, contour, color, area, and pixel flow, to predict the in-
tended hand gesture [11], [12]. Despite the benefit of knowing
the full pose of a moving hand, most real-time systems make
use of indirect cues from appearance-based approaches due to

processing time constraints [13]. Early studies have shown that
accurate CV model-based hand pose estimation algorithms are
too computationally expensive to run in real time [6]. Fortu-
nately, recent hardware advances have helped deliver low-cost
commercial depth sensors, which support real-time and more
precise hand pose estimation.

In 2011, Oikonomidis et al. [6] successfully developed an
accurate model-based approach for tracking the 3-D position,
orientation, and full articulation of a hand at 15 Hz on high-end
hardware. Their approach used a combination of video and depth
images from a Microsoft Kinect sensor as input, which were
processed by a modified particle swarm optimization algorithm.
Although still computationally intensive, the 15-Hz frame rate
can be achieved using only a single computer, making use of
a highly parallelized GPU implementation. The authors then
expanded their approach to include interactions between two
hands [14].

In 2013, Keskin, et al. [15] proposed a novel approach for real-
time hand pose recognition using random decision forests on a
synthetically generated dataset of hand poses. Their approach is
similar to the approach used by Microsoft Research on Kinect
to create the real-time skeletal pose recognition system [16].
By applying their classifier to label each depth pixel, and then
mean-shift to identify the position of each part of the hand,
full pose estimation is achieved. The classifier is able to run at
a rate of up to 30 Hz. Although the authors claimed that the
technique should theoretically be able to classify arbitrary hand
poses given enough training data, classification of only a few
discrete poses (namely, hand poses related to American Sign
Language) was presented. This limitation is also present in the
real-time discrete hand pose system proposed by Romero et
al. [17]. In contrast, we are interested in the continuous space
of all possible hand poses. Our goal is to maximize flexibility
and future extensibility of our system.

A drawback of traditional approaches is that they are not
able to robustly capture small precise gestures (like quick subtle
finger taps), due to their low sampling rates. It is necessary
to estimate human hand poses at high sampling rates because
of the rapid motions of the hand. Previous work has reported
that human hands can reach speeds of up to 5 m/s and the
wrist can reach rotational speeds of up to 300 ◦/s during normal
gestures [13]. Hand poses between successive frames become
increasingly uncorrelated with each other as the hand moves
faster [13]. The combination of high movement speeds and low
sampling rates often leads to inaccurate gesture recognition.
More accurate results can be obtained from advanced sensors
with higher sampling rates. For this reason, we used the leap
motion sensor [8] to test our method.

The leap motion sensor is an example of a new generation
of CV-based sensors that provides real-time hand-tracking and
pose estimation. Unlike past Infrared Red (IR) pattern light
depth sensors (such as the first generation Microsoft Kinect),
or time-of-flight sensors (such as the Soft Kinectic DepthSense
Camera), the leap motion sensor is able to provide much higher
3-D positional accuracy for hands and fingertips (better than 1
mm of precision). Its sampling rate exceeds 120 frames/s [8].
However, the sensor is unable to provide a full high-resolution
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Fig. 2. Hand poses and sensors are labeled from (a) to (j). In the pair of images on the left, the open hand pose (a) is visible by both sensors as (b) and (c). The
sensors give a similar pose estimation (d) and (e) in their local sensor coordinate spaces. In the pair of images on the right, a pinch pose (f) is tested. The sensor on
the left has a fairly good view (g) and gives an estimate of (i). However, this pose is mostly occluded and seen as (h) from the right side sensor, which leads to an
estimate of (j). Note that the pinch pose has become an open hand, which disagrees with the left sensor.

depth map due to USB bandwidth limitations. In addition, its
maximum effective tracking distance is only around 50 cm from
the device.

B. Sensor Fusion

High-occlusion situations impose a major challenge for ana-
lyzing hand poses. As previously mentioned, many skeletal hand
pose estimation techniques follow particle-filter approaches,
which can trap pose estimation algorithms in a local minimum
due to inadequate visible data to resolve ambiguity. The pose can
be incorrectly interpreted for a considerable amount of time, or
even indefinitely if the user’s hand continues to stay in a static
pose. Typical real-time sensor fusion techniques, such as the
Kalman filter [9], are unsuitable in this context. This is because
the similar noise profiles of correct and incorrect hand poses
will result in equal evaluation weighting, making it impossible
to identify the correct pose [18]. While using finger motion,
such as the angular velocities of finger joints, to predict future
positions may be helpful, this method is not feasible for many
applications given rapid finger movements.

Regardless of the underlying hand pose recognition tech-
nique, or sensor used, occlusion is a major problem when using
a single vision-based sensor. We propose fusing data from mul-
tiple sensors placed at different viewing angles, and analyzing
the skeletal poses directly instead of examining the depth maps,
because the latter may not always be available. This is the case
with the leap motion sensor, which does not generate any depth
maps or 3-D point clouds.

We tested a two-sensor setup capturing a pose from two dif-
ferent viewing angles. When there is a disagreement between
the sensors at a particular time step due to possible occlusion
blocking one of the views, our computation model evaluates
the different estimates and chooses the one that best fits the
continuous stream of skeleton poses. Fig. 2 shows examples
of agreement and disagreement between the two sensors. Our
technique is intended to generate a fused sequence of optimal
poses over time, and we are able to demonstrate (in Section IV)
that this approach is more accurate than the alternative of fusing
the sensor images at each time-step.

C. Gesture-Controlled Displays

Over the past decades, there have been many studies on
hand-tracking and touchless displays. Real-time hand tracking is
important in many applications, including medical ones. A pri-

mary motivation in healthcare is reducing spreading biological
contamination by avoiding touching a device, and the resulting
time/cost savings from reduced sterilization [3].

One of the earlier works in CV-based gesture control of med-
ical displays was completed by Grange et al., in 2004 [2]. Their
system-controlled computer mouse movements in an operating
room display via hand gestures. Stereo color cameras and a
combination of static background subtraction and pixel color
thresholding were used to track the user’s hand positions in a 3-
D space. As the system did not track fingers, virtual mouse
clicks were performed by either pushing the hand forward
20 cm, or holding it absolutely still for several seconds. Simi-
larly, the Gestix’s system developed in 2008 [4] used a nearly
identical approach but did not control a virtual cursor. Instead,
the authors used communicative gestures (such as hand swipes
or circular motions) to perform various tasks. As is typical in
appearance-based approaches that use color information to seg-
ment the user’s hands, both of these approaches are vulnerable
to segmentation errors caused by changes in illumination, shad-
ows, or dynamic backgrounds.

In 2011, Gallo et al. [19] proposed a Kinect-based interface
for visualizing medical images in a sterile surgery room. The
user was required to be standing and using both hands for in-
teraction. The system tracked the 3-D position of both hands at
30 Hz and recognized the hand as either being in the open or
closed state. As with the previous works, the inability to track
the finger positions means that the gesture requires large hand
movements for recognition purposes, which can cause the user
physical fatigue over time [20]. Another limitation of the system
is that their method requires two hands to be free for operation,
which is not possible when one hand is used to hold clinical
tools.

Our system can be used with either one or both hands and
is designed for gestures that are commonly adopted by touch-
screen interfaces.

III. IMPLEMENTATION

Our multisensor skeletal pose estimation approach is com-
posed of the following steps.

1) First, we use a trained support vector machine (SVM) [21]
model to intelligently determine the optimal pose esti-
mation from an array of sensors. We build this model
offline (only once) with a training set, which uses a
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Fig. 3. Overview of our real-time execution steps.

Fig. 4. Diagram of our two-sensor setup. A small nonreflecting object is
placed between the sensors to prevent a direct line of sight.

feature vector composed of a subset of each sensor’s
output.

2) Next, we convert each sensor’s pose output into a global
coordinate system so that the poses of all of the fingers
are represented in a single unified space. Likewise, we
also keep the positions of all of the fingers in a local hand
coordinate system, which provides key information for
the pose estimation model.

3) Finally, the local hand pose information and the global
hand pose information are input into our gesture recogni-
tion model so that dynamic and static hand gestures can
be tracked.

An overview of these steps is shown in Fig. 3.

A. Sensor Array Setup

The goal of our implementation is to demonstrate the feasibil-
ity of our algorithm. We tested our approach with a two-sensor
setup. As shown in Figs. 1 and 4, our setup involves two leap
motion sensors aligned at a 45◦ angle to the table surface they
are placed on. This angle is chosen to make the sensor view
angles orthogonal, to optimize the amount of unique informa-

tion available to each sensor during situations of high occlusion.
The point at which the center of the field of view of both sen-
sors intersects was set at 20 cm for our experiment, following
the default precalibrated interaction height for the leap motion
sensor.

One consideration when using multiple leap motion sensors
for our configuration is that the IR (infrared) projectors of one
sensor can shine directly into the IR cameras of the other, which
can generate noisy data. This can be solved by positioning the
sensors outside the 150◦ field of view of each other, or by placing
a small nonreflective object in-between the sensors, to prevent a
direct line of sight. We adopted the latter approach in our imple-
mentation. Based on our test results, even if a pair of leap motion
sensors shine directly into one another, the additional noise in
the pose estimation was insignificant provided the automatic
infrared light compensation feature in the sensor configuration
was disabled.

B. Selecting Optimal Pose Estimations

We define the amount of pose estimation error as the sum of
the Euclidean distances (in millimeters) of each fingertip from
its ground truth position. The positions are expressed locally
relative to the reported palm position and normal of the hand
(provided directly by the sensor data in our setup). That is, if fi
is a 3-D vector representing the position of the fingertip of the
ith finger on a hand, and gi is the actual ground truth position,
we then define the error of a hand pose estimation as

E =
∑5

i=1 ||fi − gi||
5

. (1)

Given a set of pose estimations from a sensor array (two
sensors with two independent estimations in our prototype), the
goal at each time step is to select the single pose estimation that
has minimum error E. The main issue is that it is impossible
to track the difference in noise levels between accurate and
highly inaccurate pose estimations. As explained previously,
stable inaccurate pose estimations are a common artefact of the
traditional particle filter algorithms, which makes it difficult to
decide which sensor’s reading is more trustworthy.

The novelty of our approach lies in intelligently determining
which sensor is likely reporting the most accurate pose estima-
tion. Specifically, we observed that even in situations with high
occlusion and pose estimation error, the tracking of the palm
position and orientation often remained accurate. We exploit
this observation and build an SVM model that learns which
hand positions and orientations are likely to be associated with
higher pose estimation error. At run-time, our algorithm com-
putes a feature vector based on each sensor’s reported hand
position/orientation in the local sensor space. This feature vec-
tor is then run through the prebuilt classifier in order to predict
which sensor is likely providing the best pose estimation. The
selected pose is then passed along for subsequent processing
and gesture recognition.

For our two-sensor setup, each sensor’s feature vector is
composed of the following 12 floating point values per pose
estimation:
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1) Three (X, Y, and Z) values of the palm position relative
to the sensor.

2) Three (X, Y, and Z) values of the palm plane normal
relative to the sensor.

3) Three (X, Y, and Z) values of the “forward” direction
of the hand (i.e., the direction where the fingers point to
when extended).

4) The local “Roll” rotation of the hand.
5) The dot product between the palm normal and the direc-

tion the sensor is facing.
6) Sensor confidence estimation. This value is a floating point

between 0 and 1 that is generated by an internal proprietary
part of the leap motion API. Its limitations when used on
its own are shown in Section IV.

SVM was chosen as the classifier because almost all of the
features used have a geometric meaning. Thus, we expect that in
the higher dimensional space of the palm position/orientation,
it should be possible to find a relatively good hyperplane that
separates the spatial regions in which each sensor would perform
the best.

In order to build the training data for our model, we require
a set of feature vectors that are already prelabeled to indicate
which sensor performed best. Several strategies are possible for
generating the training data. If the setup did not use IR sensors
(such as the leap motion), it may be possible to use an IR-based
motion capture rig such as OptiTrack1 with markers on the
fingertips during the training process. Alternatively, data gloves
with only minimal error levels can be used if they are not bulky
enough to skew the results. In Section IV, we demonstrate our
approach through a third option, where we use an articulated
artificial hand model with a known pose to represent ground
truth for the training and evaluation data.

As is typical of an SVM training approach, the time required
for training the offline model depends on the number of train-
ing samples and number of features used. In our implemented
prototype, the training time for 108 data points with 12 features
each was less than 0.1 s when executing on a regular computer.

C. Reprojecting Into Global and Local Spaces

After a hand pose is selected from the sensor array, it must
be converted into a unified global space to interpret meaningful
gestures or interactions. The matrix used to determine the hand
pose in the global space can be defined manually if the placement
of sensors is known precisely enough, such as in our proposed
two-sensor setup. In general, for an array of multiple sensors,
the user can use several static finger positions visible from each
sensor to build a set of 3-D point clouds, and then apply an
iterative closest point algorithm [22] to compute the specific
matrix required to project the points from each sensor’s local
coordinate system into the global coordinate system.

Similarly, we also compute a projection into a local hand
coordinate space to help in gesture recognition. If we consider a
hand with a normalized palm direction vector ĥN (i.e., normal to
the plane of the palm and in the same direction as the palm), and

1http://www.optitrack.com

a normalized orthogonal forward vector ĥF , we can compute an
additional basis vector ĥC for the local hand coordinate system
as the cross product of these two:

ĥC = ĥN × ĥF . (2)

The main challenge in this step involves determining ĥF , the
“forward” direction of a hand. Multiple definitions are possible,
but given the sensor data available, we define the forward di-
rection of the hand based on the mean direction of all tracked
fingers. This means that for n tracked fingers with normalized di-
rection vectors d̂1 , ..., d̂n , we compute the unnormalized mean
forward direction dM as shown in

dM =
∑n

i=1 d̂i

n
. (3)

We then project this computed vector onto the palm normal
plane (provided directly from the sensor data) and normalize
the result as shown in

ĥF =
dM − (ĥN · dM )ĥN

||dM − (ĥN · dM )ĥN ||
. (4)

With the three basis vectors of the local hand coordinate system
computed, and the known position of the hand palm (T ), we
construct a matrix M that transforms fingertip positions and
direction vectors from the global coordinate system into the
local hand coordinate system

M =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

hĈx
−hN̂x

−hF̂x
Tx

hĈy
−hN̂y

−hF̂y
Ty

hĈz
−hN̂z

−hF̂z
Tz

0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

−1

(5)

Note that the directions of the hand normal and forward vectors
are inverted when used as basis vectors. This is because the
coordinate system of the global sensor space defines the y-axis
as pointing upward, and the z-vector as pointing toward the user,
whereas the palm normal is defined as facing downward, and
the fingers (used for the forward direction) normally pointing
away from the user.

The transformation is a 4 × 4 homogeneous matrix. This
means that 3-D points are augmented with a “1” at the end
before multiplication, and direction vectors are augmented with
a “0.”

D. Gesture Detection

Finally, after the hand pose is computed in the local and global
spaces, we perform gesture recognition on the computed poses.
We use gestures which are intuitive to the users. The interactions
are based on a combination of three basic movements: air-taps,
pinches, and dragging (or swiping). Finger air-taps are analo-
gous to clicking mouse buttons or tapping a touch screen with
the finger, but in mid-air. In our gesture interfaces, this is used
to select items. The air-tap was chosen because it can be rec-
ognized robustly, and previous studies have demonstrated that
most users find the gesture easy to learn and remember [23],
[24]. Similarly, pinch gestures in the air are essentially the same
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Fig. 5. Overview of the state transitions of our gesture interface design.

as those used on touch screen for zooming. Dragging (or swip-
ing) refers to moving the hand, while at least one of the fingers is
in the tap-down state (i.e., performing the first half of an air-tap,
but halting before raising the finger). This is analogous to drag-
ging file icons on a computer interface while having a mouse
button down, or dragging objects across a touch-screen display
with a fingertip, or swiping between pages displayed on a tablet
computer. Our framework also allows pinch-dragging.

In past studies, hidden Markov models have been effective
for gesture recognition in appearance-based systems [25]. In our
case, however, because the actual finger positions are known
with high accuracy, we use the current state of the fingers di-
rectly in a finite-state machine model, without the need for in-
directly modeling hidden states. The result is a computationally
inexpensive direct analysis of the finger states. Fig. 5 shows a
graph summarizing the state transitions of our gesture interface
design.

1) Tap and Pinch Recognition: Using our local coordinate
system, it is easy to suggest that an air-tap is performed when
a finger moves to a local y value exceeding a threshold value.
However, observations show that false positives can occur when
the user’s hand is in a relaxed state, probably due to fatigue over
time as shown in Fig. 6(c) and (d).

Thus, we adopt an adaptive approach, taking other fingers into
consideration, to compute the threshold y value of the downward
distance a finger must move in order to be classified as an air-tap.
It is computed using the following equation:

Tf = DT (1 + WT mT ) (6)

where Tf is the threshold value in millimeters (in the y-
direction), that the finger f must move downward in order to be
recognized as an air-tap, DT is the default threshold value for
an air-tap assuming all the other fingers are in the plane of the
palm, and WT is a constant weighting factor. mT is the mean
y position of all other fingers besides the finger f in our partial
pose estimation model.

Once a finger has been recognized as being in the tapped
state, i.e., having passed below Tf , we require that it returns to
the palm plane through a different upper threshold value Uf , in
order to be recognized as the untapped motion, where

Uf = c(Tf ), 0 < c < 1. (7)

Fig. 6. Overview of the tap recognition system, which illustrates the impor-
tance of defining dynamic thresholds. The dashed magenta line indicates the
palm plane as reported by the sensor. The solid magenta line indicates the side
view of the offset plane parallel to the palm plane, but offset according to the
average displacement of the fingertips relative to the palm plane. The solid green
line indicates the threshold that must be exceeded to enter the tap down state.
The dashed green line indicates the threshold that the finger must be above to
return to the Open state. (a) Ideal case where the user’s fingertips are mostly
lying in the palm plane. (b) Tap gesture is easy to recognize. (c) More realistic
case where the user has taken a more relaxed hand posture over time. (d) Tap
gesture is not easy to recognize (bottom right).

Fig. 6 illustrates the tap recognition corresponding to the ideal
and relaxed hand states.

A similar concept is used for pinch recognition, except that
the computational complexity of the palm plane and neighboring
fingers is reduced. For pinch recognition, we define two thresh-
olds: an enter threshold, and a larger release threshold. When the
Euclidean distance between the index finger and thumb drops
below the enter threshold (e.g., 15 mm), a pinch gesture will
be recognized as “Started.” When the distance between the two
pinching fingers exceeds the exit threshold (e.g., 25 mm), the
pinch is recognized as “Ended.”

2) Drag or Swipe Recognition: Drag gestures are recognized
as hand movements that occur when one or more fingers are in
the down position of an air-tap, or a pinch. Unlike interaction
on a touch screen, where the user drags virtual items according
to the position of their finger tip, in our model, items are first
selected by the user’s fingers, but then dragged according to
the hand position. This is due to the lack of haptic feedback
in mid-air gestures, which makes it difficult to distinguish the
movements of communicative tap gestures from the movements
used to manipulate the position of a virtual object. Our recogni-
tion technique is similar to using mouse buttons for selections
and hand palm movements (i.e., mouse movements) to move
objects on a computer screen.

IV. EVALUATION WITH GROUND TRUTH

In our experiments, ground truth values for hand poses were
determined by using an artificial hand model that was manu-
ally placed into fixed and known poses. Since there are a large
number of usable hand poses that could be created, we focus
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Fig. 7. Three ground-truth hand poses tracked by our system.

on tracking three hand poses that can replace certain commands
commonly used on touch-screen interfaces. These three hand
poses are the following:

1) an open hand;
2) a pinch gesture;
3) a tap gesture.
These gestures are shown in Fig. 7.
The articulated artificial hand model has dimensions similar

to that of a male right hand. Fingers are approximately between
7.0 and 10.5 cm in length, and the entire length of the hand
from the bottom of the palm to the tip of the middle finger is
approximately 20.5 cm when fingers are fully extended. It was
observed that the tracking accuracy of the artificial hand was
roughly equivalent to that of a normal human hand.

In order to investigate the ability of our multisensor technique
to track these hand poses when the hand is moving, we fixed
the hand position in the middle of the field of view of both
sensors (placed 20 cm away) and slowly rotated the artificial
hand counterclockwise along the axis of the wrist as shown in
Fig. 8. The rotation was paused every 10◦ in order to record
a measurement from each sensor. This resulted in 36 pairs of
pose estimations per gesture and 108 pairs of pose estimations
in total.

We then computed the pose estimation error of each sensor
for all 108 cases. To train our computational model, we con-
structed all 108 feature vectors and labeled every case with
the sensor that produced the lower pose estimation error. Note
that the average pose estimation performance of both sensors
were identical because both sensors eventually saw all the ex-
act same hand poses from the same distance and rotation angle
(but not at the same time). We evaluated the performance of our
model using a tenfold cross validation across all 108 data points,
which is a standard approach commonly used by classification
techniques.

A. Performance Analysis

Overall, the experimental results indicated that our approach
reduced the total pose estimation error by 31.5% compared
with using only one sensor. We summarize the performance
comparisons in Tables I and II.

Fig. 8. Artificial hand model was mounted such that it was fixed in space
relative to the sensors and rotated along the axis of the wrist.

TABLE I
EXPERIMENTAL RESULTS

Technique Finger Estimation Err. (mm) Std. Err

Single Sensor Thumb 14.20 1.22
1st Finger 18.40 1.87
2nd Finger 15.51 1.55
3rd Finger 16.29 1.08
4th Finger 12.98 1.06

Mean 15.48 1.12
Averaging Thumb 11.39 0.78

1st Finger 16.22 1.19
2nd Finger 13.27 1.00
3rd Finger 13.79 0.67
4th Finger 10.83 0.67

Mean 13.10 0.69
Sensor Confidence Thumb 11.23 0.86

1st Finger 14.26 1.49
2nd Finger 12.61 0.97
3rd Finger 13.14 0.94
4th Finger 10.24 0.83

Mean 12.29 0.85
Weighted Fusion Thumb 9.56 1.00

1st Finger 13.44 1.61
2nd Finger 12.89 1.54
3rd Finger 12.56 0.91
4th Finger 9.88 0.78

Mean 11.66 1.01
Our Approach Thumb 9.53 0.85

1st Finger 10.09 0.97
2nd Finger 10.74 0.77
3rd Finger 12.49 0.88
4th Finger 10.14 0.84

Mean 10.60 0.74

The average pose estimation error (in millimeters) is calcu-
lated from the sum of the Euclidean distances (in millimeters)
of each fingertip from its ground truth position [see (1)] divided
by the number of fingers. Using this metric, the worst-case and
best-case performances were found to be 21.45 and 9.5 mm,
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TABLE II
OVERALL PERFORMANCE COMPARISON

Technique Mean Pose Estimation Error (mm) % Optimal

Worst Case 21.45 0%
Best Case 9.50 100%
Single Sensor 15.48 50%
Averaging 13.10 69.9%
Sensor Confidence 12.29 76.6%
Weighted Fusion 11.66 81.9%
Our Approach 10.60 90.8%

respectively (see Table II). The worst case represents the theo-
retical worst average pose estimation error that could result from
our approach. For it to occur, our classifier would need to incor-
rectly choose the sensor with the worse pose estimation every
time (i.e., have 0% accuracy). Similarly, the best case represents
the result if our approach consistently chose the sensor with the
smaller pose estimation error. In this context, our approach is
able to achieve an optimal accuracy of 90.8% on the average.

B. Comparison with Alternative Approaches

The result obtained from a single sensor shown in Tables I
and II represents the average amount of pose estimation error.
Given our symmetric setup, it is also the amount of pose esti-
mation error expected if we choose randomly between the two
sensors. Although the mean sensor pose estimation error was
approximately 15.48 mm, there was quite a large variation in
estimation error across the dataset with a maximum recorded er-
ror of 114.24 mm, and the minimum recorded error of less than
0.07 mm. When the pose estimation error exceeded 30 mm, the
sensor was producing a pose estimation that was substantially
different from the ground truth. There were about 22 such cases
in our dataset of 108. Thus, we conclude that occlusion can make
the pose estimation performance of a single sensor unreliable.

We also analyzed the performance of using unweighted aver-
aging to fuse pose estimations. That is, for each finger in the local
hand coordinate space, the final pose is the midpoint between the
two sensors’ estimates. This technique generates results similar
to those from a Kalman filter. Based on our experiments, the
method can help reduce the errors from infrequent poor pose
estimations. A drawback is that if the system enters a state where
the user’s hand pose is constantly at a poor viewing angle for
one sensor, the averaging will increasingly reduce the overall
pose estimation accuracy.

Another comparison was with using the leap motion sensor’s
self-reported confidence score. In this measurement, the sensor
with the higher reading is selected based on their reported con-
fidences using a scale of 0 to 1. This approach showed approx-
imately 76% accuracy, suggesting the feasibility of including
this parameter in the training model. However, it is ineffec-
tive by itself in comparison with our approach, which has better
performance by taking the palm position and orientation into ac-
count. Furthermore, not all depth sensors provide self-reported
confidence scores.

Our technique aims at generating a fused sequence of opti-
mal poses over time. We also analyze the “Weighted Fusion”
method, which fuses the sensor output at each time step. In this
approach, we fit a logistic regression model to the SVM outputs
in order to produce probability estimates indicating how con-
fident the model was with each selection. We then used these
values directly to compute a combined weighted average of the
hand poses. The results showed that the weighted fusion method
did not perform as well as our proposed approach. For example,
in cases of high occlusion, the weighted fusion method can have
hand pose estimations that are well over 10 cm away from the
ground truth, while our proposed method has higher accuracy
(see Tables I and II).

Our analysis using a paired one-tailed t-test showed that there
was a significant difference (α = 0.05) in the scores for our ap-
proach (mean = 10.60, std. deviation = 7.65) compared with
using a single sensor (mean = 15.48, std. deviation = 11.65);
t = 5.15, p < 0.0001. Similarly, there was a significant dif-
ference in our approach compared with using unweighted av-
eraging (mean = 13.10, std. deviation = 7.19); t = 3.93, p <
0.0001 and also between using our approach compared with us-
ing the sensor confidence (mean = 12.29, std. deviation = 8.82);
t = 2.88, p = 0.0024.

Additionally, there was a significant difference between using
our weighted fusion approach (mean = 11.66, std. deviation =
10.52) compared with using a single sensor; t = 3.94, p <
0.0001, and also between using our weighted fusion approach
in comparison with using unweighted averaging; t = 2.15, p =
0.0171. However, the weighted fusion approach did not show a
significant difference from the sensor confidence approach; t =
0.74, p = 0.231. In light of this, we recommend the use of our
original approach for most applications.

C. Analysis of Classification Performance

A unique aspect of our system’s performance is that while
our approach was about 90.8% optimal in terms of reducing
the mean pose estimation error, our classifier accuracy was only
76.9% (i.e., 83 correctly classified instances out of the total
108). Normally, one would expect that this would result in the
final performance being similar to around the 76.9% value. In
order to investigate this deviation, we compared the difference
in pose estimation error between the correctly and incorrectly
classified instances.

A large difference in the pose estimation error between the
two sensors for a data point typically indicates that the sensors
had a large disagreement between each other, and that likely one
of them (but perhaps both) was producing a very low quality
pose estimation. When the difference between the two sensors
was low, it indicates that both sensors were likely producing
very similar pose estimations, and thus, the choice of which
sensor to use was less important. In our analysis, we computed
the difference in sensor pose estimation errors for all our data
points. The corresponding distributions are shown in Fig. 9.
Note that 1) instances having a higher median (difference in
pose estimation error) are correctly classified, and 2) cases with
the worst outliers are also classified correctly.
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Fig. 9. This plot shows the distribution of the level of disagreement between the sensors for correctly and incorrectly classified instances. Note that when
disagreement between the two sensors is high (probably due to occlusion), our approach was able to classify correctly (left half of plot). When the data point was
incorrectly classified, the difference between the sensor measurements tended to be small (right half of plot), and thus, it did not add significant error by choosing
one sensor or the other. This shows that our approach can achieve high overall accuracy.

Our analysis shows that for the correctly classified instances,
the median difference between pose estimations was 11.44 mm.
For the incorrectly classified instances, the median difference
was only 4.47 mm. This verifies that in cases where there was
a large disagreement between the two sensors, our approach
often made the correct decision. The missed instances were
cases where the sensors only had a small level of disagreement.
This analysis shows that our approach successfully eliminates
the worst pose estimations in most cases.

V. CONCLUSION

We have presented a novel technique for improving full hand
pose recognition accuracy from multiple sensors at frame rates
in excess of 120 pose estimations per second. Our technique
achieves this through a computational model, which is built to
intelligently select the more accurate pose estimation at each
time step, based on a subset of the underlying pose estimation
data from each sensor. Our technique is most useful for improv-
ing the quality of tracking accuracy for gesture-controlled dis-
play interfaces, including medical interfaces. Our experimental
results show that we were able to reduce the overall pose esti-
mation error by over 30% in a two-sensor setup relative to the
single sensor approach.

Other techniques that attempt to evaluate high-resolution
images at high sampling rates from a large number of sen-
sors quickly run into hardware limitations, computational chal-
lenges, and bandwidth constraints. In comparison, our approach
is able to scale better with a large number of sensors because the
data processed (i.e., the pose estimations) are at the skeletal pose
level and are much smaller. A key contribution of our work is
that it demonstrates the viability of combining pose estimations
from multiple sensor systems, even without the presence of the
underlying image data.
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