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In order to solve the uncertainty and randomness of the output of the renewable energy resources and the load �uctuations in the
reactive power optimization, this paper presents a novel approach focusing on dealing with the issues aforementioned in dynamic
reactive power optimization (DRPO). �e DRPO with large amounts of renewable resources can be presented by two determinate
large-scale mixed integer nonlinear nonconvex programming problems using the theory of direct interval matching and the
selection of the extreme value intervals. However, it has been admitted that the large-scale mixed integer nonlinear nonconvex
programming is quite di�cult to solve. �erefore, in order to simplify the solution, the heuristic search and variable correction
approaches are employed to relax the nonconvex power �ow equations to obtain a mixed integer quadratic programming model
which can be solved using so	ware packages such as CPLEX and GUROBI. �e ultimate solution and the performance of the
presented approach are compared to the traditional methods based on the evaluations using IEEE 14-, 118-, and 300-bus systems.
�e experimental results show the e�ectiveness of the presented approach, which potentially can be a signicant tool in DRPO
research.

1. Introduction

Reactive power optimization’s importance in enabling the
operation safety in the power system has been proved. �e
traditional reactive power optimization researches consider a
number of elements including the power balance constraints,
the voltage magnitudes, the branch currents, the coordinated
control of the reactive power compensators, and the trans-
former tap ratios under a given load level. However, along
with the number and capacity of the renewable resources
increase, new challenges, for example, the overvoltage and
power loss, gradually appear. �ese issues signicantly lead
to the bidirection of power �ow. As a result the traditional
reactive power optimization model should be improved.
From themathematical point of view, the reactive power opti-
mization can be formulated as the mixed-integer/nonlinear
programming model, which is mainly categorized into the
static reactive power optimization (SRPO) [1–3] and the
dynamic reactive power optimization (DRPO) considering
multiperiod coupling [4–9]. In research [3], an improved
particle swarm optimization algorithm using eagle strategy

(ESPSO) is proposed for solving reactive power optimization
problem to minimize the power losses. �e SRPO only
focuses on single system state in certain time period without
considering the potential signicant change from succes-
sive operating points. For example, discrete controllable
devices (e.g., capacitors/reactors and transformer taps) are
controlled by their switching on/o�, the daily operating
times of which are limited by their service lifetime and
existing manufacture techniques. As a result, researches pay
more attention to DRPO which signicantly contributes the
online and practical operations of the power systems. A day-
ahead voltage stability constrained dynamic optimal reactive
power �ow (VSC-DORPF) model is proposed in research
[4], in which the discrete control variables and the time
coupled constraints are handled by the proposed branch-
ing and pruning principles. Considering the intertemporal
constraints on the operating times of switching discrete
variables and the nonlinear power balance equations, DRPO
can be presented by large-scale mixed-integer/nonlinear
programming problems (mixed-integer nonlinear program-
ming, MINLP).
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However, the MINLP based DRPO has di�culties in
modeling and solving.�e reasons mainly include the follow-
ing: (1) DRPO contains the continuous and discrete variables
as a typical mixed integer nonlinear nonconvex problem so
that its global optimal solution cannot be obtained due to the
nonconvex power �ow equations [5–9]; (2) DRPO specially
considers the intertemporal constraints for the operating
times of adjusting discrete reactive power compensation
devices.�is pointmakes the solution become computational
intensive and time consuming [6–10]. In order to facilitate
the DRPO solution, a number of e�orts have been done.
Round-o� approach [11–13] which is a simplied method in
dealing with discrete variables is claimed as an underlying
tool for serving the DRPO solution. �e discrete variable is
rstly relaxed into continuous variables in the optimization
model. �en, the continuous variables obtained from the
optimization are rounded o� to the nearest integer value.
Due to the numerical approximation, such approaches may
introduce unnecessary overhead in the objective functions
and even cause constraint violations. �e round-o� approach
is particularly unsatisfactory for the maximum allowable
daily operating times of the electric devices. Some other
researchers presented that the articial intelligence [14, 15]
can deal with the discrete variables and the limitation
of the number of actions in reactive power optimization
well [10, 16]. However, the algorithms employed in their
researches show low e�ciency and unstable optimization
results. Heuristic approaches are regarded as better choices to
deal with the discrete variables and the limitation of the num-
ber of actions. A number of heuristic approaches segment the
network loss or daily load curve according to the trend of the
load changes. And then the approaches make the number of
the segments equal to the upper limit of daily operating times
for the control devices [17, 18]. However, how to determine
the position of the segmentation point in this method lacks
theoretical basis and cannot guarantee getting the optimal
segmentation scheme. Moreover, research [19] puts forward
a novel particle swarm optimization algorithm with quantum
behavior (QPSO) to solve reactive power optimization in
power system with distributed generation. Ionescu et al.
[20] presented a mixed integer hybrid di�erential evolution
method to handle multiperiod active power loss minimiza-
tion. �ey formulated the task as a mixed-integer nonlinear
programming (MINLP) problem, including constraints that
specically limit the number of switching actions between
two successive anticipated system states. Also Rabiee et al.
[21] presented a new voltage security constrainedmultiperiod
ORPF approach which can determine the optimal settings
for both continuous and discrete voltage control facilities
in a coordinated manner. For a given horizon of time with
denite time intervals, generalized Benders decomposition is
adopted to convert RPO (reactive power optimization) into a
simple mixed integer nonlinear programming and a relaxed
nonlinear programming with xed discrete variables.

�e traditional reactive power optimization model is
based on certain power system conditions without con-
sidering the uncertainties. Additionally, a large number of
renewable resources in modern power systems challenge the
traditional planning and operations due to their stochastic

features. Without considering the uncertainties introduced
by the renewable energy especially the wind power, the
performance of RPO will be signicantly impacted. To solve
the uncertainties of wind power output, a two-stage robust
optimization model in [22] is presented to coordinate the
discrete and continuous reactive power compensators and
gure out a robust optimal solution that canhedge against any
possible realization with the uncertainty of the wind power
output. Generally, the research of the robust optimization
model contains two-stage decisions. �e rst-stage decisions
serve as the “here-and-now” decisions. And the second
stage decisions are the “wait-and-see” decisions that can
be adjusted a	er the rst-stage decisions are determined
and the wind power uncertainty is revealed. Rabih [23]
presented a decentralized approach for controlling reactive
power from a photovoltaic (PV) inverter through a linear
decision rule that is in terms of the PV generated real
power. �e linear decision rules are computed using an
a�nely adjustable robust counterpart of an optimal power
�ow type formulation, with the PV real power generation
specied in an uncertainty interval. In [24], an optimization
scenario method is established to deal with the uncertainty
of the output of the wind farm. �e method decomposes
the reactive power optimization into two phases, which are,
respectively, solved by the interior point method and the
genetic algorithm. �e presented method can utilize the
information of the probability distribution function of the
output of the wind farm to e�ectively deal with the discrete
variables.

Motivated by the previous work, in order to solve the
uncertainties of renewable resources in DRPO, this paper
presents a multistage dynamic reactive power optimization
method based on interval uncertainty (MISOCP), which
belongs to the large-scale mixed integer nonlinear nonconvex
programming. And then, MISOCP is decomposed into two
determinist nonlinear programming subproblems using the
theory of direct interval matching and selection of the
extreme value intervals. �en, the heuristic search and the
variable correction are employed to relax the nonconvex
power �ow equations of the determinist nonlinear program-
ming subproblem to obtain the mixed integer quadratic
programming model which can be nally solved.

�e rest of this paper is organized as follows: in Section 2,
a dynamic reactive power optimization model based on
interval uncertainty is presented; Section 3 presents the
solution of the model; Section 4 presents the solution of the
MISOCP based relaxation formulation; Section 5 discusses
the experimental results; Section 6 concludes the paper.

2. A Dynamic Reactive Power Optimization
Model Based on Interval Uncertainty

2.1. Uncertain Variable Description. Renewable energy
including photovoltaic (PV) and wind power is certainly
a�ected by the light intensity and wind speed, which results
in the strong uncertainty and uncontrollability of their
output. Moreover the load forecasting in the power system
also has the uncertainty of the prediction errors. In the
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RPO, the randomness is frequently employed to describe the
uncertainty of the system, which requires a large number of
historical data to determine the statistical law (probability
characteristic parameters, probability distribution, etc.)
of the system input uncertain variables. However, the
data is di�cult to achieve precisely from practical systems
decisions. For solving the issue, interval number optimization
is employed by this paper so that the upper and lower bounds
of variables with less information can be achieved using the
uncertainty of interval description variables. Based on the
interval optimization method, the uncertainty of the wind
power, PV output, and load forecasting can be represented
using

�±�� (�) = [�−�� (�) , �+�� (�)]�±�� (�) = [�−�� (�) , �+�� (�)] (1)

�±�� (�) = [�−�� (�) , �+�� (�)]�±�� (�) = [�−�� (�) , �+�� (�)] (2)

�±� (�) = [�−� (�) , �+� (�)]�±� (�) = [�−� (�) , �+� (�)] (3)

where �±��(�) and �±��(�) are the interval variables for the
active and reactive wind power; �±��(�) and �±��(�) are the
interval variables for the active and reactive PV power; �±�(�)
and�±�(�) are the interval variables for the active and reactive
load power; �−��(�), �+��(�), �−��(�), �+��(�), �−��(�), �+��(�),�−��(�), �+��(�), �−�(�), �+�(�), �−�(�), and �+�(�) are the lower
bound and upper bound of the wind active and reactive
power, the PV active and reactive output, and the load active
and reactive forecasting.

2.2. Dynamic Reactive Power Optimization Model Based on
Interval Uncertainty. �e MISOCP is an interval mixed-
integer nonlinear optimization problem with multiple con-
straints. �e objective is to minimize of the active power
losses, which is given by

min ∑
�∈�
�	
��,� (�) = ∑

�∈�
[[ ∑
(�,)∈�

(��,��2�,� + �2�,��2�,� )]] (4)

�e MISOCP optimization is supposed to satisfy the
equality constraint of the power �ow equation, as shown by

��,�,�± + ���,�,�± + ���,�,�± − ��,�,�± = ∑
�∈�(�)

���,�
− ∑
∈�(�)

(��,� − ��,��2�,� + �2�,��2,� ) , ∀� ∈ � (5)

��,�,�± + ���,�,�± + ���,�,�± − ��,�,�± = ∑
�∈�(�)

���,�
− ∑
∈�(�)

(��,� − ��,��2�,� + �2�,��2,� ) + ��,�,��2�,�,
∀� ∉ Ω

(6)

��,�,�± + ���,�,�± + ���,�,�± − ��,�,�± + 12�2�,���,�= ∑
�∈�(�)

���,�
− ∑
∈�(�)

(��,� − ��,��2�,� + �2�,��2,� ) + ��,�,��2�,�,
∀� ∈ Ω

(7)

�2�,� = �2,� − 2 (��,���,� + ��,���,�) + (�2�,� + �2�,�)
⋅ �2�,� + �2�,��2,� , ∀ (�, �) ∈ � (8)

�2�,��!2�,� = �2,� − 2 (��,���,� + ��,���,�) + (�2�,� + �2�,�)
⋅ �2�,� + �2�,��2,� , ∀ (�, �) ∈ � (9)

�e inequality constraints of the MISOCP optimization
are given as shown by (10) to (16):

Voltage and branch current constraints:��,min,� ≤ ��,� ≤ ��,max,�, ∀# ∈ � (10)

√ (�±�,�)2 + (�±�,�)2(%�,�)2 ≤ &�,max,�, ∀ (�, �) ∈ � (11)

Switched capacitor/reactors (SCRs) discrete constraints:��,� = '�,�!�,�, ∀� ∈ Ω (12)

��,min,� ≤ ��,� ≤ ��,max,�, ∀� ∈ Ω (13)

��∑
�=0

****'�,�+1 − '�,�**** ≤ -�, ∀� ∈ Ω (14)

On-load taps changers (OLTCs) discrete adjustment con-
straints: �!�,min,� ≤ �!�,� ≤ �!�,max,�, ∀ (�, �) ∈  (15)

��∑
�=0

*****�!�,�+1 − �!�,�***** ≤ -��, ∀ (�, �) ∈  (16)

where � = 0, 1, ⋅ ⋅ ⋅ ,  �; �	
��,� represents the total transmission
loss at time period �; � is the set of buses; � is the set of
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branches; � is the set of branches with transformers; Ω is
the set of buses for shunt capacitors/reactors; .(�) represents
the set of all parents of bus �; /(�) represents the set of
all children of bus �; (�, �) ∈ �/ denotes (�, �) ∈ �,(�, �) ∉ �; ��/�� represents the active/reactive power �ow
from bus � to bus �; ��/�� represents the active/reactive of
the generator at bus �; �� represents the voltage magnitude
of bus �; ��/�� represents the resistance/reactance of branch(�, �); ��,� represents the shunt susceptance from � to ground;��,max/��,min represent the upper/lower bound of voltage
magnitude at bus �; &�,max represents the current capacity
limit of branch (�, �); �� represents the value of shunt reactive
power compensation of bus �;'� represents the optimal step of
shunt capacitors/reactors at bus �; !� represents the step size of
shunt capacitors/reactors at bus �;��,max/��,min represents the
upper/lower bound of reactive power compensation of bus �;-� are the specied maximum operational times of the SCRs
capacitors; �!�,max/�!�,min represents the upper/lower bound
of the tap ratio of the transformer branch (�, �); �!� represents
the tap ratio of the transformer branch (�, �); and -�� are the
specied maximum operational times of the tap changers.

3. Optimization Model Conversion Based on
Interval Uncertainty

�e interval number is dened as a set of random variables
with the upper and the lower bounds:

�± = [�−, �+] = {� | �− ≤ � ≤ �+, � ∈ R} (17)

where �− and �+ are the upper and the lower bounds. When�− = �+, the interval degenerates to a real number.
�e general form of an interval optimization problem is

min 6± (x±)
!.�. g

± (x±) ≥ 0
x
± = [x−, x+]

(18)

where x± is the vector of the variables which can be repre-
sented by

x± = [�±1 , ⋅ ⋅ ⋅ �±�� , �±��	���, �±1 ⋅ ⋅ ⋅ �±�� , �±1 , ⋅ ⋅ ⋅ �±�� , �!±1 ,⋅ ⋅ ⋅ , �!±��] (19)

�±1 , ⋅ ⋅ ⋅ �±�� and �±��	��� are the state variables; �±1 ⋅ ⋅ ⋅ �±��,�±1 , ⋅ ⋅ ⋅ �±�� , and �!±1 , ⋅ ⋅ ⋅ , �!±�� are the control variables.
According to the basic properties of the interval matching

and the extreme interval selection, the following theorem can
be obtained [25]: �e necessary and su�cient condition for
the interval function 6±(�±) = [6+(�), 6−(�)], to obtain
the maximum (minimum) value at the point �∗ in the eld
G, is that the upper boundary functions 6+(�) and lower
boundary functions 6−(�) obtain the maximum (minimum)
value at this point. As a result, the problem of the interval
planning can be converted into two regular deterministic
optimization problems.

Interval mixed-integer nonlinear optimization problem
represented by (4) to (16) can be transformed into the
deterministic nonlinear programming problems with the
minimization of the upper and the lower boundary functions
denoted by

min 6− (x)
!.�. g

+ (x) ≤ 0 (20)

min 6+ (x)
!.�. g+ (x) ≤ 0 (21)

4. The Multistage Mathematical Model of
Dynamic Reactive Power Optimization

4.1. Relaxed Dynamic Reactive Power Optimization Model for
Interior Points. Equations (20) and (21) are both determin-
istic nonlinear programming problems. Firstly, the discrete
control variables such as switched capacitor/reactors and on-
load taps changers are relaxed as continuous variables. And
then the restrictions on the number of times of reactive
power control equipment are relaxed, which means we do
not consider the limit of the times of actions rstly. �e
optimal solution obtained by solving the relaxation model
is the lower bound of the optimal solution of the original
reactive power optimization model shown by (20) and (21).
Relaxation model is as follows:

min
��∑
�=0
6 (x�, x̃�) (22)

!.�. h� (x�, x̃�) = 0 (23)

g� (x�, x̃�) ≤ 0 (24)

xmin,� ≤ x� ≤ xmax,� (25)

xmin,� ≤ x̃� ≤ xmax,� (26)

��−1∑
�=0

****x̃�,�+1 − x̃�,�
**** ≤ -, � = 1, ⋅ ⋅ ⋅ , > (27)

Equation (27) contains the constraint of the absolute
value of the variables, which does not satisfy the second-
order continuous and di�erentiable properties. To overcome
this problem, we present a method to transform absolute
inequality constraints into general inequality constraints
using−/�,� ≤ (x̃�,�+1 − x̃�,�) ≤ /�,�,� = 1, ⋅ ⋅ ⋅ , >; � = 0, ⋅ ⋅ ⋅ ,  � − 10 ≤ /�,� ≤ /max,�,�, � = 1, ⋅ ⋅ ⋅ , >; � = 0, ⋅ ⋅ ⋅ ,  � − 1
��−1∑
�=0
/�,� ≤ -�, � = 1, ⋅ ⋅ ⋅ , >

(28)
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Table 1: Parameters of reactive power adjustment equipment (IEEE 14-bus).

Capacitor node upper bound/Mvar lower bound/Mvar Adjustment step /Mvar Number of actions

1 7 +30 −30 2 5

2 13 +30 −30 3 4

3 14 +30 −30 3 4

Transformer Branch Lower bound/p.u. Upper bound/p.u. Adjustment step/p.u. Number of actions

1 4-7 0.925 1.075 0.025 4

2 4-9 0.925 1.075 0.025 5

3 5-6 0.925 1.075 0.025 5

where /�,� is the auxiliary variable and /max,�,� are the specied
maximum operational times of the SCRs capacitors and the
on-load tap changers at time �.
4.2. Loss in Increments as Small as the Target of Discrete
Variables. �e solution of the relaxation model is 6−− and 6+− ,
which are the lower bounds of the original problems (20)
and (21). Based on the solution of the relaxation model, a
model is established for each discrete device that minimizes
the amount of collation error as the objective function with
constraints of time coupling. �e variables discretization
model of problems (20) and (21) is essentially a mixed integer
quadratic programming:

min (6− (x) − 6−− )2
!.�. ��−1∑

�=0

****'�,�+1 − '�,�**** ≤ -
'� ∈ In�@A@�

(29)

min (6+ (x) − 6+− )2
!.�. ��−1∑

�=0

****'�,�+1 − '�,�**** ≤ -
'� ∈ In�@A@�

(30)

4.3. Fine-Tuning for Continuous Variables. By solving (29)
and (30), the optimal solution of all the discrete variables in
the original optimization model represented by (20) and (21)
can be achieved. And then, all the discrete variables in (20)
and (21) can be xed by an optimization solution obtained
by (29) and (30), so that the original optimization model
is transformed into a general nonlinear optimization model
containing only continuous variables which can be solved
quickly by interior point method.

5. Experimental Result

5.1. Con	guration of 
ree Test Systems. �ree benchmark
systems including IEEE 14-bus, 118-bus, and 300-bus system
are employed to evaluate the presented approaches facil-
itating DPRO containing the renewable energy resources.
�e expanded IEEE 14-bus system has three transformer
branches, eight load nodes, and ve generators.�e load data
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Figure 1: Typical daily load curve.

is calculated by the load of the IEEE 14-bus loadmultiplied by
scale factor which is depicted in Figure 1. �e bounds of the
loads and the generator output are set as [0.95, 1.05] p.u..�e
wind farm is connected to node 5, which has a total number
of 40 wind turbines. Single rated power of wind turbine is
2.5MW. �e total wind power output of the wind farm is
within [20MW, 80MW]. Photovoltaic power stations with a
rated power of 50MW are connected to node 14, and the
light intensity interval is given in [26]. �e PV array output
is within [29.9kW, 36.6kW]. �e parameters of the reactive
power adjustment equipment in the IEEE 14-bus system are
shown in Table 1.

�e location, the active output, and the reactive power
output of the renewable energy power generation in the IEEE
118 and 300 systems are shown in Table 2. �e parameters
of the reactive power adjustment equipment in the IEEE
118-bus and 300-bus systems are shown in Tables 3 and
4.

5.2. Comparison of Solution Property between Interval Opti-
mization and Deterministic Approach. In order to verify
the e�ectiveness of the interval optimization algorithm in
this paper, the optimization based on Monte Carlo (MC)
is also conducted in terms of comparison. Assuming that
the known interval variables are the uniformly distributed
uncertain variables, the interval uncertainty in the dynamic
multistage reactive power optimization is carried out using
MC. �e maximum and minimum values of the interval
uncertainty in the calculation result are employed as the
upper and lower bounds for the desired interval variable.
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Table 2: Parameter of renewable energy sources (IEEE 118-bus and IEEE 300-bus).

Number
Connected node

Active power output interval/MW Reactive power output interval/Mvar
IEEE 118 IEEE 300

1 6 8 [8.2, 17.8] [−2.6, 4.4]
2 11 20 [8.9, 15.1] [−3.1, 5.2]
3 19 28 [10.4, 24.5] [−4.7, 7.3]
4 24 99 [2.6, 15.4] [−3.8, 6.9]
5 39 147 [12.3, 18.9] [−2.8, 5.5]
6 69 176 [3.1, 19.9] [−3.2, 6.3]
7 85 213 [11.2, 19.2] [−2.7, 4.7]
8 95 222 [6.2, 23.2] [−3.5, 5.7]
9 107 236 [8.2, 17.5] [−2.7, 6.8]
10 111 239 [7.0, 24.5] [−3.9, 7.5]

Table 3: Parameters of reactive power adjustment equipment (IEEE 118-bus).

(a)

Capacitor node upper bound/Mvar lower bound/Mvar Adjustment step/Mvar Number of actions

1 2 +30 −30 2 5

2 16 +30 −30 3 3

3 33 +30 −30 3 4

4 41 +30 −30 2 3

5 43 +30 −30 4 3

6 44 +30 −30 6 4

7 48 +30 −30 3 5

8 53 +30 −30 4 4

9 67 +30 −30 3 2

10 82 +30 −30 5 5

11 88 +30 −30 3 4

12 96 +30 −30 5 3

(b)

Transformer Branch upper bound/p.u. Upper bound/p.u. Adjustment step/p.u. Number of actions

1 8 - 5 0.925 1.075 0.025 4

2 26 - 25 0.925 1.075 0.025 3

3 37 - 38 0.925 1.075 0.025 4

4 63-59 0.925 1.075 0.025 4

5 65-66 0.925 1.075 0.025 3

Figure 2 shows the IEEE 14-bus system network loss bound-
ary along with the increasing number of the MC sam-
ples. It can be observed that the number of the iterations
increases, and the upper and lower bounds of the network
loss of the system tend to be stable. In our experiments
the number of samples is set to be 5000 to make a com-
promise between calculation time and algorithm accuracy.
�e results of the MC method are used as a comparative
standard.

In order to evaluate the calculation error of the method
in this paper, we dene two interval indices including the
interval mean ������ and the interval radius H�����. For any
interval [I−, I+], the mean and radius of the interval are
dened as

������ = (I− + I+)2 (31)

H����� = (I+ − I−)2 (32)

�e relative error between the MISOCP and MCmethod
is dened as

J� = *****�MISOCP

����� − ��������*********��������**** × 100% (33)

J� = *****HMISOCP

����� − H�������*********H�������**** × 100% (34)
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Table 4: Parameters of reactive power adjustment equipment (IEEE 300-bus).

(a)

Capacitor node upper bound/Mvar lower bound/Mvar Adjustment step/Mvar Number of actions

1 7 +30 −30 2 5

2 16 +30 −30 3 3

3 35 +30 −30 3 4

4 44 +30 −30 2 3

5 48 +30 −30 4 3

6 51 +30 −30 6 4

7 58 +30 −30 3 5

8 63 +30 −30 4 4

9 67 +30 −30 3 2

10 82 +30 −30 5 5

11 88 +30 −30 3 4

12 97 +30 −30 5 3

13 136 +30 −30 4 5

14 159 +30 −30 3 3

15 164 +30 −30 5 4

16 173 +30 −30 3 4

17 278 +30 −30 4 3

18 289 +30 −30 6 4

19 7008 +30 −30 4 2

20 7015 +30 −30 4 3

21 7139 +30 −30 2 4

22 9044 +30 −30 5 3

(b)

Transformer Branch upper bound/p.u. Upper bound/p.u. Adjustment step/p.u. Number of actions

1 9001-9006 0.925 1.075 0.025 4

2 9001-9012 0.925 1.075 0.025 3

3 9005-9051 0.925 1.075 0.025 4

4 9005-9052 0.925 1.075 0.025 4

5 9005-9055 0.925 1.075 0.025 3

6 3-1 0.925 1.075 0.025 4

7 3-2 0.925 1.075 0.025 3

8 7-5 0.925 1.075 0.025 3

9 7-6 0.925 1.075 0.025 4

10 10-11 0.925 1.075 0.025 3

11 12-11 0.925 1.075 0.025 3

12 21-20 0.925 1.075 0.025 3

13 24-23 0.925 1.075 0.025 4

14 36-35 0.925 1.075 0.025 4

15 160-121 0.925 1.075 0.025 3

where �MISOCP

����� and �������� are the interval mean of the total
transmission losses obtained using the MISOCP and MC

method and HMISOCP

����� and H������� are the interval radii of the
total transmission losses.�e results of the interval radius and
mean of each system are shown in Tables 5 and 6.

As can be seen from Tables 5 and 6, the interval radius
errors of the transmission loss do not exceed 8%; the interval
mean error does not exceed 0.6%. Obviously, the result of
the MISOCP method is highly close to that of the MC

method. Based on the analysis mentioned in Tables 5 and
6, it can be seen that the results of MISOCP method and
MC method are relatively close. However, the results of the
MISOCP method are slightly conservative, which means
that the overestimated phenomenon exists. �e reasons are
as follows: (1) �e MC method tends to underestimate the
bounds of interval variables in the case of interval variables
with a mean of 0, which is presented in research [25]; (2) the
MISOCP method does not deal with the correlation and the
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Figure 2: Number of sample points in MC method e�ect on the
result of MISOCP.

Table 5: Relative error analysis of the interval radius of transmission
losses in MISOCP.

Relative error of the interval radius of transmission losses/%

IEEE 14 IEEE 118 IEEE 300

0.64 7.85 7.16

Table 6: Relative error analysis of the average of transmission losses
in MC.

relative error of the interval radius of transmission losses/%

IEEE 14 IEEE 118 IEEE 300

0.00 0.04 0.05

package e�ect between the interval variables, which causes its
conservation and overestimation for the interval boundary.

In this paper, we employ the interval matching and
extreme interval selection to decompose the DRPO model
considering renewable energy integration into two deter-
ministic dynamic reactive power optimization models. And
then our approach relaxes the discrete variables into the
continuous variables and obtains the relaxation solution.
�e total system transmission losses without considering
the renewable energy integration are 30.674 MW. �e
lower bound of the transmission loss is 32.346MW and
the upper bound of the transmission loss is 34.672MW.
�en, we can get the transmission loss interval results of[32.346MW, 34.672 MW]. Using the approaches presented
in this paper, we can get the whole system node voltage
amplitude distribution as shown in Table 7 which indicates
that when the renewable energy is connected, the node
voltages are basically within the voltage range using the
system dynamic reactive power optimization.

We further analyze the impacts of the discrete device
actions and the device adjustment steps of the optimization
results. Obviously, the result of the discretization is closer to
the relaxation solution, and the result is better. Based on this
idea, the discretization results of the actual operation times of
SCRs and OLTCs are shown in Figures 3 and 4.

Table 7: Node interval voltage a	er optimization.

Number Node interval voltage a�er optimization

Node 1 [1.076, 1.076]
Node 2 [1.041, 1.041]
Node 3 [1.032, 1.032]
Node 4 [1.015, 1.043]
Node 5 [1.013, 1.046]
Node 6 [1.046, 1.046]
Node 7 [1.024, 1.044]
Node 8 [1.072, 1.072]
Node 9 [1.037, 1.049]
Node 10 [1.019, 1.036]
Node 11 [1.043, 1.056]
Node 12 [1.031, 1.051]
Node 13 [1.026 1.047]
Node 14 [1.016, 1.038]
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Figure 3: Discretization of capacitor switching.

Figures 3 and 4 indicate that when the number of the
operations is constant, the large-step adjustment can achieve
better results. When the number of the actions is small,
the adjustment of the small steps is di�cult to follow the
system load �uctuations so that the adjustment result is less
e�ective.

5.3. Comparison ofComputational Performance between Inter-
val Optimization and Deterministic Approach. Table 8 shows
the running time of the MC and MISOCP in calculating
di�erent systems. �e MC method requires a large number
of sampling points (5000 in this paper) for power �ow
calculation. However, the calculation of MISOCP method
only needs to calculate the nonlinear interior programming
problem twice, which performs e�ciently. Table 8 also
indicates that the e�ciency of MISOCP method is more
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Figure 4: Discretization of transformer tap adjustment.

Table 8: Comparison of calculation time of three test systems.

Time(s)

IEEE 14 IEEE 118 IEEE 300

MC 213.7 2685.8 7231.4

MISOCP 5.45 21.38 43.73

e�cient than that of the MC method when the system size
increases.

6. Conclusion

In this paper, a multistage dynamic reactive power optimiza-
tion method based on the interval uncertainty is presented
to address the high penetration of uncertain renewable
energy integrated into power system networks, which uses
the selection theory of interval extremum to decompose
the uncertainty problem into two deterministic same-type
subproblems. To address the daily operating times of discrete
control variables, intertemporal constraints and discrete con-
trol variables in the DRPO are relaxed to a large-scale nonlin-
ear nonconvex programming. �e experimental results show
that the proposed method can solve the optimization with
higher e�ciency and less error.

Data Availability

�e IEEE bus models used to support the ndings of this
study have been deposited in the [Department of Electrical
Engineering at the University of Washington] repository
http://www.ee.washington.edu/research/pstca/.
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