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Abstract

A class of explicit multistage time-stepping schemes is used to construct

an algorithm for solving the compressible Navier-Stokes equations. Flexibility

in treating arbitrary geometries is obtained with a finite-volume formulation.

Numerical efficiency is achieved by employing techniques for accelerating

convergence to steady state. Computer processing is enhanced through

vectorization of the algorithm. The scheme is evaluated by solving laminar

and turbulent flows over a flat plate and an NACA 0012 airfoil. Numerical

results are compared with theoretical solutions or other numerical solutions

and/or experimental data.
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Introduction

In recent years, much progress has been made in the development of faster

methods for solving the compressible Navier-Stokes equations. This progress

is due primarily to improved numerical algorithms and the arrival of

specialized computers such as vector processors. However, many more

contributions in these areas will be necessary before efficient and reliable

solutions of the Navier-Stokes equations can be obtained for complex

aerodynamic configurations.

The current availability of a variety of solvers for the Euler equations

provides many opportunities for exploring possible Navier-Stokes solvers. One

strong candidate for a rapid solver is the very efficient explicit multistage

tlme-stepplng scheme for the Euler equations developed by Jameson, Schmidt,

and Turkel. I This algorithm is formally second-order accurate except near

shock waves where the controlled addition of dissipation permits shock

capturing without oscillations. It has the highly desirable property that the

steady-state solution is independent of the time step. The efficiency and

robustness of this finite-volume scheme has been demonstrated by several

investigators. 2-4 Also, this scheme has been successfully applied to three-

dimensional flow problems. 5-6 In the present work, this algorithm is extended

to allow the computation of viscous flows. Computational efficiency is

achieved for high Reynolds number viscous flows in three ways: I) use of

local time stepping; 2) extension of local stability range by implicit

residual smoothing; 3) vectorization of computer code.

While the current effort was in progress, Agarwal and Deese 7 presented a

Runge-Kutta scheme for the thin-layer Navier-Stokes equations. Their

principal purpose was to demonstrate the versatility of a Runge-Kutta scheme
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by applying it to a variety of fluid dynamics problems. Thus, the focus of

their work is quite different from that of the present investigation, where

the emphasis is on accuracy and convergence acceleration.

In this paper the governing equations and basic elements of the viscous

flow solver are presented. An initial evaluation of the numerical method is

achieved by solving laminar and turbulent flows over a flat plate and an NACA

0012 airfoil. Computer results are compared to theoretical solutions or other

numerical solutions and/or experimental data. Convergence behavior of the

scheme is also discussed.

Governing Equations

Let P, (u,v), p, E, and H denote the density, Cartesian velocity

components, pressure, total internal energy, and total enthalpy,

respectively. The unsteady, two-dimensional Navier-Stokes equations,

neglecting body forces and heat sources, can be written in integral form as

follows:

_j_ WdV + J_ H'_dS = 0 (I)_t
V S

where

P Pq

+ + --

PU puq + pe x + _°_x
W= _= + + = +

pv pvq + pey + T°ey

pE pHq + _'$-
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q = ue + ve
x y

-- +. +. .. .+
_=_ee +T ee +T ee +Gee

x x x xy x y yx y x y y y

_-_ _u

Ox \Sx + By/ - 2B _x

Txy ryx B +

8v

= _x + _y - 2_-_y

klST _ + _T + )Q = kVT = _x x _ ey

I(+)E = e +_ u2 v2

^

H=E+ p
P

and . .
ex, ey are unit vectors of the Cartesian coordinate system (x,y), and

+
n is a unit vector normal to the surface S enclosing the volume V. In this

paper the working fluid is air, and it is assumed to be thermally and

calorically perfect. That is, the equation of state is

p = pRT (2)

where R = --Cp- _v' and the specific heats Cp, _v are constant. The

quantities _ and l are the first and second coefficientsof viscosity,

respectively,and _ is taken to be 2- _ _ (Stokeshypothesis). A simple
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power law is used to determine _. The coefficient of thermal conductivity

(k) is evaluated using the constant Prandtl number assumption.

Finite-Volume Formulation

In two dimensions the volume has unit depth, and thus Eq. (I) can be

written as

_---JJ w dx dy + J H,_ ds = 0 (3)at

where fl is the region of interest, and _fl is the boundary curve. Let the

second-order tensor _ be defined by

= F_ + G_ (4)
x y

where

pu

pu2 + P + Ox

F

pu_- + Txy + V_ - k _T
puH+ u_x xy -_

DV

puv + Tyx

G = PV2 + P + _Y
A

pvH + uT + v_ - k _T
yx y _ °
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Then, using Cartesian coordinates Eq. (3) becomes

_---ff W dx dy + f (Fdy - Gdx) = 0. (5)_t

The computational region is partitioned with quadrilaterals, and Eq. (5) is

applied to each quadrilateral. This process is equivalent to performing a

mass, momentum, and energy balance on each cell. By decoupling the temporal

and spatial terms, a systems of ordinary differential equations is obtained.

These equations can be solved with a variety of tlme-stepping schemes.

Applying Eq. (3) to an arbitrary quadrilateral (i.e., ABCD in Fig. i) and

approximating the line integrals with the midpoint rule we obtain

ddt (SijWij) + IWij = 0 (6)

where i is a spatial discretization operator, and

IWij = HAB + _C + HCD + _A"

The components of Wij are now cell-averaged quantities, Sij is the area of

the cell ABCD, and the indices (i,j) identify the cell. The vectors

HAB' _C' HCD' _A represent the fluxes through the sides. For example,

_C = FBC AYBc - GBC AxBC (7)

where FBC and GBC are the mean values of F and G on the side BC, and
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AYBc = YC - YB

AxBC = xC - xB.

Consider the x-momentum equation. The flux associated with face BC is

HBC = (ul,j+I/2AyBC - vl,j+I/2AxBC)(pu)I,j+I/2

+ Pl,j+I/2AYBc + (HBC)vi s (8)

where

(HBC)vl s = (Ox)BC AYBc - (Tyx)BC AxBC

and letting _ be any cell face quantity,

i( )_i,j+I/2--Y_i,j+ _i,j+l•

The flrst-order derivatives of the viscous terms, (HBC)vls , are evaluated with

Green's theorem. For example,

(Ux)i,j+i/2= (Ux)BC = I_____j UxdXdySBC -

_ 1 Judy, (9a)
SBC _"
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= (Uy) = -----JJ Uy.....
(Uy) i,_+ I/2 BC SBC _-

(9b)

___ _ J udx,
SBC B_"

where iIS + Si'3+l )SBC=_ i,j

and _" is the curve A'B'C'D" (see Fig. I). If the streamwise-like

differences associated with the viscous flux quantities are neglected (thin-

layer Navier-Stokes assumption), the viscous terms in the flux HBC can be

given by 4 2 + AxCB
- _ AYcB

(HBC) vis = SBC

• _A(ul,j+l- ul,j)

A CB)+ AYcB

I (lo)• _A_Vl,j+1- vi,_ '

I + _i,j+l). Note that

where AYcB = -AYBc' AxCB = -AXBC' and _A = _ (_i,j

with the thln-layer assumption, there are viscous contributions to fluxes
work the thin-layer assumption is

HB C and HDA only. In the present

applied. For additional details on the finite-volume formulation just

described, see Ref. B.
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DissipativeTerms

In order to suppress any odd-even point decoupling in the numerical

solution and to prevent oscillationsin the vicinity of shock waves and

stagnationpoints,artificialdissipationterms are added to the finite-volume

scheme. Therefore,Eq. (6) is replacedby

d

d--{(SW)+ LW- DW = 0 (11)

where D is the artificial dissipation operator, and the indices have been

suppressed for convenience. Through numerical experiments Jameson I

established that an effective form for DW is a blend of second and fourth

differences with coefficients that depend on the local pressure gradient.

This form is constructed in the following way:

DW = D W + D W (12)
x y

where D W and D W are the contributions associated with the two
x y

coordinate directions, and in conservation form

W - d. (13a)
Dx = Hi+ 1/2,j l- 1/2,j

D W - (13b)
y = di,j+l/2 di,j-I/2"

The terms on the right side of Eqs. (13a) and (13b) have a similar form; for

example, taking At as the Courant-Friedrichs-Lewy time step,
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Si+i/2 ,j [g(2)

di+I/2 ,j - At [ i+I/2 ,j(Wi+1,j - Wi,j

)

g(4)
- i+ I/2,j (Wi+2,j - 3Wi+l,j

+ 3Wi,j - Wi_l,j) ]. (14)

The coefficients g(2) and _(4) are adapted to the flow and are defined as

follows:

IPi+1'J - 2Pi'J + Pi-l'J[ (15)

_i,j = Pi+l,j + 2Pi,j + Pi-l,j '

g(2) = K(2) max(_i+l, j vi,j) (16)i+i/2,j ' '

_(4)i+1/2,j = max(0, (K(4) - g_2)/2 ,j)), (17)

where typical values of the constants _(2) and K(4) are I/4 and 1/256,

respectively. In the current work pH is used instead of pE in the

dissipative terms in the energy equation. This is done so that constant H

can be a solution of the energy equation.

In smooth regions of the flow field, the dissipative terms are third-

order. The dissipation becomes first-order in the neighborhood of a shock

wave. However, this does not compromise the global second-order accuracy of

the finite-volume scheme. Note that the fourth difference is eliminated near

shocks since it can have a destabilizing effect on a numerical calculation.9

In the case of viscous flows significant gradients in the velocity field

exist in the region adjacent to a solid boundary. Therefore, even though the
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artificial viscosity coefficients "[K(2), _(4)j- are small, the artificial

dissipation can produce viscous-like effects of the same order as the physical

ones. In the present work numerical experiments for turbulent flow over a

flat plate showed significant artificial viscous effects, even with _(2) = 0

and small values of K(4). By setting the normal contribution to the

artificial dissipation (Dy W) to zero in at least the law-of-the-wall region

of the turbulent boundary layer accurate solutions were obtained (see Results

and Discussion section).

Time-Stepping Scheme

A member of a class of four-stage schemes is employed to advance the

solution of Eq. (II) in time. This scheme takes the following form at time

level n:

w(0) = wn

w(I)= w(°)- aI AtRW(°)

W(2) = W(0) - _2 At RW (I)

(18)

W(3) = W(0) - _3 At RW (2)

W(4) = W (0) - At RW (3)

Wn+l = W (4)
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where on the (q+l)st stage

RW(q) I (iw(q) _Dw(0))=

and

_I = I/4, =2 = I/3, =3 = I/2.

For efficiency both the physical and artificial viscous terms are evaluated at

the first stage and frozen for the remaining stages. The scheme of Eq. (18)

is a modified version of the classical fourth-order Runge-Kutta scheme. The

advantage of the modified scheme is that it requires less storage of array

quantities in computer processing, an important consideration for three-

dimensional calculations. According to linear stability analysis on a model

wave equation the modified algorithm has the same stability (i.e., same

amplification factor) as the Classical scheme. 5 The method of Eq. (18) is

fourth-order accurate in time only for linear equations; it is second-order

accurate for nonlinear equations. However, since the primary objective here

is to compute steady-state solutions, this is not viewed as a deficiency of

the scheme.

The Runge-Kutta time-stepping scheme is more efficient than explicit

schemes such as unsplit MacCormack and leapfrog. I Also, this scheme has the

desirable property that if RW n = 0, then W(I) = W(0), and thus at the final

stage of the scheme Wn+l = Wn. Therefore, the steady-state solution in

independent of the time step, and the scheme is amenable to a variety of

techniques for accelerating steady-state convergence.
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Acceleration Techniques

Three methods are employed to accelerate convergence of the basic time-

stepping scheme. These techniques are as follows: I) local time stepping; 2)

enthalpy damping; 3) residual smoothing. They are discussed in the subsequent

subsections.

Local Time Stepping

With this technique the solution is advanced in time with a time step

dictated by the local stability limit. In the present work the local At is

based on the Courant-Friedrichs-Lewy (CFL) stability limit. Local time

stepping allows faster signal propagation, and thus faster convergence.

Enthalpy Damping

In Ref. 1 enthalpy damping was introduced for the Euler equations. This

method accelerates convergence through artificial damping terms. These terms

are added to each equation in general and depend on the deviation of the local

total enthalpy (H) from the steady-state value (Hm). Since the total

enthalpy is constant throughout a steady, invlscld flow field in which uniform

free-stream conditions exist, such forcing terms are zero in the steady state.

Under certain assumptions the total enthalpy may be taken as constant for

viscous flows. If the dominant viscous terms are retained (boundary-layer

type approximation), the following form of the energy equation for laminar

flow can be derived:
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(pE) + _ ^ _ ^( ua) + ( vH)

- 3y "_ -_y . (19)

Then, if there is no heat transfer at solid surfaces, and the Prandtl number

(Pr) is unity, constant H is a steady-state solution of Eq. (19). In the

case of turbulent flow a mean flow energy equation of the same form as Eq.

(19) can be obtained if the eddy viscosity hypothesis is used (see section on

turbulence modeling), and small work terms are neglected. Then, if the

surfaces are adiabatic, and both the laminar and turbulent Prandtl numbers are

unity, constant total enthalpy is a solution of the energy equation.

Using enthalpy damping computations exhibit a more monotone convergence

to steady state. This property is especially useful if an acceleration

procedure such as residual smoothing is applied with the Runge-Kutta scheme.

Residual Smoothing

Residual smoothing was first introduced by Lerat I0 for use with the Lax-

Wendroff scheme. Jameson II later introduced a similar technique in conjunction

with the Runge-Kutta schemes. With this technique the stability range of the

basic time-stepping scheme is extended. Linear stability analysis indicates

that the Runge-Kutta scheme with residual smoothing is unconditionally stable

if the smoothing parameter is sufficiently large. 9 However, as revealed in

the subsequent analysis, the fastest convergence to steady state is not

realized with a very large time step.
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Consider the following two-step scheme:

(I) nu = u - aAtLun

(20)

( _ n (i)
u"2" = u - Atiu

where i is a spatial discretization operator. The residual smoothing for

the second stage is given by

£_(I - --_6£6(£)I (un+l-xx/ un) --u (2) - nu (21)

where _ is the standard central difference operator, and the product is
XX

over the number of space dimensions. Now, consider the model problem

ut + Ux + _aX3Uxxxx = 0. (22)

If _ = 0, a Fourier transform of Eq. (21) yields

e

I + 6 sin2 y (G
I)

=-il sin 8- el2 sin2 e (23)

where

At

x=._, e=kx _

and kx is a wave number. Equation (23) can be written as
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iX sin 8 + =X2 sin2 8
G = I- . (24)

I + 8 sin2 e
2

Then, taking the smoothing parameter 6 = ck2, Eq. (24) for large _ reduces

to

e sin 2 @

8 (25)

G(8) = 1 c sin 2

Thus, without an artificial viscosity the highest frequency, 8 = _, is not

damped.

If the artificial third-order dissipation (_ # 0) is added, then Eq.

(24) is replaced by

G(8) = 1 + XA(I + XA) (26)

1 + cX2 sin2
2

where

= -i sin O + _ sln 4 O
2

and v is proportional to m. As _ gets large,

v2
G(_) ~ I +_--> I. (27)

Therefore, the scheme is not stable for large X. However, if the same

artificial viscosity is used at both stages, then Eq. (24) is replaced by

il sin O(l + eX_) - Xv sin 4 2
G(8) = 1 - . (28)

i + CX2 sin 2 _
2

As X approaches infinity,the coefficientof the artificialviscositygoes

to zero, and so Eq. (25) is recovered. When the artificialviscosityterm is
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frozen, the scheme remains unconditionally stable. However, when % is

large, the highest frequency is damped only a small amount proportional to

I/_. Therefore, the strategy is to minimize G*G rather than choose

large.

The analysis just given for a two-stage tlme-stepping scheme suggests

that for multistage schemes residual smoothing is needed only at alternate

stages (i.e., after stages 2 and 4 of a four-stage scheme). Thls frequency of

smoothing has been used in solving the Euler equations. However, based on

stability considerations for parabolic problems, 9 the residual smoothing is

applied at every stage in the present scheme for the Navier-Stokes equations.

Boundary Conditions

A typical domain for a viscous airfoil calculation is considered in

describing the boundary conditions. At the body surface the boundary

conditions are as follows: i) no slip (velocity components u and v are
i

zero); 2) adiabatic surface condition (_T/Sy = 0). The reduced normal

momentum equation _p/_y = 0 is used to compute the surface pressure. At

the outer boundary (ABC in Fig. 2) both inflow and outflow can occur.

Subsonic invlscid characteristic theory indicates that three quantities should

be specified at an inflow boundary. In the case of inflow the total enthalpy

(H), entropy (s), and tangential velocity (U) are assigned free-stream

values. A one-dimensional flow analysis is applied normal to the boundary,

and the normal velocity (V) is then computed by extrapolating the Riemann

invariant

V + 2a
T----l" (29)
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from the interior of the domain. The quantity a is the speed of sound, and

y is the ratio of specific heats. In the case of outflow the quantities

^

H, s, and U are extrapolated from the interior, and the Riemann invariant is

2av . (3o)

Two methods have been investigated for treating the downstream (outflow)

boundary AC. They are as follows: I) static pressure is specified, (p = p_),

and density and velocity components (u,v) are extrapolated from the

interior; 2) dependent variables (W) extrapolated from the interior. In the

airfoil cases considered, method 2 required less steps for a converged

solution than method i, and the solution in the vicinity of the airfoil was

essentially the same. However, method 2 is not consistent with characteristic

analysis. At the present time nonreflecting-type boundary conditions are

being investigated.

For supersonic flows free-stream conditions are specified at inflow

boundaries, and flow quantities are extrapolated from the interior at outflow

boundaries.

Turbulence Modeling

Using mass-averaged variables 12 the time-averaged flow equations have the

same form as their laminar flow counterparts, except that the stress tensor is

augmented by the Reynolds stress tensor, the heat flux vector is augmented by

the additional heat flux terms associated with the turbulence, and additional

mean energy dissipation terms appear (in many cases these terms can be
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neglected). To close the time-averaged equations for turbulent flow the eddy

hypothesis (Reynolds stress and heat flux terms are related to mean flow-field

gradients) is used. Moreover, the eddy viscosity, which is added to the

molecular viscosity to obtain the effective viscosity, is computed with the

two-layer algebraic model of Baldwin and Lomax. 13 The Reynolds heat flux

terms are approximated using the constant Prandtl number assumption. Thus,

= _% + Bt (31a)

k = C + (31b)
p _ t

where the subscripts _ and t refer to laminar and turbulent. In the

present work the Prandtl numbers are assumed to be 1.0.

Results and Discussion

The numerical scheme described in the preceding sections has been applied

to the following test problems: i) flow over a flat plate; 2) flow over an

NACA 0012 airfoil. For each test problem, solutions were obtained for both

laminar and turbulent flow. In the laminar cases the free-stream Mach number

(M) was 0.5, and the free-stream Reynolds number (Re_) was 5 x 103 . In

the turbulent cases the range of M was 0.5 - 0.756, and the range of Re

was 106 - 4.01 x 106. The reference length for the airfoil cases was the

chord C.
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Flat Plate Boundary-Layer Flows

For the flat plate calculations the nondimensional distance between the

leading edge (X/L = 0) and the downstream boundary of the rectangular

computational domain was i. The upper boundary of the computational domain

was at i0 6, where _ was the boundary-layer thickness at the downstream

boundary. In the laminar flow case the grid consisted of 60 x 40 cells. The

cell spacing in streamwise direction on the plate was 0.05, and the minimum

cell height in the normal direction was 10-3 . The grid points were

distributed according to a geometric progression in the normal direction. A

60 x 60 cell grid was used in the turbulent case (same spacing as laminar case

in streamwise direction). The normal distance from the plate to the first

cell center was 5 xl0-5 L, which corresponded to a y+ value of about 2

(y+ = yuT/v, uT is the local friction velocity and v is the kinematic

viscosity coefficient).

Results for laminar flow over a flat plate are presented in Figs. 3a and

3b. The present computed solution is compared with the incompressible

boundary-layer solution of Blasius. Figure 3a shows the variation of skin

friction (Cf) with local Reynolds number (Rex). Note that no attempt has been

made to resolve the leading edge region of the plate. This probably accounts

for the differences in the skin friction distributions. Although not shown,

the predicted velocity profiles are essentially self-similar beyond the

initial region (roughly 0<X/L<0.225) of the flat plate. There is reasonably

good agreement between a representative velocity profile (X/L = 0.875) and the

Blasius result (Fig. 3b).

In Figs. 4a - 4c results for turbulent flow over a flat plate are

presented. The variation of Cf with Rex is displayed in Fig. 4a. The
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numerical prediction exhibits fairly good agreement with the empirical curve

fit (M = 0) once fully developed turbulent flow is realized. Figure 4b

compares solutions for the velocity profile at X/L = 0.875, which were

calculated with the following: i) i/7-th-power law; 2) Steger Navier-Stokes

code 14 (Beam and Warming implicit scheme); 3) present Runge-Kutta code. Both

of the numerical results were obtained with the Baldwin-Lomax eddy viscosity

model, and they show excellent agreement. The same grid was used in the

calculations. Figure 4c compares the computed law of the wall and a curve fit

for the experimental data of several investigators 15.

NA_ 0012 Airfoil Flows

A typical grid for an airfoil calculation is displayed in Fig. 5. This

C-type grid was generated with an algebraic procedure developed by Le

Balleur. 16 In the direction approximately perpendicular to the airfoil, the

coordinate lines are parabolas intersecting the airfoil and outer boundary at

predetermined locations. The second family of coordinate lines were

determined by distributing points along the parabolas in accordance with a

prescribed function. Additional information concerning grid generation can be

obtained from Ref. 16. For all "C" grids used herein the outer boundary was

located 5 to 6 chords from the airfoil in all directions. In the laminar flow

case, calculations were done on meshes with 128 × 32 cells and 128 × 64 cells.

The cell spacing in the streamwise direction over the central part of the

airfoil was AX/C = 0.05. The minimum cell height in the normal-like direction

for these grids was about 3 x 10-4 chords and 6 × 10-4 chords,

respectively. For turbulent flow computations (120 x 50 cell grid) the
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distance from the airfoil surface to the first cell center was approximately

5 x 10-5 chords. The chordwlse spacing at the midsection of the airfoil

was AX/C = 0.036.

Figures 6a - 6c show results for the laminar flow (M = 0.5,

Re = 5 × 103 ) computation on the 128 x 64 cell grid. In Fig. 6a the

pressure distribution for the viscous flow is compared with that obtained by

solving the Euler equations. The presence of strong viscous effects is

evident over the aft section of the airfoil. Moreover, as indicated in Fig.

6b, the flow separates at X/C = 0.817. The size of the thin reclrculatlon

region is indicated in the plot of streamlines in Fig. 6c. Since the velocity

of the flow is very small in this thin region, the accuracy of the solution

there is of special concern. The solution on the 128 x 64 cell grid was

compared with that on a 128 x 32 cell grid, where the mesh spacing in the

normal-like direction is about a factor of 2 larger. These solutions are

essentially the same except in the reverse flow region. A bubble that is

slightly larger in longitudinal extent (approximately 7 percent larger) is

predicted with the finer grid.

Results for subsonic, turbulent flow over the airfoil at zero angle of

attack are presented in Figs. 7a - 7c. Figure 7a shows a comparison of the

calculated pressure distribution with experimental data. 17 In Fig. 7b the

predicted skin friction distribution is compared with that obtained with a

boundary-layer code. 18 For the boundary-layer calculation a very fine mesh

spacing (more than an order of magnitude smaller than that in the present

calculation) was used at the surface, and I00 points were placed across the

boundary layer. Since the vlscous-lnviscid interaction effects are small for

this flow, a single pass computation was done. The pressure distribution from
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the thin-layer Navier-Stokes solution was prescribed. There is fairly good

agreement except at the leading edge, where the present solution does not have

adequate resolution for the very thin turbulent boundary layer. In Fig. 7c

pressure contours for this case are displayed.

Computed pressure distributions for subsonic (M = 0.5), viscous flow

Over the airfoil at two angles of attack (1.77 degrees and 3.51 degrees) are

compared with those for inviscid flow and with experimental data in Figs. 8

and 9. In each case the angle of attack (=) has been corrected for wind

tunnel wall effects. There is good agreement between the present Navier-

Stokes results and experiment. The influence of viscosity on these solutions,

in particular at the suction peak, is evident.

In Figs. 10a and 10b results for supercritical flow (M = 0.756) and

zero angle of attack are presented. The pressure distributions from the

viscous and inviscid calculations show good agreement with the data. The

supersonic region of the flow is indicated by the Mach number contours in Fig.

10b.

Convergence

For all computations in this paper the flow field was initialized with

free-stream conditions. Moreover, the calculations were started impulsively

by suddenly introducing the body into a uniform flow and immediately enforcing

the appropriate boundary conditions at its surface. To measure convergence

the root mean square of the residual of the continuity equation was used. In

Fig. ii convergence histories are shown for the laminar airfoil case on

a 128 x 32 cell grid. For the history labeled A the local CFL number was
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2, and enthalpy damping was used. For the history labeled B the CFL number

was 6, and both enthalpy damping and residual smoothing were used. These

results indicate that satisfactory convergence for engineering applications is

achieved in 1300 time steps, which corresponds to 2.5 minutes on the Vector

Processing System (VPS) 32 at Langley Research Center. Figures 12a and 12b

show residual histories for the zero angle of attack, subcrltlcal, turbulent

airfoil case. In Fig. 12a the convergence history, which is highly

oscillatory in character, is for a calculation using only local time stepping

to accelerate convergence. As seen in Fig. 12b, a computation using enthalpy

damping and residual smoothing (CFL number of 5) exhibits much more monotonic

convergence behavior. In this case acceptable convergence is realized in about

1250 time steps (4 minutes on the VPS 32). Note that the present computer code

is not optimized for the VPS 32 system. With optimization the computer

processing times can be reduced by a factor of 2 to 3.

The final rate of reduction of the residual for the turbulent flow cases

is quite slow. Based on previous work with Euler equations 5, significant

improvement in this rate appears to be possible with a multigrid scheme. At

the present time this is being investigated.

Concluding Remarks

A flnite-volume scheme for numerical integration of the Euler equations

has been extended to allow solution of the Navier-Stokes equations. The new

procedure, which is based on a class of four stage Runge-Kutta tlme-stepping

schemes, has been made numerically efficient through the following convergence

acceleration techniques: I) local time stepping; 2) enthalpy damping; 3)
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residual smoothing. Also, the high degree of vectorization possible with the

algorithm has yielded an efficient program for vector processors. The scheme

has been evaluated by solving the thin layer form of the Navier-Stokes

equations for laminar and turbulent flows over a flat plate and an NACA 0012

airfoil. Numerical results have compared well with either theoretical or

other numerical solutions and/or experimental data.
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Figure 1. Finite-volume mesh. Figure 2. Computational domain for airfoil
calculations.
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Figure 3. Laminar flat plate flow:

(a) comparison of skin-frictlon distributions;

(b) comparison of velocity profiles (M = 0.5, Re = 5 x 103).
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Figure 4. Turbulent flat plate flow:

(a) comparison of skin frlctlon distributions;

(b) comparison of velocity profiles;

(c) comparison of near wall velocity profiles

(M= = 0.5, Re = I06).
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\

Figure 5. Partial view of typical grid for air_oll calculations.
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Figure 6. Laminar flow over an NACA 0012 alr[oil:

(a) pressure distributions; (b) skln-frlctlon distribution;

(c) streamlines for upper surface at the trailing edge

(M = 0.5, Re = 5 x 103).
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Figure 7. Turbulent flow over an NACA 0012 airfoil:

(a) pressure distrfbutions; (b) skin friction distributions;

(c) pressure contours (M = 0.5, Re = 2.89 × 106).
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Figure IO. Supercritlcal flow over an NACA 0012 airfoil:

(a) Pressure distributions; (b) Mach number contours

(M = 0.756, Re = 4.01 × 106).
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Figure II. Convergence histories for an NACA 0012 airfoil computation

(M = 0.5, Re® = 5000, 128 x 32 cell grid).

A - enthalpy damping; B - enthalpy damping and residual smoothing.
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Figure 12. Convergence histories for NACA 0012 airfoil computation

(M = 0.5, Re = 2.89 × 106, 120 × 50 cell grid):

(a) local time-stepplng only; (b) enthalpy damping and residual smoothing.
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