A Multithreaded Soft Processor
for SOPC Area Reduction

Blair Fort, Davor Capalija, Zvonko G. Vranesic and Stephen D. Brown
The Edward S. Rogers Sr. Department of Electrical and Computer Engineering
University of Toronto
10 King’s College Road
Toronto, ON, Canada M5S 3G4

{fort,davor,zvonko,brown }@eecg.toronto.edu

ABSTRACT

The growth in size and performance of Field Programmable
Gate Arrays (FPGAs) has compelled System-on-a-
Programmable-Chip (SoPC) designers to use soft proces-
sors for controlling systems with large numbers of intellec-
tual property (IP) blocks. Soft processors control IP blocks,
which are accessed by the processor either as peripheral de-
vices or/and by using custom instructions (CIs). In large
systems, chip multiprocessors (CMPs) are used to execute
many programs concurrently. When these programs require
the use of the same IP blocks which are accessed as periph-
eral devices, they may have to stall waiting for their turn.
In the case of Cls, the FPGA logic blocks that implement
the CIs may have to be replicated for each processor. In
both of these cases FPGA area is wasted, either by idle soft
processors or the replication of CI logic blocks.

This paper presents a multithreaded (MT) soft processor
for area reduction in SoPC implementations. An MT proces-
sor allows multiple programs to access the same IP without
the need for the logic replication or the replication of whole
processors. We first designed a single-threaded processor
that is instruction-set compatible to Altera’s Nios II soft
processor. Our processor is approximately the same size as
the Nios II Economy version, with equivalent performance.
We augmented our processor to have 4-way interleaved mul-
tithreading capabilities. This paper compares the area us-
age and performance of the MT processor versus two CMP
systems, using Altera’s and our single-threaded processors,
separately. Our results show that we can achieve an area
savings of about 45% for the processor itself, in addition to
the area savings due to not replicating CI logic blocks.

1. INTRODUCTION

The opportunity for larger and more complex System-on-
a-Programmable-Chip (SoPC) designs has been facilitated
through the growth in size and performance of FPGAs.
These large systems usually contain several IP blocks. To
manage the complexity of these systems, SoPC designers
utilize soft processors to control the IP blocks. This allows
them to write simple software programs for the processor to
communicate with and control the IP blocks. In the case of
a system comprising a large number of IP blocks, the de-
signer can either create a complex program or multiple sim-
ple programs to control the IP blocks. Multiple programs
have the advantage over single complex programs due to the
simplicity of their creation and debugging. In order to run

multiple programs on a uniprocessor system, software-based
context switching is required. This is usually facilitated by
the addition of an embedded operating system. On the other
hand, one can utilize a CMP system which enables multi-
ple programs to execute simultaneously without support for
context switching.

A system can have IP connected to a processor as a pe-
ripheral or as a custom instruction (CI). A peripheral allows
multiple processors to access it, at the cost of performance
drop caused by the overhead of using memory instructions
for communication, which have inherent latency. Moreover,
if multiple processors concurrently access the same IP block,
one of the processors is granted access to the IP block, while
others wait idle. On the other hand, custom instructions
are embedded into a processor’s datapath and read and
write data from the processor’s register file. This can re-
sult in lower data access latency and consequently in higher
throughput. However, in a multiprocessor system, each pro-
cessor excuting a program which requires the CI will contain
its own copy of CI logic. This can be detrimental for the area
usage if the employed custom instruction consumes a large
amount of logic and is used by multiple programs.

This paper introduces a multithreaded soft processor and
evaluates it versus other soft processing systems that pro-
vide multithreading support. We compare the area usage
and performance of a uniprocessor, two CMP systems and
an MT processor. The uniprocessor and one CMP system
are based on the Altera Nios II processor. The processors
employed in the second CMP system and the MT processor
were designed by us. We investigate architectural enhance-
ments for improving the performance of the multithreaded
systems; more specifically, a mechanism for performance im-
provement in the presence of multicycle custom instructions
and shared peripheral devices. There are three main contri-
butions of this paper. First, it gives a comparison of an MT
soft processor versus a single threaded processor and CMP
systems. Second it proposes architectural enhancements
specific to FPGA-based multithreaded systems. Lastly, it
presents an approach for performance evaluation of soft mul-
tithreaded systems conducted in real time on an FPGA.

The remainder of this paper is structured as follows. First,
related work is discussed in Section 2. Section 3 presents
necessary background information. Section 4 describes the
architecture of our single-threaded UT II and multithreaded
UTMT II processors. Our experimental environment and
methodology are explained in Section 5. Section 6 presents

@

COMPUTER
SOCIETY

14th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM'06)
0-7695-2661-6/06 $20.00 © 2006 IEEE

the obtained experimental results. Lastly, in Section 7, we
give conclusions and propose future work.

2. RELATED WORK

Soft processors for the FPGA platform have become a fo-
cus of research. Currently, the major FPGA companies, Al-
tera and Xilinx, provide the in-order soft processors Nios/
NiosII[1, 2] and Microblaze[3], respectively. In the design
of SoPC systems, these processors have rapidly grown in
popularity due to their flexibility and ease of integration
into the system. On the other hand, the trend of support-
ing multithreaded execution has been taking place not only
in high-performance and desktop systems but in embedded
systems as well. In both worlds the motivation is to lever-
age increased presence of multithreaded workloads. Several
embedded processors with multithreading support are com-
mercially available. While workloads for embedded systems
based on ASIC and FPGA platforms tend to be similar,
hardware-based multithreading capabilities on FPGA plat-
forms targeting mutlithreaded workloads have not yet been
fully explored.

2.1 Soft processor design

In the past few years, significant research efforts have been
made in the area of soft processors. Plavec et al. [4] present
a methodology for efficient soft processor design. They pro-
duced a generic processor which is instruction set compat-
ible with Altera Nios processor but synthesizable in most
modern FPGAs. Recent research addressed the design of
high-performance functional units for programmable logic.
Metzgen [5, 6] describes the design of the high-performance
32-bit ALU which is a critical component of the Altera Nios
II processor. The novel design of the ALU results in signifi-
cant area savings and clock frequency increase for the Nios IT
over its predecessor, the Nios 1.1 processor. Qur processors
described in this paper follow the author’s guidelines. Yian-
nacouras et al. [7] present a framework for automatic gener-
ation of custom soft processors to explore the microarchitec-
ture trade-off space. The authors discuss the performance
and area impact of various functional unit implementations
and pipeline depths. In particular, they investigate area
versus performance trade-off for the shifter unit implemen-
tation and demonstrate the detrimental effects of pipeline
stalls arising from multicycle operations on performance.

2.2 Multithreading

System-on-chip designs providing multithreaded process-
ing are built with the aim to offer better area and power
efficiency compared to multiprocessor systems. There are
two approaches for supporting hardware-based on-chip mul-
tithreading. The first approach is CMP where multiple
processors are placed on a single chip. The second ap-
proach is to augment a uniprocessor with additional hard-
ware to allow multiple threads to share the processor re-
sources. In this architecture the additional hardware main-
tains the thread state and performs context switching be-
tween threads. The two main classes of uniprocessor multi-
threading are fine-grained multithreading (FGMT) and si-
multaneous multithreading (SMT). FGMT processors al-
low only one thread to issue instructions in a given clock
cycle, whereas SMT processors allow instructions from mul-
tiple threads to be issued in the same clock cycle. Tullsen
et al. [8] have shown that supporting either class of mul-

tithreading can improve processor throughput at the ex-
pense of some minimal additional hardware. The perfor-
mance improvement stems from higher pipeline utilization
in the presence of cache misses, pipeline hazards and branch
mispredictions. Some commercially produced FGMT pro-
cessors include HEP [9] and Tera [10]. These processors
allow up to 128 concurrent hardware threads. Systems uti-
lizing these processors have had limited success, mainly due
to their inability to achieve reasonable single thread perfor-
mance. This inability holds true for our processor as well,
but since our design is targeting FPGAs, it can be used in
the presences of suitable multithreaded workloads, otherwise
it maybe easily substituted with a uniprocessor.

Multithreaded architectures targeting application-specific
workloads have recently become apparent. A study by Crow-
ley et al. [11] characterizes processor architectures used
in networking technology. The studied architectures range
from a superscalar out-of-order processor through a chip
multiprocessor, an FGMT processor to an SMT processor.
The authors observe that workloads comprising a sufficient
level of parallelism result in better performance on the SMT
processor for the given processor resources.

The bulk of the past research was aimed at superscalar
out-of-order processors for ASIC technology. However, com-
mercially available FPGA-based soft processors are predom-
inantly simple in-order single-issue processors. Consequently,
it is not obvious whether the observed benefits and perfor-
mance improvements will apply to these FPGA-based soft
Processors.

2.3 Multithreading on FPGAs

As previously investigated, multithreading allows better
use of the chip area and power efficiency on an ASIC plat-
form. Research efforts to exploit these benefits in FPGA-
based systems have been limited. So far, two approaches
have been explored to deliver soft processors with multi-
threading support[12, 13]. Dimond et al. [12] introduced
the customizable threaded architecture (CUSTARD). CUS-
TARD is a parameterizable processor that combines sup-
port for multiple threads and automatic instruction set cus-
tomization. Automatic instruction set customization is pro-
vided by a C compiler that targets the CUSTARD instruc-
tion set. The CUSTARD architecture can be customized
to support two multithreading types: block multithreading
(BMT) and interleaved multithreading (IMT). The authors
investigate architectural improvements that can be applied
to multithreaded processors. Most notably, they demon-
strate the area savings by the elimination of data forward-
ing logic that is no longer required. The results show that a
four-threaded IMT processor produces better results than a
BMT processor in terms of clock cycles, area usage and max-
imum frequency. While the IMT processor provides higher
throughput for a given chip area, it is not clear how the
processor compares to available industrial or academic soft
processors in terms of area and speed. The authors compare
their 4-threaded IMT and BMT configurations against their
single-threaded processor. They report a relatively small
area increase (28% and 40%) for the multithreaded config-
uration as compared to their single-threaded configuration.
However, the area of their single-threaded processor is ap-
proximately 1800 slices and maximum frequency obtained is
around 30 MHz. Commercially available processors usually
consume less area and achieve higher frequencies.

COMPUTER
SOCIETY

14th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM'06)
0-7695-2661-6/06 $20.00 © 2006 IEEE

Weaver at al. [13] take an entirely different strategy to
automatically generate a soft processor with multithreading
capabilities. They applied C-slow circuit retiming to the
Leon 1 SPARC compatible soft processor. Circuit retim-
ing is a process of rearranging storage elements in a syn-
chronous circuit without altering the combinational logic in
order to optimize the circuit’s performance. C-slow retim-
ing is a technique where each register is replaced with a
sequence of C separate registers prior to retiming. Applying
C-slowing to a processor enables interleaved execution of C
distinct instruction streams. The resulting design provides
higher throughput as long as C distinct instruction streams
are fed into the pipeline. To fully achieve multithreading ca-
pabilities one must manually increase the instruction fetch
bandwidth by modifying the memory controller and caches.
Modifications include architectural changes to keep track
of which data corresponds to which thread. Any particu-
lar thread runs slower due to the increased pipeline latency
but the overall system runs at a significantly higher clock
rate, thus increasing the throughput if programs can take
advantage of the multithreading capabilities. For FPGA
implementations, a 2-slow design is considerably more effi-
cient than 2 distinct processor cores because most processors
contain considerably more logic than registers. This addi-
tional efficiency is due to the FPGA design procedure called
register packing. Their C-slow retiming method is applied
to circuits in the post-placement phase which could limit
the ability to manage the design of the whole multithreaded
system. While the authors show that throughput can be in-
creased, they do not give a detailed performance evaluation
of the resulting processor on standard workloads.

3. BACKGROUND
3.1 Altera’s Nios 11

Nios II [2] is Altera’s second soft processor. It is a general-
purpose RISC soft processor with 32-bit instruction words
and datapath, integer only ALU, 32 general purpose regis-
ters and MIPS-style instruction format. The Nios II proces-
sor family comprises three different processor cores: Econ-
omy (Nios II/e), Standard (Nios II/s) and Fast (Nios II/f).
Table 1 [6, 14] highlights the main characteristics of the
cores.

All three cores are single issue in-order execution proces-
sors. The Nios II/f is highly optimized for performance,
whereas on the other end of the scale, Nios II/e was de-
signed to achieve the smallest possible core size. The Nios
IT/e saves logic by allowing only one instruction to be in
flight at any given moment. This eliminates the need for
data forwarding and branch prediction logic, among other
things. The shifter unit implementation differs across all
three cores. The Nios II/e has a serial shifter, while the
other two processors use a barrel shifter if the FPGA con-
tains digital signal processing (DSP) blocks with hardware
multipliers.

3.2 Custom Instructions

The CI feature allows designers to add their own func-
tional units to a Nios II processor. The source operands of
ClIs can be registers if required by the design. In addition,
ClIs can connect to signals outside the processor. The Nios
II processor can support up to 256 custom instructions.

Nios II Cores

Features Economy Standard Fast
Area (LEs) <700 <1400 <1800
FMax < 150 MHz < 135 MHz < 135 MHz
Performance 1x 4.7x 7.5x
Pipeline 5-cycle 5-stage 6-stage
Instruction No Yes Yes
Cache
Data No No Optional
Cache
Branch None Static Dynamic
Prediction
Shifter 1 cycle- 3-cycle 1-cycle
Unit per-bit barrel barrel
shifter shifter
Multiply Software 3-cycle 1-cycle
Unit Emulation

Table 1: Nios II Processor Cores

3.3 Peripheral Devices

Peripheral devices are connected to Nios II cores via the
Awalon switch fabric, which is a collection of point-to-point
master to slave connections. A master can connect to multi-
ple slaves and a slave can be connected to multiple masters.
When a slave is driven by multiple masters, arbitration logic
is automatically generated by Altera’s SOPC Builder [15].
Arbitration by default utilizes a round-robin master selec-
tion, but priorities can be associated to masters and used
for selection.

4. PROCESSOR MICROARCHITECTURE

Previous work [8] has demonstrated that FGMT and SMT
processors provide similar performance improvements for 4
or less threads. The SMTs exhibit better performance if
more threads are available. Moreover, recent work [7] has
shown that both 3 and 4 stage pipelined soft processors are
optimal in terms of performance and area. These arguments
guided our design choices which resulted in a multithreaded
processor designed as a 4-way FGMT processor, more specif-
ically as an IMT processor. In the IMT processor threads
are issued in a round-robin manner one thread at one time.
The choice of an IMT and a four-stage pipeline provided the
opportunity for elimination of feedback paths and branch
logic [12]. Applying IMT specific modifications to Nios II/f
and adding thread context extensions would result in the
same achitecture obtained by adding thread context sup-
port to the Nios II/e. It was assumed that processors have
equal depth pipelines. Forwarding and branch logic can be
fully eliminated only when n or more threads are introduced
to a n-stage pipeline. Therefore, we first designed a 4-stage
pipeline processor similar to the Nios II/e, and subsequently
augmented it to enable 4-way IMT multithreading.

4.1 UT II Microarchitecture
4.1.1 Pipeline

UT II soft processor is an implementation of the Altera
Nios II/e architecture. UT II provides the same features as
Altera Nios II/e, but its physical implementation may be

COMPUTER
SOCIETY

14th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM'06)
0-7695-2661-6/06 $20.00 © 2006 IEEE

quite different due to our limited knowledge of Altera Nios
II/e’s microarchitecture. It is implemented with a simple
4-stage pipeline without data forwarding and hazard detec-
tion. For this reason, only one instruction is allowed to
occupy the pipeline at a time. Figure 1 depicts the UTMT
II processor. The stages of the pipeline are the same for
both processors. They are fetch, decode, execute and write
back stages.
Fetch Stage

e Completes instruction fetches
e Inserts a trap instruction if an interrupt has occurred.

Decode Stage

e Decodes the current instruction
e Reads source operands from the register file
e Chooses between immediate and register data for the
operands
e Increments the program counter (by 4)
Ezecute Stage

e Performs ALU operations

e Shifts are 1-bit per cycle (stalls pipeline until operation
completes)

e Branch and jump instructions are resolved

e Control registers are read and written (if needed)

Memory/Writeback Stage

e Initiates and completes loads (can stall the pipeline)
e Initiates stores

e Initiates instruction fetch

e Writes results to the register file

4.1.2 Load and Store Instructions

Both the load and store instructions start in the mem-
ory/writeback stage. Loads stall the pipeline in order to
retrieve data to be written to the register file just in case
it is required by the next instruction. There is a possibility
that the next instruction does not require the data being
loaded, but since the processor does not include any mecha-
nisms to check if this is the case, the pipeline is stalled. On
the other hand, store instructions do not write result to the
register file, therefore the next instruction can start execut-
ing without performing checks. The UT II allows the next
instruction to enter the fetch and decode stages, but not the
execute or writeback stages. To simplify the memory buffer
implementation, the instruction is not allowed to enter the
execute stage, as now the buffer is reset every time the exe-
cute stage is active, since it is guaranteed that there are no
outstanding loads or stores.

4.1.3 Shift and Rotate Instructions

In order to minimize logic, the shift and rotate instruc-
tions are implemented using a serial shifter. This can cause
a significant performance drop if multiplication is required
by the application. Multiplication is emulated in software by
using additions and shifts. There are two commonly used
methods for increasing the shifter performance. The first
method is to use a barrel shifter built using LUTs. However,
as shown previously [7], this improves the performance at a
high cost of consumed logic elements. The barrel shifter
takes approximately 200 logic elements, or a third of the
entire processor. A second method to improve the shifter
performance is to use an on-chip hard multiplier.

4.2 UTMT II Microarchitecture

The UTMT II processor is derived from UT II. The archi-
tectural limitations of UT II still provided many opportuni-
ties for extensions to support the multithreading. The de-
sign of multithreading is based on the fact that instructions
from multiple threads are independent. Hence, instructions
from different threads can be allowed to occupy different
stages of the pipeline at the same point in time. This simple
extension results in higher utilization of the pipeline with-
out the necessity of adding forwarding and hazard detection
logic to the pipeline. UTMT II supports the execution of 4
threads to allow potentially one instruction to be issued in
every cycle. In effect, the outcome of this extension is to in-
crease the throughput by up to four times without changing
the pipeline logic. In other words, this architecture imple-
ments IMT where context switching is performed every clock
cycle.

4.2.1 Multithreading Extensions

Figure 1 gives a high-level overview of the UTMT II's
microarchitecture. All pipeline stages require some modifi-
cations to support multithreading, as described below. Also,
the control logic must be augmented to keep track of which
thread is in which stage of the pipeline. A different ID is
assigned to each thread. The thread ID ensures that context
information for a given thread is only modified by instruc-
tions from that thread.

The fetch stage was increased to contain program counters
for each hardware thread. Additional instruction masters
were included to maximize the instruction fetch bandwidth.
Instructions are issued from threads in round-robin man-
ner and one thread cannot have more than one instruction
in the pipeline. For this reason, a pipeline bubble can oc-
cur, if the current thread has no instructions fetched or it is
stalled. Other threads are not allowed to issue in this cycle
because instructions from these threads can already occupy
the pipeline.

The decode stage contains the register file. The register
file was replicated for all threads. Two approaches to repli-
cating the register file were examined. First approach is to
create four copies of the register file. This requires a sim-
ple modification to the pipeline, an additional multiplexer
to choose between the register files. The second approach
is to quadruple the number of registers in the register file
and add a thread ID to the register address. A downside
of this approach is that the dual-ported nature of the on-
chip memory would allow only one thread to write to the
registers during any given cycle, when considering the need
for another thread to read for the register file during that
same cycle. This is not a problem for the general case, but
when the first performance optimization, discussed in sec-
tion 4.2.2 is preformed, it is possible for multiple threads to
simultaneously have data to be written back to the register
file. Therefore, the first method of register file replication
was employed.

The main concerns in the execute stage are the control
registers, branch logic and custom instructions. In addition,
problems can arise if custom instructions take multiple cy-
cles to execute. The control registers were replicated, and
logic was added such that threads access their correspond-
ing control registers. Another concern is applying branches
to the correct thread’s program counter.

COMPUTER
SOCIETY

14th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM'06)
0-7695-2661-6/06 $20.00 © 2006 IEEE

Fetch Decode Execute Memory /
Stage Stage Stage Write Back
Stage
Decoder D/E E/WB
Unit Regs Regs
=
Onchip Mem
Data
Fetch |
Unit Iéoad/ Master
tore
Instruction IR Buffer
- - - -
Masters ALU
- o | Thread 1 L
Il gl PC
- - Thr:ad 2
© Register - op
L o | Thread s File B
=
Thread 1 Registers -
— pu| Thread3 Onchip Mem
PC
Thread 2 N— Custom
Onchip Mem » Instruction T
Logic v
Thread 3 2 "!o
Onchip Mem - Register,
Op Branch Files - v
Thr_ead 4 A Unit To
Onchip Mem —— Register
Files
PC

PC+4

To PC
Regs

Figure 1: High-level UTMT II microarchitecture

In the memory/writeback stage logic was added to write
results to the correct thread’s register file. Unlike the UT II
processor, store instructions will stall the pipeline, same as
for load instructions. An enhancement to minimize penalties
due to load and store latencies is discussed in the following
section.

4.2.2 Performance Enhancements

To achieve maximum performance, pipeline stalls must
be eliminated. The stalls are more critical for the multi-
threaded processor. This is due to the fact that stall in
one thread will stall all the other threads and thus virtually
disable the multithreading capabilities. We have eliminated
data hazards stalls, but both accessing multi-cycle periph-
erals and multi-cycle custom instructions will cause pipeline
stalls. We investigated two approaches for reducing these
types of stalls. In both approaches pipeline stalls are lim-
ited to the thread causing the stall and other threads can
continue executing. Also, stalls last until the stalled thread
reaches the fetch stage for the first time after the outstand-
ing CI or memory operation has been resolved.

The first method is generic and can be applied to all types
of multicycle stalls. The method uses a queue for instruc-
tions accessing a multicycle IP block. The queue allows the
processor to remove the instruction from the main pipeline
allowing other threads to progress. While a thread is in the
queue, it is not permitted to fetch instructions. The queue
should be large enough to accommodate all threads without
stalling the pipeline. Queued threads access the IP block
one thread at the time. For simplicity, the register files for
the different threads are in separate onchip memories to en-
able register write back for the instruction in the queue even
when another thread is in the memory/write back stage. To
evaluate this method, a FIFO buffer was added to the data
memory controller. The FIFO keeps load and store instruc-
tions, thus removing them from the main pipeline, so that
they do not stall the other threads, unless those threads are

DSP
Hardware
Multiplier

Source D Destination
Operands L Operand =
32x32-bit A'D_r
= 64-bit

Figure 2: Multi-cycle shift unit

also in the buffer. Best performance of this enhancement
requires the ability to write the result back to the register
file immediately or to store it in a temporary register until
the thread is in the memory/writeback stage. Our design
writes directly to the register file, thus requiring replication
of the register file to allow multiple threads simultaneous
write access. The performance resulting from this approach
can suffer when an IP block can allow access to more than
one thread at a time.

A second method is applicable to IP blocks that can be
pipelined and allow concurrent access to more than one
thread. The main idea is to pipeline IP blocks to a mul-
tiple of N-cycles, where N is the main pipeline depth. As a
result, the data becomes available when the thread is again
in the same pipeline stage, thus the instruction may rejoin
the main pipeline. Again, while an instruction is in the sec-
ondary pipeline, its thread may not issue any subsequent in-
structions. This method eliminates pipeline stalls for other
threads, while improving upon the first method by allow-
ing multiple instructions to be in flight within the IP block
concurrently. To investigate the benefits of this method, we
pipelined the shift unit as shown in Figure 2. As seen in the
figure, a final register was added to achieve the necessary
four-cycle latency for our pipeline.

The destination register’s ID is saved for each entry in the
FIFO or pipelined IP. This information is used to write the
result to the corresponding register after the IP has com-
pleted execution.

COMPUTER
SOCIETY

14th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM'06)
0-7695-2661-6/06 $20.00 © 2006 IEEE

5. EXPERIMENTAL FRAMEWORK
5.1 Environment

5.1.1 Tools

For the implementation of the hardware and software part
of the experimental system the following tools were used:

e Altera Quartus II and SOPC Builder for design of a
soft system and its synthesis to FPGA configuration

e ModelSim for system simulation and initial verification

e Software development environment based on the GNU
C/C++ tool chain and Eclipse IDE

e Design space explorer (DSE) to obtain the F,q, and
processor area

5.1.2 FPGA development board

Nios Development Board (Stratix Professional Edition)
was used as the FPGA-based platform for evaluation of de-
signed multithreaded soft processing systems. The board
includes a Stratix FPGA chip and several other components
listed in Table 2.

Component Characteristics

Stratix Chip

41250 Togical elements
3.5M memory bits

SRAM (off-chip)
SDRAM (off-chip)
Flash device

1 MB capacity
16 MB capacity
8 MB capacity

Table 2: Nios Development Board Characteristics

5.2 Metrics

To evaluate the designed systems, we used the following
metrics: area, maximum frequency (Fmae) and wall-clock
execution time. Area metric is expressed as the usage of
chip resources in terms of logic (LUTs and FFs) and mem-
ory bits. In order to conduct performance evaluation and
comparison, all systems were synthesized with experimen-
tal frequency Ferp = 50 MHz. Hence, the difference in the
benchmark execution times on different systems account for
the difference in instructions per cycle (IPC). The differ-
ence in the IPC performance stems from various character-
istics that the studied systems employ. Since the instruc-
tion count for each benchmark is the same for all systems,
the obtained execution times directly account for the differ-
ence in the number of clock cycles. This metric was used
to investigate the differences in processor microarchitecture.
To investigate the performance which stems from the differ-
ences in IPC and F..., we determine the best achievable
wall-clock execution times for each benchmark on every pro-
cessor. These times are obtained from results achieved with
Feap = 50 MHz and then prorated to Fia.. For simplic-
ity, in the following sections the measured performance is
reported as best achievable execution time in seconds.

5.3 Experimental System

Figure 3 shows a high-level memory organization of the
systems. Both systems incorporate a shared data memory
and instruction memories dedicated to each processor. In

IMT
Shared
Data a— UTMT Il
Memory
CMP
TP 1
TP 2
Shared
Data
Memory TP 3
TP 4

Figure 3: High-level system architecture

the MT system, the UTMT II processor connects to instruc-
tion memories via four instruction masters. In the CMP sys-
tems, each processor is connected to the shared data mem-
ory with its data master. On the other hand, the UTMT II
processor accesses the shared memory using its single data
master. Using only one data master eliminates some of the
arbitration logic necessary in accessing the shared memory.
This saves additional system area, although we focus on pro-
cessor area only.

5.3.1 Fetch bandwidth

In order to achieve highest pipeline utilization, the UTMT
IT processor must be able to simultaneously fetch instruc-
tions from all four threads. As mentioned before, the UTMT
II processor incorporates four pre-fetch units that provide
this functionality. To ensure this maximum bandwidth,
all threads in the experimental system have separate in-
struction memories. Similarly, for the CMP systems, the
maximum bandwidth is achieved if memory access conflicts
among the processors are fully eliminated. Again, this is
accomplished by employing four distinct instruction memo-
ries.

5.3.2 Shared data memory model

To investigate the impact of resource sharing between
multiple threads, our experimental system employs a shared
data memory. The threads keep all their data in this mem-
ory. As depicted in Figure 3, the data memory used is single-
ported, hence only one thread is granted access in each cy-
cle. It is assumed that realistic embedded applications use
large input data sets, thus a high capacity memory module
is required (in terms of embedded systems). Since the avail-
able on-chip memory is insufficient in most cases, we use a
large off-chip memory (SDRAM) as a shared resource. On
the other hand, shared memory can be seen as an IP block
implemented as a peripheral device shared by all threads.
This allows performance evaluation of different processor’s
memory controller implementations. In particular, the per-
formance evaluation of accessing a shared peripheral device
with multicycle latency is possible.

COMPUTER
SOCIETY

14th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM'06)
0-7695-2661-6/06 $20.00 © 2006 IEEE

oM Proc
i yYvVvw
Thread
v Proc 1
Shared
memory

1
~_~
= JTAG
x1-2 UART

Figure 4: CMP implementation of the soft multi-
threaded system (only one processor is shown)

5.3.3 Experimental multithreaded soft systems

Four multithreaded soft systems were implemented:

e CMP system built using four Altera Nios II/e proces-
sors

o CMP system built using four UT II processors

e MT system built using a UTMT II processor

e Uniprocessor system built using Altera Nios II fast
(software-based multithreading)

These experimental systems were implemented to investi-
gate the basic opportunities for multithreaded execution in
FPGA-based systems. They serve as a platform to conduct
the performance evaluation and comparison of UTMT II,
UT II CMP and two Altera’s processor systems. For the
purposes of comparison with the UTMT II processor, the
CMP systems employ four processors. In addition, we in-
vestigate the impact of several microarchitectural enhance-
ments on each of our systems.

5.3.4 Experimental system implementation

Implementation of an experimental system encompasses
hardware and software parts. The hardware part is a soft
system synthesized into an FPGA configuration. The soft-
ware part comprises thread programs and input data. Syn-
thesis of the hardware part is a long and inflexible procedure.
A small modification to the soft system requires recompila-
tion of the system into the FPGA configuration. Thus, the
goal was to develop a soft system that can be reused across
all experiments. To achieve the required flexibility, the hard-
ware experimental system was designed such that software
modifications do not induce changes in the hardware part.

Figures 4 and 5 show the implementation of the exper-
imental system based on four UT II processors and the
UTMT II processor. The uniprocessor experimental system
is similar to the CMP system, except that there is only one
processor, and its associated peripherals. The interconnect
between the components is implemented via Avalon switch
fabric and it is generated by the SOPC Builder tool. Since
the system in Figure 4 is symmetric, for simplicity only one
of the four thread processors is shown. The data master of
each processor is connected to the shared memory, the pro-
cessor’s instruction memory and associated synchronization
mutual exclusion elements (mutexes). The system contains
a master processor which is responsible for communication
with the host computer and synchronization of threads. The

MT Master
Processor — Proc

DM

$ + M4]

Shared
memory

Master’s
memory

; JTAG
e Timer UART

Figure 5: MT implementation of the soft multi-
threaded system

master processor uses a separate memory containing both
its instructions and data. This allows the master processor
to access its off-chip memory without interfering with the
thread processors. The master processor is an Altera Nios
II/e processor with debug core functionality.

The shared data memory address space is statically parti-
tioned among the threads at compile-time. Each thread has
a private section of the memory designated for global, stack
and heap data. In addition, input and output data for the
thread is placed into the same private I/O section.

On startup of the experimental system, the master pro-
cessor uses JTAG UART to download the instruction code
of each thread from the host computer into the correspond-
ing instruction memory. In addition, it loads each thread’s
input data from the flash memory into the corresponding
I/O section in the shared memory.

The instruction memory for each thread processor is split
into two physical instruction memories, totaling 64KB. First
one, smaller in size, is initialized with a small waiting pro-
gram which runs upon the startup of the system. The wait-
ing program simply waits until the benchmark is loaded into
the second part of the instruction memory. The waiting pro-
gram communicates with the master processor using signals
which are implemented via a mutex IP component provided
by Altera. Upon receiving a signal the thread processor
jumps to the beginning of the thread program. Waiting
and benchmark programs are carefully linked to ensure that
instructions are assigned to addresses of the on-chip instruc-
tion memory, and data references are assigned to the desig-
nated sections in the shared data memory.

Upon the completion of execution, thread programs sig-
nal the master processor. The execution time of each bench-
mark program is measured by the master processor using the
timer and it is reported at the end of the experiment. Cor-
rectness verification is performed after all the benchmarks
have completed execution. The benchmark output in the
I/O section is compared against the correct output stored
in the flash memory. The verification was necessary to en-
sure the correctness of our processors.

5.4 Benchmarks

We base our benchmarks on the embedded benchmark
suite MiBench [16]. We selected seven benchmarks and
ported them to our experimental system. The benchmarks
were compiled with Nios II GCC compiler using the high-
est optimization level (03). In addition, since none of the

COMPUTER
SOCIETY

14th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM'06)
0-7695-2661-6/06 $20.00 © 2006 IEEE

Characteristics
Matrix size 100x100
Calculates 20 shortest paths

SHA Computes message digest for
304 KB text file

Calculates CRC-32 on a
1336KB binary file

QSort Sorts 50000 double precision
floating point numbers

Benchmark
Dijkstra

CRC32

Rijndael AES data encryption using
128-bit keys on a 304KB
text file

Adpcm Encodes pulse code modulation
samples

Bitcount Performs bit manipulations

on 75000 numbers

Table 3: Benchmark characteristics

50 5 .
@ original M scaled

45 1

40 -

35 4

30 -

25 4

20 -

Execution time [s]

Dijkstra SHA CRC32 Qsort Rijndael Adpcm Bitcount

Figure 6: Execution times of original and scaled ver-
sions of benchmarks

processors include hard multiply or divide units, these func-
tionalities are emulated in software. The characteristics of
the benchmarks are given in Table 3. To represent a real-
world multithreaded workload, we ran a combination of four
benchmarks simultaneously, where each benchmark is run on
a separate processor. Clearly, without competition among
threads for shared data memory access, the total execution
time would be determined by the slowest running bench-
mark. Additionally, a single benchmark would have the
same execution time as it was the only thread executing in
the system. By employing memory access contention, each
benchmark is slowed down depending on its memory access
intensity.

To make a valid assessment of concurrent execution of
multiple benchmarks, the benchmarks were scaled to run for
approximately the same amount of time. Table 4 lists the
scaling ratios for all benchmarks. For the scaling ratio of N,
a particular benchmark is executed N times. Figure 6 shows
how we balanced the benchmarks. The left bar represents
the execution time for the original benchmark. The right bar
shows the execution time for the scaled benchmark. These
bars correspond to the execution times obtained by running
the benchmarks on Nios II/e processor at Fegp.

Benchmark Scaling ratio
Dijkstra 3

SHA 12

CRC32 12

QSort 1

Rijndael 5

Adpcm 9

Bitcount 6

Table 4: Scaling ratios for benchmarks

@ Altera Nios IV'e CMP
O UT MT Il baseline
B UT MT Il w/ shifter + L/S buf

B UT IICMP
O UT MT Il w/ pipelined shifter |
@ Altera Nios Il/f

20 |

Execution time [s]
3 &
‘ X

o

Dijkstra SHA CRC32 Qsort Rijndael Adpcm Bitcount

Figure 7: Single thread execution times

6. RESULTS

Figure 7 depicts the execution times (after prorating to
the Fpqe of each processor) when a given benchmark is run
as a single thread on each system implementation. The left-
most bar corresponds to a Nios II/e processor in the CMP
system. The next bar is for the simplest implementation of
a UT II in the CMP system. The third bar corresponds to
UTMT II baseline system. The fourth bar represents UTMT
II with a DSP shifter, while the fifth bar is for UTMT II
which is further augmented with a load/store buffer. The
rightmost bar is for the Nios II/f. As shown, the perfor-
mance of our processors is comparable to commercial pro-
cessors. The results show that single thread performance is
worse with the addition of the load/store buffer. This oc-
curs because the pipeline no longer stalls the round robin
fetch mechanism when an instruction enters the load/store
buffer, which may require extra cycle(s) before the thread
is allowed to fetch new instructions, once the load/store in-
struction has been resolved.

Since our multithreaded implementation supports four
threads for a workload, we use several mixes of four bench-
marks. Figure 8 gives an example of a four benchmark mix.
The leftmost bar corresponds to a multiprocessor system
with four Nios II/e processors (Nios II/e CMP). The next
bar corresponds to a multiprocessor with four UT II proces-
sors (UT II CMP). The third bar represents the UTMT II
baseline system. The fourth bar corresponds to the UTMT
II with the DSP shifter and the rightmost represents UTMT
IT with the shifter and load/store buffer. In multiprocessor
configurations each benchmark is run on a separate proces-
sor. We can observe from the figure that Adpcm bench-
mark runs considerably faster on the UTMT II employing
a load/store buffer. This is due to the fact that the Adpcm

COMPUTER
SOCIETY

14th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM'06)
0-7695-2661-6/06 $20.00 © 2006 IEEE

@ Altera Nios I/'e CMP
35 | O UT MT Il baseline
B UT MT Il w/ shifter and L/S buf

® UT IICMP
O UT MT Il w/ pipelined shifter |

Execution time [s]

Rijndael Adpcm SHA CRC32

Figure 8: Execution times of each benchmark in a
four-threaded benchmark mix

@ Altera Nios I'e CMP B UT IICMP
35 -/ OUT MT Il baseline O UT MT Il w/ pipelined shifter |,
B UT MT Il w/ shifter + L/S buf @ Altera Nios I/
30 1
@ 5 I
£
= 20 j
c
o
5 15
o
9]
& 10
5
0
Mix 1 Mix 2 Mix 3

Figure 9: Completion times for three four-threaded
benchmark mixes

benchmark is a memory non-intensive application as char-
acterized by the study on MiBench suite [16]. Without the
inclusion of the load/store buffer the memory non-intensive
benchmarks are slowed down by other memory intensive
benchmarks in the same benchmark mix. With the addi-
tion of load/store buffer memory non-intensive benchmarks
can progress through the pipeline without being stalled by
other threads. On the other hand, in the case of Rijndael
benchmark, the improvement is not that significant. Rijan-
dael is a memory intensive benchmark, thus most of the time
the thread is in the load/store buffer.

Figure 9 shows the results for three different benchmark
mixes. The third mix in the figure is the mix from Fig-
ure 8. The first mix comprises Dijkstra, SHA, QSort and
CRC32 benchmarks, while the second mix consists of Rijn-
dael, Adpcm, QSort and Bitcount benchmarks. The time
shown reflects the completion time of all four benchmarks
in a particular benchmark mix, determined by the longest
running benchmark in the mix. The sixth bar reflects the
total execution time when each benchmark in the mix is
run sequentially on the Nios II/f processor. While this bar
denotes the execution time for the benchmarks, it does not
include the operating system overhead required to perform
context switching. In addition, this is the only processor
which uses an instruction cache. Moreover, this advantage
is accentuated by the fact that the entire benchmark fits into
the instruction cache. We chose this arrangement to allow
Nios II/f processor to fully utilize its pipeline.

Figure 10 demonstrates the performance improvement
gained by implementing a pipelined shifter over a multicycle
shifter. The difference between the 4-cycle shifter and the

@ UT MT Il baseline B UT MT Il w/ 4-cycle shifter
35 -{ O UT MT Il w/ pipelined shifter ouTiicMP -
B UT I CMP w/ pipelined shifter
30 +—]
@ o5 ||
®
S
=20 —f
c
S
5 15—
(5]
(5]
& 10+
5 |
o1
Mix 1 Mix 2 Mix 3

Figure 10: Comparison of UTMT II and UT II CMP
with pipelined and non-pipelined 4-cycle shifter

pipelined shifter is that the 4-cycle shifter stalls all threads,
whereas the pipelined shifter allows other threads to con-
tinue through the pipeline. Therefore, the pipelined shifter
is the full implementation of the second performance en-
hancement described in section 4.2.2. On the other hand,
the performance improvement for UT II CMP is limited.
Again this shows that pipeline stalls due to multicycle IP sig-
nificantly impact the performance of other threads in UTMT
II. The three mixes used are the same as in the previous ex-
periment.

Table 5 depicts the complexity of each system in terms of
maximum frequency (Fyaz), the number of logic elements
and the total number of memory bits used. A key advantage
of UTMT II is its simplicity compared to the multiprocessor
configurations based both on Nios II/e and UT II processors.
Note that while the numbers for the Nios II/f appear bet-
ter, its real performance is likely to be significantly worse if
one takes into account the OS overhead and cache efficiency
which would be affected by the conflict misses due to switch-
ing between threads. We observe that our baseline MT pro-
cessor achieves about 45% and 25% area savings in terms
of LEs over our UT II CMP and Altera’s Nios II/e CMP,
respectively. After applying the performance enhancements
the area savings are 40% and 20%. Also, we observe that
the pipelined shifter adds 90 LEs to the UTMT II, but for
the UT II CMP it results in an increase of 428 LEs. This
shows the opportunity for area reduction due to sharing CI
logic. The area usage, in terms of LEs and memory bits, of
the processors is displayed in Figure 11.

7. CONCLUSIONS

Our investigation has shown that it is attractive to use a
multithreaded processor in the FPGA environment because
of the significant area savings. To achieve comparable per-
formance to a CMP system, it is essential to prevent a thread
from blocking the progress of other threads in the pipeline.
This can be achieved either by queuing instructions before
accessing an IP block or by pipelining an IP block to a mul-
tiple of N cycles, where N is the main pipeline depth, as
explained in section 4.2.2. The load/store buffers demon-
strate the first approach, while the shifter unit demonstrates
the second approach. The implementation results for UT II
CMP and UTMT II, given in Table 5, were obtained by
a straightforward application of the Quartus II compiler.
We believe that superior implementations of our processors
could be obtained by optimizing the design for a specific
target FPGA.

COMPUTER
SOCIETY

14th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM'06)
0-7695-2661-6/06 $20.00 © 2006 IEEE

Metric Nios IT/f Nios II/e UT II UT II UTMTII UTMT II UTMT II
CMP CMP CMP DSP shifter DSP shifter/
DSP shifter L/S Buffer
Frax 154 150 112 112 116 111 111
LEs 1,392 2,200 2,892 3,320 1,645 1,735 1,759
Memory bits 7,088 4,096 8,192 8,192 5,120 5,120 5,404

Table 5: Maximum frequency and area results

3500,, 9000 2004 ACM/SIGDA 12th International symposium on
1 8000 Field Programmable Gate Arrays, pages 61-70, New
30001 York, NY, USA, 2004. ACM Press.
25001 1 7% 2 [6] Paul Metzgen. Optimizing a high-performance 32-bit
a 1 6000 '; processor for programmable logic. In International
= 20001 T S000 2 Symposium on System-on-Chip, 2004.
S 15001 T 4000 2 [7] Peter Yiannacouras, Jonathan Rose, and J. Gregory
1 3000 & Steffan. The microarchitecture of FPGA-based soft
10001 1 2000 " processors. In CASES ’05: Proceedings of the 2005
500 1 1000 International Conference on Compilers, Architectures
| . and Synthesis for Embedded Systems, pages 202-212,
Altera UTIl UTMTIl UTMTIl UTMTIl Altera New York, NY, USA, 2005. ACM Press.
N'(‘;’,?A'F',/e CMP baseline pip:{i/ned ﬂj’g'ﬁi; Nios 1Vf [8] Dean M. Tullsen, Susan J. Eggers, and Henry M.

shifter

Figure 11: Area Usage
7.1 Future work

As part of the future work, we will investigate the reduc-
tion of the pipeline bubbles in the presence of multicycle
IP blocks. For instance, an improvement can be achieved
by allowing a thread to fetch a new instruction even if the
current instruction is executing a multicycle IP block, pro-
viding that the current instruction does not write a value
back to the register file.

Another avenue for investigation is to extend the instruc-
tion issue logic to improve performance when the workload
is less then four threads. In addition, bubbles can possibly
be eliminated by supporting more than four threads.

Acknowledgments

This work was supported in part by NSERC, and the Ed-
ward S. Rogers Sr. Scholarship. We would like to thank
Franjo Plavec for his advice and direction. Also, we would
like to thank the anonymous reviewers for their many valu-
able comments.

8. REFERENCES
(1] Altera Nios.
http://www.altera.com/products/ip/processors/nios/.
2005.

[2] Altera Nios II.

http://www.altera.com/products/ip/processors/nios2/.

3

Xilinx. Microblaze processor reference guide embedded
development kit edk 7.1i. 2005.

Franjo Plavec, Blair Fort, Zvonko G. Vranesic, and
Stephen D. Brown. Experiences with soft-core
processor design. In IPDPS ’05: Proceedings of the
19th IEEE International Parallel and Distributed
Processing Symposium (IPDPS’05) - Workshop 3,
page 167.2, Washington, DC, USA, 2005. IEEE
Computer Society.

Paul Metzgen. A high performance 32-bit alu for
programmable logic. In FPGA ’04: Proceedings of the

4

[5

(10]

(1]

(12]

(13]

(14]

(15]

(16]

Levy. Simultaneous multithreading: maximizing
on-chip parallelism. In ISCA ’95: Proceedings of the
22nd Annual International Symposium on Computer
Architecture, pages 392-403, New York, NY, USA,
1995. ACM Press.

Burton J. Smith. Architecture and applications of the
HEP multiprocessor computer system. In Proceedings
of SPIE - Real-Time Signal Processing 1V, pages
241-248, 1981.

Robert Alverson, David Callahan, Daniel Cummings,
Brian Koblenz, Allan Porterfield, and Burton Smith.
The tera computer system. In IC'S ’90: Proceedings of
the 4th International Conference on Supercomputing,
pages 1-6, 1990.

Patrick Crowley, Marc E. Fluczynski, Jean-Loup Baer,
and Brian N. Bershad. Characterizing processor
architectures for programmable network interfaces. In
I1CS ’00: Proceedings of the 14th International
Conference on Supercomputing, pages 5465, New
York, NY, USA, 2000. ACM Press.

R.G. Dimond, O. Mencer, and W. Luk. CUSTARD - a
customisable threaded FPGA soft processor and tools.
In Proceedings of the 2005 International Conference
on Field Programmable Logic and Applications, 2005.
Nicholas Weaver, Yury Markovskiy, Yatish Patel, and
John Wawrzynek. Post-placement C-slow retiming for
the Xilinx Virtex FPGA. In FPGA ’03: Proceedings of
the 2003 ACM/SIGDA Eleventh International
Symposium on Field Programmable Gate Arrays, pages
185-194, New York, NY, USA, 2003. ACM Press.
Altera Nios II Cores.
http://www.altera.com/products/ip/processors/nios2/
cores/ni2-processor_cores.html.

Altera’s SOPC Builder. http://www.altera.com/
products/software/products/sopc/.

Matthew R. Guthaus, Jeffrey S. Ringenberg, Dan
Ernst, Todd M. Austin, Trevor Mudge, and Richard B.
Brown. MiBench: A free, commercially representative
embedded benchmark suite. In IEEFE jth Annual
Workshop on Workload Characterization, 2001.

COMPUTER
SOCIETY

14th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM'06)
0-7695-2661-6/06 $20.00 © 2006 IEEE

