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A MULTITRAITMULTIMETHOD MODEL FOR STUDYING GROWTH

Abstract

The logical structure of the Campbell and Fiske (1959) multitmit

multimethod approach is applied to the problem of studying growth and its

determinants. The resulting model is a special case of Jgreskog's (1970a)

general model for the analysis of covariance structures. The relationships

of traditiona:. psychometric formulations to this model are detailed.
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A MULTITRAIT-MULTIMETHOD MODEL FOR STUDYING GROWTH
1

Charles E. Werts, Karl G. J8reskog, and Robert L. Linn

Werts and Linn (1970a) have suggested that a multitrait-multimethod

approach (Campbell & Fiske, 1959) might be used for studying growth. The

purpose of this paper is to detail such a model and to outline implications

for the study of growth. The major focus of our exposition will be the

logic of this model rather than the estimation of parameters or testing the

fit of the model to data. A comprehensive discussion of appropriate estima-

tion and fit-testing procedures may be found in J8reskog (1970a), whose

general model for the analysis of covariance structures subsumes the models

used in this paper.

The Model

The multitrait-multimethod approach may be treated as a problem in

confirmatory factor analysis (J8reskog, 1970a, 1971). For illustrative

purposes we will consider the example of three traits and three methods

since this is the minimum number of traits and methods required to produce

unique (defined in J8reskog, 1969, pp. 185-186) parameter estimates, given

the assumption that each observed measure loads on only one trait and one

method factor and all factors are oblique. The general factor analytic

model is:

y = µ +AT+ e (1)

1The research reported herein was performed pursuant to Grant No.
OEG-2-700033(509) with the United States Department of Health, Education, and
Welfare and the Office of Education.
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where y is the vector of observed scores,

is the mean vector of y ,

A is a matrix of factor loadings,

T is a vector of common factor scores, and

e is a vector of unique factor scores corresponding to specific

factors and/or errors of measurement.

For our example:

Yi (Yll'Y21'Y31'Y12'Y22'Y32'Y13'Y23'Y33) '

wherein
Yij
,i = method and j = trait,

If = (T1,T2,T3,M1,M2,M3) ,
( lb)

where T. - the

M. = the
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where A.. are loadings on trait factors and

B..
ij

are loadings on method factors.

The expected variance-covariance matrix E of y is then given by

E + 0
2

where 0
2

is a diagonal matrix whose elements ara the variances of e .

Since all factors are oblique, in our example:
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(2a)

where the C 's are covariances and the V 's are variances.

Following J-Breskog (1970a), parameters will be labelled as one of three

kinds: (1) fixed parameters that have been assigned given values; (2) con-

strained parameters that are unknown but equal to one or more other parameters;

and (3) free parameters that are unknown and not constrained to be equal to

any other parameter. The term "identifiable" will be used in the sense defined

by Fisher (1966, p. 25): "we shall speak of that equation as identifiable (or

identified) if there exists some combination of prior and posterior information

which will enable us to distinguish its parameters from those of any other
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equation in the same form." For the models studied in this paper, the term

"identifiable" is synonymous with the factor analyst's term "unique solution,"

i.c., a solution is "unique" if all linear transformations of the factors

that leave the fixed parameters unchanged also leave the free parameters

unchanged. As J8reskog (1970b) notes: "Before an attempt is made to esti-

mate a model of this kind, the identification problem must be examined." The

number of overidentifying restrictions on the model is frequently of interest,

for example, after standardizing factor variances (i.e., VT = VM = 1) the

three method by three trait model has three overidentifying restrictions,

i.e., E has 45 distinct variances and covariances as compared to 42 free

parameters to be estimated (18 factor loadings, 15 factor covariances in 0 ,

and nine residual variances in e ). The number of overidentifying restric-

tions is the degrees of freedom (df) for the test statistic in J8reskog's

general model (1970a, p. 241, sec. 1.4). The "path analysis" approach used

by Werts and Linn (1970a) can be very useful in exploring the identification

question in overidentified models. However, as noted by Hauser and Goldberger

(1970) the "path analysis" literature does not adequately deal with the esti-

mation problem in overidentified models, in part because the sample-population

distinction is blurred.

The multitrait-multimethod approach considered above does not consider

any functional relationships among the trait factors, i.e., the approach deals

only with errors of measurement. in the study of growth, these trait factors

correspond to initial status, final status, and the determinants of growth and

a structural model showing the relationship among these variables must

specified. Substantive inferences about growth are based on estimates of the

parameters of the structural model.
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Suppose that the structural model for growth took the form:

T3 = D1T1 + D2T2 + (3)

where T
3

is the final status, T
2

is the initial status, and T
1

is a

determinant of growth; all other influences on growth (represented by P., )

being independent of T1 and T
2

. In this model the initial status T
2

may influence the rate of growth. The parameters of equation (3) are just

identifiable in terms of the elements of 0 , i.e., the number of restric-

tions on the overall model is not changed. Assuming that T3 and T2 are

measurements on the same dimension as implied by the terms "initial" and

"final" status, growth (A) is equal to T3 - T2 . Werts and Linn (1970b)

have shown that the regression weights for T1 and T2 are:

and

D
1
= D2

1.T2

D
2

= 1 + 3D2
2.T1

where 3DT
T2

is the regression weight of A on T1
1.

and DT
.T

is the regression weight of .6, on T2
2 1

In other words D
1

represents the direct influence of

D
2

represents the direct influence of initial status on growth plus unity

(which represents that part of T3 which is .f.nitial status). Since T3

A+ T
2

, substituting equations (4) and (5) into (3) yields:

(5)

with T, controlled

with T
1

controlled.

T
1

on growth and

= D
1
.T

2
T
1
+ D

M
2
.T

1
T
2
+ . (6)
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In terms of
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respectively. If the analyst wished to scale a factor by the unit of a



particular measure this may be accomplished by setting the A..
ij

slope for

the measure equal to unity (in which case the variance of the corresponding

factor should not be standardized but left free to be estimated by the program).

The assumption that T2 and T3 are measures on the same dimension is

equivalent to setting the same method regression weights equal, i.e., in our

example Al2 = A13 , A22 = A23 , and A32 =A33 . As detailed by Werts and

Linn (1970a) the effect of these restrictions is that the ratio of the vari-

ance of T
3

to T
2

is fixed. For estimation purposes it is convenient to

standardize all factors except T3 whose variance is fixed in relation to

T2 . The model defined by equations (7a), (7b), and (7c) is no longer a

simple factor analysis model, but may be estimated using J8reskog's (1970a)

general model for the analysis of covariance structures. For this purpose

A* may be rewritten as the product of two matrices:
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and

A11 0 0 B
11

0

A21 0 0 0 B
21

0

A31 0 0 0 0 B31

0 A
12

0 B12 0 0

= 0 A
22

0 0 B
22

0
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33

and X
13

= B13 /A /A
13

X
23

= B
23

/A
23 '

X33 = B33/A33 . By substitution:

BA:**404(Ax*tBt + e
2

which is a special case of J8reskog's (1970a) general model.

In using the computer program (J8reskog, Gruvaeus, & van Thillo, 1970)

the parameters Al2 , A22 , A32 in A** should be constrained to be equal

to A
13

, A23 , and A
33

respectively in B . The resulting model has 45

distinct variances and covariances in Z and 40 free and constrained param-

eters (17 in A** , 14 in 0* , 9 in e , none in B because of equality

restraints), which means that the model has five overidentifying restrictions

( df). The advantage of casting the analysis in terms of J8reskog's general

model is that, given the assumption that the observed variables are distributed

normally, various hypotheses about the model may be tested in large samples.

10
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In particular, we may wonder if trait factors are uncorrelated with methods

factors and methods factors with each other as assumed by Cronbach and

Furby (1970) and Werts and Linn (1970a) in their analysis of growth. To

make this test, the analysis would be run with the model of (la), (lb), and

(lc) , and (2a) with VT = VT = VT = Vm = Vm = Vm = 1 and then the
1 2 3 1 2 3

analysis would be made with C = C = C = C = C
T

= C
T1M1 T

T1M2
T1M3

e 1 .e 2 .e 3

=CT
M C

1
C
T M = CM = 0 . For our example, the

3
=

T3 M3
= C

M
=

1M2 M1 M3 m_m

initial analysis would yield a chi-square with three df for testing the fit

of the model to the data. The second analysis would yield a chi-square with

15 df since 12 additional restrictions have been made. The increase in chi-

square with 12 df is a test of the tenability of the additional restrictions,

Starting with the same initial model, the tenability of assuming that Al2 =

A13 , A22 = A23 , and A32 = A33 may be tested (dropping the VT = 1

3
assumption) using the increase in chi-square with-2 df. Likewise starting

with these assumptions (i.e., equations (7a), (7b), and (7c), and df = 5)

hypotheses about growth can be tested, e.g., Di can be set equal to zero

and the resulting change in. X2 (df = 1) is a test of whether T2 directly

influences growth. To test whether initial status airectly influences growth

(i.e., whether Dom, = 0) , D2 would be set equal to unity (see equation
2 1

(4)), the increase in X
2

(df = 1) testing this hypothesis. The fit of

the observed variance-covariance matrix S to the estimated elements of E

may be used to form some judgment as to changes in fit resulting from addi-

tional restrictions, especially when the X
2

test is inappropriate because

the assumption of multivariate normality is-not reasonable.
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As originally conceived by Campbell and Fiske (1959) the multitrait-

multimethod approach required each trait to be measured with each method,

as in the example analyzed above. The linear structural model approach

proposed herein requires that model parameters be identifiable, a question

which is unrelated to whether each trait is measured with each method. In

order to fix the ratio of the variance of the final status to the initial

status factor, only one pair of initial and final measures with the same

units of measurement are required, i.e., the three sets of initial-final

measures in our example serve to overidentify this variance ratio. The

identification problem would be greatly simplified if one of these same

method sets were replaced with different method measures, even though the

resulting matrix would no longer be in the form required by Campbell and

Fiske. Campbell and Fiske's argument that different method measures of a

trait are required to improve convergent validity appears fundamentally sound

and is a basic premise in our analysis. We have abandoned the particular

type of analysis used by Campbell and Fiske because it fails to specify the

underlying structure being postulated, and does not allow for nonsymmetrical

method-by-trait combinations.

Relationship to Classical Test Theory

The multitrait-multimethod formulation can be shown to include various

procedures derived from classical test theory as special cases, e.g., the

commonly used formulas for reliability of differences, correlation of true

initial status with true gain, and the correlation of true scores over time

can be derived from the multitrait-multimethod model by imposing specifiable

restrictions. To illustrate this point we shall examine the case of two



parallel measures
(y12 ' Y22)

given initially and two finally (y13 , y23) .

First let us consider the analysis given the traditional assumptions that all

errors of measurement are independent of each other and of the true scores.

In our formulation this is
....emAjltal,F..-nt to asserting that there are no methods.

factors. Without further assumptions the model may be represented in terms

of equation (1) as

(8a)
Y (Y12'Y22'Y13'Y23) '

T = (T2,T3) , (8b)

1
Al 0

A
22

0

A= (8c )
0 A

13

0 A
23

_J

and

(1)

A2

e12

O V.
e
22

O 0 V

O 0 0

13

(8d)

(8e)
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Assuming that initial and final status are on the same scale, 'parallel" test

assumptions are equivalent to (J8reskog, 1971) fixing
Al2 A22 A13 A23 1

and constraining V
e e22
12

= V and V
e e23
13

= V . All parameters are identi-

fiable and df = 5 . Identification still occurs without the error variance

assumptions (df = 3) , i.e., in true score lexicon, "essentially tau-equiva-

lent" measures (Lord & Novick, 1968, pp. 47-50) would suffice. If we choose

to use nonparallel or "congeneric" (J8reskog, 1971) measures, one pair of

measures over time being on the same scale (e.g., Al2 = A13) , V
T

could
2

be arbitrarily standardized (= 1) , yielding an identifiable model with

df = 1 . In all these cases, growth statistics may be obtained from the

parameter estimates or the model can be transformed to obtain growth statis-

tics directly. Inserting T3 = T2 A then:

T* = (T2 , (9a)

r-A
12

A
22

0

A
13

A
13

A
23

A23

where A
12

= A13 .z by assumption, and

VT
2

CT
2

V

where V
T

= 1 for convenience.
2

9b )

(9c )
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Relevant growth statistics are:

pT. = correlation of initial status with gain = (10a)
26

CT
A T

2

^ ^ ^
Dm,

2

=

CT2A VT22

V
T

= VT + A + 26T
2A

, and
3 2

= 1 + DD
T
3
T
2 2

Similarly if parameter estimates were derived from the original model of

equations (8a), (8b), (8c), (8d), and (8e), growth statistics can be obtained

by:

= V
T2

D
T
3
T
2

c
T
2
T
3

Dm,
2

- 1= D
T
3
T
2

{16,
T
2

+ Ir

3
- 2

T T
2 3

CTS = I36T ,

2
and

p
T .

iTNA
2
A =

2 2

Following J6reskog (1971) the parallel test assumption can be tested (given

multivariate normality) by comparing the chi-square for the "essentially tau

equivalent" model to that for the "parallel" test model; the difference in

chi-square with df = 2 is a test of assumptions that V = V and
el2

e22

V = V
e23

. Similarly the increase in chi-square from the "congeneric"ei3

model to the tau-equivalent" model (df = 2)_ is a test of the

assumptions that
Al2 A22 and A13 = A23 . If the parallel test assump-

tions are accepted then the population reliability at the initial time may be

(11a)

(11b)

(nc)

(11d.)

(11e)



estimated by VT (VT + ) and reliability at the final time by
2 2 e12

V
T (VT + ) . The reliability for each test is the square of the
3

ei3

corresponding standardized factor loading in the case of "essentially tau-

equivalent" or "congeneric" measures. Another statistic of interest in the

traditional psychometric literature is the reliability of differences (pa)

which is defined as the true variance of the differences divided by the

variance of the observed differences. In the parallel case the estimated

population error variances can be used to obtain 'P.e directly:

V
^

+
^
Ve

(12a)

12 13

With "essentially tau-equivalent" assumptions no statement is made about

equality of error variances so that four reliabilities may be estimated:

'bL ^ (12b )
Vs + Ve12 + Vel3

/.o
.rz + V +V

12 e23

Vp

+ V + V
e22

nft ff VA

ir +
e22

e23

(12c)

(12d)

(12e)
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Formulas (12a), (12b), (12c), (12d), and (12e) are based on the assumption

that the true scores have the same units as the observed scores, which is not

true in the case of congeneric measures. Since the regression of observed on

true differences is equal to the regression of observed on true scores (Werts &

Linn, 1970a, equation (25)). it is only necessary to standardize this weight

with the appropriate variances to obtain the reliability of differences for

all cases, e.g., in the congeneric case if Al2 = A13 then

7t2
(12f)

13A .c-112

2'6(7.12' 713)
y12 y13

where V , V and 6(y
12'

y
13

) are the estimated elements in f .

Y12 y13

This formula uses estimated elements in E which are provided in the com-

puter output for J8reskog's program (J8reskog, Gruvaeus, & van Thillo, 1970).

The program computes the elements in E from the estimates for the underly-

ing parameters, e.g., 6(y
12'

y
13

) =
12A13 6T2T3

This model (all measure-

ment errors independent) may be used to clarify traditional procedures for

obtaining growth statistics. For example, consider the case in which one

initial and one final test is given. A common procedure is to obtain split

half reliabilities at each time and use these to correct for attenuation. If

y12 and y22 are the initial split halves and y13 and y23 the final

split halves, this case corresponds exactly to the parallel measure case

analyzed above. The difference from the traditional procedure is that the

complete variance-covariance matrix for the split halves is computed and used

in the analysis. As shown above, the "parallel" and "essentially tau-equiva-

lent" assumptions can be tested against the congeneric model and the congeneric

model is overidentified. From this perspective the traditional procedure
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neglects usefIL information about correlations among split halves and thereby

loses the possibility of rejecting the model because of poor fit to the data

and of analyzing the data making only congeneric test assumptions. To under-

stand the connection with the traditional formula it is of interest to

standardize E into a correlation matrix (correlations generated by the

model are indicated by symbol p ) and to show the relationships to standard-

ized model parameters (denoted by asterisk):

p(y12,
Y13) Al2k 2

T 1113

A(Y12, ) = iLX-A% 18:*
23 le T

2
T
3

23

P(Y22' Y13) A22PT
2
T A13

^
p(y22, Y23) = AA* A*

22 T
2
T
3

23

P(Y12' Y22) Al2A22

A(YLy Y2) = 4343 .

(13a)

(13b)

(13c)

(13d)

(13e)

(13f)

If parallel test assumptions are valid then 42 = 42 and At3 = A23 , in

which case equations (13a), (l3b), (13c), and (13d) are identical and should

be recognized as the traditional correction for attenuation, except that the

correlations are drawn from rather than from the observed correlation

matrix S . Equations (13e) and (13f), under parallel test assumptions, are

simply the assumption that the reliability defined as the squared correlation

(i.e.,
1

A*
2 1

or A*
3

) of the observed with the true score is equal to the

correlation between two parallel tests, but again the correlations are drawn

1
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from c] not from S . What these equations show is that it is not necessary

for the reliabilities of the split halves to be equal in order to identify

theumattematedcorrelationPygiven uncorrelated errors. If the esti-

mates of the elements in E for the parallel case are examined it will be

found that because of the structural specifications: V = V , V = V ,

Y12 y22 Y13 Y.23

6(Y12' Y13) 6(Y13' Y23) 6(Y22, Y13) = 6(Y22' Y23) ' 6(y12' Y22) 1'1'2 '

6(y
13'

y
23

) = V
T3 and 6(y

12'
y
13

) = 6(y
22,

y
23

) =
T2T3

. Translating the

equation for the reliability of differences into the elements of E :

or

6A

A
6(31.12' y22) a(Y13' Y2) 4Y12, Y13)

Y+ 1/ - 26(y
12'

y
13

)

r Y13ld

VYl2kY12'
Y22) + 13 13' 23 ) 2k12' 13 Yy )iV 12VY13

Y12 Y13 illY121C13
V + V\ - 26(y.

12' Y13)

(14a)

Equation (14b) should be recognized as the traditional formula for the relia-

bility of differences, noting however that the estimates are drawn from E ,

not from the observed matrix S . The essentially tau-equivalent case differs

from the parallel case in that the corresponding variances in 2: are not

required to be equal, however the covariances between independent measures of

different traits are still equal to the covariances between the corresponding

traits factors. This means that formula (14a) could be used for any pair of

tau-equivalent tests over time. For congeneric measures the formula involves

the pairs of measures which have the same units over time, e.g., if Al2 =

then equation (12f) may be translated into

19
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tAX \2 i
`

%2 - * A, *
v 12'
-12

y
13

13' 12'13 T
2
T
3 Y12 Y13 . (14c)

V
Y12

+ V
Y13

- 2p(y
le,
n, y

13
) JV

y
12 y

13

Equation (14c) is the reliability of differences formula given by Werts and

Linn (1970a, equation ()for the case of correlated errors over time for the

pair of measurements on the same scale, i.e., the Werts and Linn formula is

also appropriate to the independent error case when applied to the elements

of f rather than S . If formula (14c) applies to correlated errors using

congeneric measures then it may be specialized for the parallel measures case,

e.g., if y12 and v
-13

have nonindependent errors and y12 and y23 have

independent errors:

(a) A* = A* by parallel test assumptions, therefore A2*-k* 6'13 23 ,
le 13'T T3

k12A23T
2
T

(b) but

Since

(Y12, Y23)
At2A23T T

2 3

=Al2 -1/112' y22) ' A13 =j6(Y13'
Y23) lY12 Y22

V Vu.

Y13 'Y 23

equation (14c) becomes

V P(Y
Y12 12

Y22) 4- /Ty
13
P(Y13' Y23) 4/(Y12' Y23)

Y12
Vy

13
2P(Y12' Y13) iV12V13

IV
12
V
13

. (14d)

Equation (14d) is the formula for the reliability of differences for "linked"

(i.e., correlated errors) parallel test measures given by Cronbach and Furby

(1970, equation (6)), which can be seen to be the parallel measure specializa-

tion of the Werts-Linn equation for nonindependent congeneric measures.
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Similarly from equations (11a), (lib), (11c), (lid), and (lie) it follows

that the estimated correlation of status with gain is:

CT
T

- VT
3 2 2

f3T =

\TV
2
(V +V+ V T3 - 26 T2T3 )

In the congeneric case with A
12

A
13

, this may be transformed into

611'2'

JA*-V A'42i- 2p^ ii41.*
12 y12 13 y13 T

2
T3 le 13 y12 y13

T
2T3

16Ll3
Y13

) - A)'ti12 y12

(15a)

. (15b)

Formula (15b) is the correlation of status with gain given by Werts and Linn

(1970a,equation (28)) for the case of congeneric measures and correlated

errors, i.e., the formula applies also to the independent error case. In

the case of parallel independent measures
2
T
3

6(Y12, Y13)

,MY12' Y22)16(y13' Y23) which when substituted into formula (15b) yields

the traditional formula for the correlation of status with gain as applied

to the elements of E :

P(Y12, Y13 j
13

P(Y12, Y22))/ITv

=
-12

. (15c)

2 )4712' Y22 16012' Y22) \FIr 1:;(Y13' Y23) 21";(Y12, Y13
-12 13 VgY12C15

Our purpose in demonstrating relationships to traditional formulations is

purely heuristic, since J8reskog's program yields estimates of model param-

eters given the structural assumptions specified by the investigator, i.e.,

the traditional formulas apply to the elements of 53 which. are not directly

observable but which are estimated as a function of the parameter estimates.

21
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Traditional psychometric approaches have dealt with models which are just

identified which means that models which exactly reproduce the observed

variance-covariance matrix can be employed (i.e., S = ). The limitation

in this approach is that overidentification is necessary if the fit of the

model to the data is to be tested.

In this paragraph we propose to use our model to specify the conditions

implicit in Cronbach's (1960, pp. 136-139) discussion of coefficients of

"stability" and "equivalence." Cronbach uses an example in which two forms

of the Mechanical Reasoning Test of the DAT were used, the same forms being

used for test and retest purposes. When the same form is repeated, the test-

retest correlation is higher than the test-retest correlation between differ-

ent forms, suggesting the presence of "long-lasting test-specific" factors.

The implication is that the errors of measurement for the same test repeated

are not independent. Assuming that both forms were repeated and errors of

measurement independent for different forms, the model for parallel measures

is of the form:

where

y = [1+ AT ,

Y (y12, y22, Y13' Y23)

where y12 and yi3 are the same test as are y22 and y23

, (16c)
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0 =

[V

T2

C
T T
2 3

0

0

0

0

1 0 1

1 0 0

0 1 0

0 1 0

V
T

3

0 V E

12

0 0

0 C
el2e13

0 0

0 0 0

1 0 0

0 1 0

0 0 1

Symmetric

V
e
22

0

C

e22e23

V
el3

V
e
23

(16d)

(16e)

where V
el2

= V
e22

, V
e
13

= V
e23

The model of (16a) is the special case of factor analysis in which the residual

factors are treated as latent factors. Examination of 0 shows that the same

test errors of measurement are nonindependent, i.e., C
el2e22

and C / 0 .

e22e23

All parameters are identifiable and df = 3 (10 distinct elements in E less

7 free and constrained parameters). Essentially tau-equivalent assumptions

would still have provided identification but with only one overidentifying

restriction (since V f V , V / V ) . An interesting case occurs
e12 e22 el3 e23

with congeneric assumptions in which case the model is underidentified; how-

ever, the unattenuated trait correlation p
T2T3

is just identified
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pT2T3 C( y12' Y23)6(Y22' Y13) 6(Y12, Y22 )6(Y13; Y23)] . Identification

may be achieved with the congeneric model by repeating only one test (assum-

ing Al2 = A13 ) and using different method measures for y22 and y23 in

which case the model is:

Al2 0 1 0 0 0

A
22

0 0 1 0 0

IL = (16f)
0 A

13
0 0 1 0

0 A
23

0 0 0 1

where A
12

= A
13

by assumption, and

C
T T V

T
2 3 3

Symmetric

0 0 V
e
12

0 = 0 0 Ve (16g)
22

0 0 C 0 V
e e
12 15

0 0 0 0 0 Ve23

J

This model is just identified (10 distinct elements in E less 10 parameters
"y

to be estimated). Let us return to Cronbach's example in which there are

Forms A (y12) and B (y22) initially and retests on Forms A (y23) and

B (y23) three years later. Cronbach partitions the variance using the

immediate and retest correlations among forms (assumed parallel) which in our
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model corresponds to the elements of E . We may translate Cronbach's parti-

tioning procedure into functions of the model parameters in equations (16a),

(16b), (16c), (16d), and (16e) as follows:

1. "Lasting General Variance" = P(Y12' Y23) Al2p(T2, 1113)A4h which accord-

ing to the model equals P(Y22' Y13) =
A22p(T2, T3)A13 .2A2. "Teml,:)rary General Variance" = o(v

12'
y22) P(Y12' Y23) A4122

A*
12

p(T
2'

T
2
)A*
23 o (-12' Y22)which according to the model equals

AtA2 - q2p(T2, T3)A413 . In principle there is ap(y22, Y13)

different "Temporary General Variance" for the end time p(y13, y23) -

At3q3 - At2p(T2, T3)P43 which equals p(y13, y23) -
P(Y12' Y23)

P(Y22' Y13)
A13q3 - q2p(T2, T3)A41.3 .

3. "Lasting Specific Variance" for Form A o(v
12' Y13) P(Y12' y23)

P(Y12' Y13) P(Y22' Y13) (A412)

2

p(e12' e13) fl (A!3)2
and

for Form B
("V22' Y23) P(Y12' Y23) P(Y22' Y23) P(Y22' Y13)

J1 (A22)
2

P(e22' e23) J1 (A23)
2

4. "Temporary Specific Variance" p(y12, Y22)3 [p(y12, Y13)

P(Y12' Y23)3 [2" P(Y12' Y22)3 EP(Y12' Y13) P(Y22' Y13)3

1 - Al2g2 - - (A412)2 p(e12, e13)il - (A413)2 for the correlations

used by Cronbach, but in principle there are three other temporary

specific variances

1 - A.413143 - Jr1 -

1 - At2q2 23)

and

- /1

e13)

- (AId P(e22' (A123)

1 - A13q3

2

'

-
2

(Al2)2
2

,/1 - (43) ,

11 (A:22)

2

P(e22' e23) (A23)2

25



It can be seen that Cronbach's procedure for partitioning of variance involves

complicated functions of the model parameters. Not only is it simpler to

analyze observed correlations in terms of a set of structural parameters, but

it allows for analysis of overidentified models. Further light can be shed

on the assumptions implicit in the model of (16a), (16b), (16c), (16d), and

(16e) by asking what variables account for the correlated errors. Assuming

that a single factor (M1) underlies the correlation for Form A and another

factor (M2) for Form B the model becomes:

where

A=

and

y = µ + AT + e'

Y (Y12' Y22, Y13'

T = (T2, Ty M1, M2)

e
t = (et

12' e22,
e13,

Y23) ,

,

\
e
23/

(17a)

(17b)

(17c)

(17d)

(17e)

1 0 B12 0

1 0 0 B22

0 1 B
13

0

0 1 0 B
23

(17f)
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Analysis of the identification problem shows that B12, B22, B13, and B23

are not separately identifiable; only the products (B12 B13) and (B22 B23)

are identified. This means that in Jgreskog's program we may arbitrarily

set B
12

= B
13

and B
22

= B
23

without disturbing the estimation for

other parameters. Assuming B12 = B13 and B22 = B23 , this model is a

simple transformation of (16a), (16b), (16c), (16d), and (16e) under essen-

tiallytially tau-equivalent assumptions, that is, V V , V
e

/ V
e23

in

e12
r

e22 13
equation (16e). In particular it can be seen that it must be assumed that

M
1

and M
2

are uncorrelated. It is possible to deal with oblique true and

method factors but usually more different method measures are required as in

our 3 trait x 3 method example in Section I.

When methods of measuring a trait are made as different as possible, it

is usually the case that the units of measurement are different, which means

that congeneric rather than essentially tau-equivalent or parallel assump-

tions are appropriate. Werts and Linn (1970a) consider growth models based

on congeneric measures, e.g., in one case they use three congeneric measures

of T
2

and two congeneric measures of T
3

, allowing for same test correlated

errors over time. This model is overidentified, but no attempt was made to

deal with this complication. Phrasing this problem in terms of J8reskog's

general model:

y= + + e

Y = 12' Y22' Y32' Y1

where y12 and y13 are linked as are y22 and y23 .

(18a)

(213b)

T = (T2, T3, M1, M2) (18c)
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0 B
12

0

A
22

0 0 B22

A = A32 0 0 0 (18d.)

0 A
13

B
13

0

0 A
23

0 B23

1

(I)

C
T T
2 3

V
T

3 (18e)

1

0 1

Assuming that Al2 = A13 , A22 A23 and for convenience that B12 = B13 ,

B22
= B

23 , this model has four overidentifying restrictions (15 distinct

elements in E less 11 parameters to be estimated). Werts and Linn give

two formulas (1970a, p. 198, equations (28) and (29)) for estimating the

correlation of status with gain involving observed correlations and variances

whereas J8reskog's approach generates a single estimate by equation (15a).

In essence Werts and. Linn dealt with the elements of the observed variance-

covariance matrix S which may yield inconsistent estimates of p
T2A

whereas such inconsistency cannot arise with respect to the elements in E .

J8reskog has an unpublished operating program for estimating factor scores

within the confirmatory factor analysis model (J8reskog, 1971). As Cronbach

and Furby (1970) note, however, there is seldom need for such estimates.
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Relationship to Factor Analysis

A common practice in the factor analysis of growth data is to compare

standardized factor loadings at one time to the loadings for the same set of

measures at a later time. If the pattern of loadings remains constant over

time the inference is drawn that the factors are measuring essentially the

same dimension at different times. For example we might have three measures

of T2 at time 1 with factor loadings At2 = .30 , A22 = .40, and A32 = .50

and identical loadings on T
3

when these measures are repeated at time 2,

i.e., 1kw3 -.30' 2A*3
=.40,and* =A33 - .50 . For heuristic purposes let

us suppose that the repetition of tests did not result in methods factors

and that the true variance increased from V
T2

= 1.0 to V
T3

= 1.5 over

time and CT = 1.2 . It may be immediately inferred that the error vari-
2 3

ances for all tests increased over time since the test reliabilities (in

this model the squared factor loadings) remained constant and the true vari-

ance increased. However, Wiley and Wiley (1970) have persuasively argued

that it is more likely that error variances are a test characteristic which

is likely to remain constant over time. If this iE so, then an increase in

true variance along the same dimension will necessarily mean that the relia-

bilities of the tests will increase over time, i.e., the standardized factor

loadings will increase. In the same fashion it may be deduced that if for

any given test over time the unstandardized regression weights (Ai2 = Ai3)

and the error variances (V = V
e.

) are equal, then in general the
ei2

13

standardized factor loadings (Aid) are not proportional from one time to

another. We conclude that comparison of standardized factor loading patterns

over time provides no logical base for any conclusions about whether pretests

.09



and posttests are measuring the same variable. It appears to us that such an

assumption, which in this model is equivalent to equality of unstandardized

regression weights over time (e.g., Al2 = A13) , is basically not testable

within the framework of this model. It would seem better not to make dubious

assumptions that either the reliability or the error variance are relatively

constant (over time) test characteristics, but to build models and gather

requisite information such that these model parameters are identified.

While it is not possible to test the assumption that A22 = A23 , it is

quite possible for this assumption to be incompatible with the assumption

that A22 = A23 . The ratio of VT_ to VT resulting from Al2 = A13 may
2

differ from tbe ratio resulting from A22 = A23 . This may be tested by the

increase in X
2

(df = 1) resulting from the addition of A22 = A23 to the

model in which Al2 = A13 . Within the framework of this model, if it is

true that the corresponding pairs of tests over time in fact have the same

units, then the scaling of V
T3

to V
T2

should be the same for each pair.

The finding that the data are consistent with the hypothesis that

A
12

= A
13

and A
22

= A
23

does not necessarily imply that the units of

measurement for the corresponding pairs of tests over time are the same since

it is quite possible for the scaling to be erroneous for both pairs of tests

but in the same way. If the data are inconsistent with the hypothesis that

A22 = A13 and A22 = A
23

we could conclude that the units over time are not

the same for both sets of tests, but it is still possible that the units are

the same for one of the sets over time. Even if it could be shown that

A
12

= A
13

, this would only be evidence consistent with, not proof of, the

hypothesis that the scales are measuring the same process over time.
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Determinants of Growth

Werts and Linn (1970b) have considered the problem of making inferences

about the determinants in a linear model. The Werts-Linn formulation was

based on classical true score assumptions, i.e., no provision was made for

methods factors. For heuristic purposes let us reconsider the problem of

growth determinants, formulating the three trait, three method model in

terms of growth (T3

B=

= T2

T =

All

A21

A31

0

0

0

0

0

o

:

(T1,

0

0

0

A
12

A
22

A
32

A
12

A22

A
32

T2, A, M1, M2, M3)

0 B
11

0

0 0 B21

0 0 0

0 B
12

0

0 0 B
22

0 0 0

A
12

B
13

0

A22 0 B
23

A
32

0 0

0

0

B31

0

0

B
32

0

0

B
33

(19a)

(19b)
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CT
1
T
2

1

C
T A

C
T
2
A VD

1

C C
T
2
M
1

C6m
1

1
T M_

11

2
CT

1 2
C
Tm.

C6m Cm
1 2

1

CT1M3 M_

ci
A 11 A

cM
2
M
31

M5
2 3

6M3
1

(19c)

It should be noted that although this formulation does not directly involve

the parameters of the underlying growth model A =
1. 2

T
T
1

+ Dom,
.T

T
2
+ ,

2 1

however, the regression weights are:

CT
1

CT
2
APT

1
T
2

and

D
.T 21 2 1 - C

T1T2

CT A - CT Ac
T T

2 1 1 2
D

2
.T

1 1 - CT

(19d)

(19e)

Traditional test theorists (e.g., Bloom, 1964; Thorndike, 1966) have been

very concerned with and have drawn substantive inferences about the determinants

of growth from the correlation of status with gain, usually corrected for

"attenuation." However, as detailed by Werts and Linn (1970b), in a linear

structural model prime interest is in the model parameters D and
6T

1
.T

2

since if either one is zero the inference will be drawn that theD
6T

2
.T

1
corresponding variable does not directly influence gain. Except in the case

in which initial status is uncorrelated with all determinants of growth,
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knowledge of the correlation of status with gain, pT , does not allow us
2

to draw inferences about model parameters. It is quite possible for pT
2

to be completely spurious due to a common antecedent influence or it is quite

possible for pT to be zero without implying that DLT or 1:)2

2 l' 2 2' 1

be zero. For this reason we question Thorndike's (1966, p. 124) interpreta-

tion: "In considerable part, the factors that produce gains during a

specified time span appear to be different from those that produced the

level of competence exhibited at the beginning of the period." Our objection

is that Thorndike's conclusion was made from the correlation of status with

gain, without specifically introducing into the analysis any presumed

determinants of growth. In a linear structural model the total association

of initial status with growth is an insufficient basis for drawing infer-

ences about the various possible determinants of growth.

Discussion

The variety of test response tendencies covered by the rubric "methods

factors" appear to be an almost universal complication in sociopsychological

growth studies. Even though in principle the multitrait-multimethod model

presented in this paper provides for "methods factors," it does not follow

that this model does in fact provide a better simulation of reality than

previous models which have typically ignored methods factors by assuming

independent errors of measurement. It may be expected that our procedure

will typically yield different parameter estimates (e.g., 2orrelation of

status with gain) than previous procedures, but what has been learned about

growth and its determinants thereby? What is learned about reality from the

overwhelming concern of the factor analyst with statistical fit? There is
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no guarantee that the best fitting model yields substantively meaningful

results (e.g., Werts, J8reskog, & Linn, in press). Why bother with complicated

structural models involving unmeasured variables when it is likely that a

simple regression equation invoicing only measured variables will provide the

best prediction of the criterion? From our perspective, if the researcher's

basic interest is in reality, then the research must be designed to explore

reality, i.e., to offer evidence as to which of the initially plausible

alternative hypotheses (models) provides the better simulation. In some

cases this may involve a study of the theoretical implications to see what

information is necessary to discriminate between the alternative models. In

other cases the study may be a continuing one as in the building of models

to simulate the national economy, in which case the ability to better predict

new yearly data is used to discriminate among models. Our purpose in making

these remarks is to heighten the awareness of researchers that parameter

estimates, such as the reliability of gain scores, are always made within the

framework of a whole set of untested assumptions about the nature of reality.

It is misleading to talk about "the correlation of status with gain" since

the meaning of this parameter is totally a function of the particular model

used to derive the parameter. In most cases in which this type of estimate

has been used, no effort has been made to examine the validity or even plausi-

bility of the models underlying these estimates. The linear structural model

presented herein is as suspect as any other model and needs to be justified

as one of the plausible alternative hypotheses, prior to data analysis.
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