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Abstract.—Heterogeneous populations can lead to important differences in birth and death rates across a phylogeny. Taking
this heterogeneity into account is necessary to obtain accurate estimates of the underlying population dynamics. We present
a new multitype birth–death model (MTBD) that can estimate lineage-specific birth and death rates. This corresponds to
estimating lineage-dependent speciation and extinction rates for species phylogenies, and lineage-dependent transmission
and recovery rates for pathogen transmission trees. In contrast with previous models, we do not presume to know the trait
driving the rate differences, nor do we prohibit the same rates from appearing in different parts of the phylogeny. Using
simulated data sets, we show that the MTBD model can reliably infer the presence of multiple evolutionary regimes, their
positions in the tree, and the birth and death rates associated with each. We also present a reanalysis of two empirical data
sets and compare the results obtained by MTBD and by the existing software BAMM. We compare two implementations
of the model, one exact and one approximate (assuming that no rate changes occur in the extinct parts of the tree), and
show that the approximation only slightly affects results. The MTBD model is implemented as a package in the Bayesian
inference software BEAST 2 and allows joint inference of the phylogeny and the model parameters.[Birth–death; lineage
specific rates, multi-type model.]

The deep connection between phylogenies and the
populations in which they are embedded enables genetic
sequence data, in combination with other heritable trait
data, to inform a wide array of scientific investigations
in fields as diverse as macroevolution, ecology, and
epidemiology. Such methods often assume that the data
has evolved in a neutral fashion, meaning that the birth
and death rates of the underlying population model
(corresponding to speciation and extinction rates in the
macroevolutionary setting, or infection and recovery
rates in the epidemiological setting) were unaffected
by changes in the ancestral type. However, for many
traits this is unreasonable, and the presence of such
traits is known to be a source of bias in estimates of
diversification (Maddison 2006).

Multitype birth–death (MTBD) models have been
widely used to model population structure and analyze
phylogenies built from individuals in a structured
population (Maddison et al. 2007; FitzJohn 2012; Stadler
and Bonhoeffer 2013; Kühnert et al. 2016), both in
epidemiological and macroevolutionary applications.
These models contain a series of discrete types with
type-specific birth and death rates, such that each
type corresponds to a specific evolutionary regime.
Based on a phylogeny where each tip is associated
with a type, the type-dependent birth and death rates
are estimated. Birth events correspond to transmission
events in epidemiology and speciation events in
macroevolution, while death events correspond to
becoming-noninfectious events in epidemiology and
extinction events in macroevolution. A type might be
for example an ecological niche or the presence of a
particular trait.

The Binary State Speciation and Extinction (BiSSE,
Maddison et al. (2007)) and its extension to multiple
states MuSSE, included in the package Diversitree
(FitzJohn 2012), provided the first means of explicit
model-based inference of type-specific birth and death
rates from complete ultrametric phylogenies, that is,
trees with all tips sampled at the same point in time,
where each tip is assigned to a type. (The earlier method
of sister clade contrasts (Mitter et al. 1988) provided
a hypothesis testing framework enabling detection
of type-specific diversification rates, but no explicit
model for the correlation between diversification rate
and type.)

BiSSE was later extended to incomplete trees (FitzJohn
et al. 2009). In Stadler and Bonhoeffer (2013), these
approaches were extended to nonultrametric trees. More
recently, the BEAST 2 package BDMM (Kühnert et al.
2016) allowed the joint reconstruction of a phylogeny and
quantification of the parameters of an underlying MTBD
model. These approaches all have in common that the
model is conditioned on a particular total number of
types and the type at each tip in the phylogeny. This
necessitates the formulation of a hypothesis as to which
underlying feature drives the pattern of evolutionary
rates. The BiSSE models in particular have been criticized
for their approach being biased towards inferring trait-
dependent rates regardless of the chosen trait (Rabosky
and Goldberg 2015). Although this was addressed by the
introduction of the HiSSE model (Beaulieu and O’Meara
2016) which uses a more appropriate null hypothesis,
in the current implementation testing multiple different
traits or combinations of traits would still require a
different run of the inference for each. Thus, there is a
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clear need for models which do not make such strong
prior assumptions on the process driving the changes in
evolutionary rates.

The method Bayesian Analysis of Macroevolutionary
Mixtures (BAMM, Rabosky et al. (2013)) addresses these
issues and is able to infer the number of types, assign
each lineage of the tree to a type and estimate the
birth- and death-rate parameters associated with each
type. However, its results have been called into question,
as Moore et al. (2016) identified issues regarding the
calculation of its likelihood function and a strong
dependency on the prior when inferring the number
of types, as well as inaccurate diversification rates
estimates. Some of those criticisms were addressed by
Rabosky et al. (2017), who showed that the simulation
used in Moore et al. (2016) contained a large number
of shifts which only affected small clades of the
phylogeny, making them difficult to detect. Rabosky et al.
(2017) also pointed out that the sensitivity to the prior
decreased sharply when using the default settings of
BAMM rather than the setting used by Moore et al.
(2016). However, issues regarding the calculation of the
extinction probability in the likelihood function used
by BAMM have to our knowledge not been addressed.
Moreover, the process of moving between types is
not explicitly modeled by BAMM, which may be a
contributing factor to the prior sensitivity observed in
some situations. Additionally, BAMM assumes that each
type emerges only once along the tree. It thus implicitly
links the changes in birth and death rates to lineage-
specific innovations with no innovation occurring
more than once, which may not adequately represent
situations where the rates are driven by environmental
or geographic conditions, for instance.

Two other methods have been developed in parallel
with our approach, addressing shortcomings of BAMM.
ClaDS (Maliet et al. 2019) models the changes in birth
and death rates by assuming that upon speciation, the
two offspring species obtain new rate values following
a distribution which is fixed across the tree but can
be dependent on the ancestral rate values. During the
inference, the rates at the start of branches in the tree
are inferred, and potential rate changes on a branch or
extinct parts in the tree are integrated out analytically.
This approach essentially models many small rate
changes—that is, a rate change upon each speciation
event—whereby most speciation events give rise to
offspring species with the same rates as their mother
species, while BAMM models a few large rate changes.
Another proposed method, implemented in RevBayes
(Hoehna et al. 2019), discretizes a prior distribution on
rates into a fixed number of categories. The rates are then
estimated through the hyperparameters of the chosen
prior. The method, like BAMM, models few large rate
changes. However, it further takes into account rate
changes in extinct parts of the tree. As of yet it cannot
estimate the number of rate categories.

In this article, we present a new Bayesian method for
inferring lineage-specific birth and death rates jointly
with a phylogeny, using a MTBD model assuming few

large rate changes. This method infers the number and
position of evolutionary regimes as well as the type
change rate, and requires no strong assumption with
respect to the features driving the variation in birth and
death rates. We provide two distinct implementations of
this method: (i) a computationally fast implementation,
which ignores rate shifts in extinct parts of the tree
and (ii) a computationally slow implementation which
explicitly accounts for these rate shifts. We validate both
implementations of this new method and evaluate their
performance on simulated data sets. In particular, we
assess the impact of ignoring rate shifts in the extinct
part of the tree. We then use our method to reanalyze two
empirical phylogenies and compare the results to those
obtained by BAMM on those trees. Finally, we discuss
the limitations of the method and planned future work.

1 MATERIALS AND METHODS

1.1 Multitype Birth–Death Model

We use a MTBD model with contemporaneous and
noncontemporaneous sampling. This model contains n∗

types, each associated with a specific birth rate �i and
death rate �i, i∈{1,2,...,n∗}. The process starts with one
individual in a type r picked uniformly at random from
the n∗ possible types, at time tor >0 in the past. Through
time, each individual in type i undergoes birth events
giving rise to an additional individual in type i with rate
�i, and dies with rate �i. Additionally, each individual
in any type i undergoes a change in birth and death rates
to any different type j with rate m. Thus, the overall
rate of change for any individual to another type is
�=m(n∗−1). Note that �=0 for n∗ =1. Throughout this
article, we consider � (and not m) as a parameter.

The process stops at present time t=0. The model
includes both extinct and extant sampling: individuals
are sampled upon death with a probability � and
individuals at the present are sampled with a
probability �.

The process gives rise to complete trees, displaying all
birth, death, type change, and sampling events (Fig. 1,
left). The reconstructed tree T is obtained by pruning
all lineages of the complete tree without sampled
descendants (Fig. 1, right). By analogy with the figure,
we will call the attribution of types to lineages and the
position of type changes on the tree the coloring S of the
reconstructed tree.

1.2 Probability Density of a Reconstructed Tree

We derive the likelihood of the MTBD model on a
given phylogeny, that is, the probability density of the
reconstructed tree T with the coloring S, given the vector
�, which contains the values of the birth and death rates
for each type: f [T ,S|�].

In the following, we will split the phylogeny into
edge segments, where each branching event or type
change event marks the start of a new segment. Thus,
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FIGURE 1. Visual representation of the MTBD model on a complete tree (left) with sampling events indicated in orange, and on the
corresponding reconstructed tree (right). Each type is represented by a color: the ancestral type, in black, starts at the root. The other types, in
blue, red, and green, start at change points along the tree. The same type can be present in multiple clades along the tree, such as the blue type
in the complete tree.

the edge segments of T ,S correspond to the edges of T

subdivided at type change events, and any edge segment
belongs to only one type.

Following Kühnert et al. (2016), we define pi(t) as
the probability of a lineage in type i at time t>0
not appearing in the reconstructed tree, that is, the
probability of this lineage not being sampled before or
at the present. We also define qi,N(t) as the probability
density of a given edge segment N in type i at time t≥0
evolving according to the tree T and types S between
time t and the present.

Note that f [T ,S|�]=qr,N(tor)×g(r), with r being the
root type, and g(r) being the probability of the first
individual being in type r. Since the types of the
MTBD model are not tied to specific tips or specific
character types in the model, their order and numbering
is arbitrary. We thus assume here a uniform distribution,
that is, g(r)= 1

n∗ .
We obtain the ordinary differential equations Eq. 1

for pi(t) and Eq. 2 for qi,N(t), where t∈[te;ts],ts > te with
te and ts, respectively, the end and start times of edge
segment N:

dpi

dt
(t)=−(�+�i +�i)pi(t)+�i +�ipi(t)

2 +
∑

j �=i

�

n∗−1
pj(t),

pi(0)=1−�,

(1)

and

dqi,N

dt
(t)=−(�+�i +�i)qi,N(t)

+2�iqi,N(t)pi(t),

qi,N(0)=� if N leads to a tip at the present te =0,

qi,N(te)=�i� if N leads to a tip at time te >0,

qi,N(te)=�iqi,N′ (te)qi,N′′ (te) if N branches at te >0 into

N′ and N′′,

qi,N(te)=
�

n∗−1
qj,N(te) if N changes from type j to i

(forward in time) at te >0. (2)

The derivations of these equations follow the
procedure initially described in Maddison et al.
(2007), and can be found in full in Kühnert et al.
(2016). These ordinary differential equations do not
have an analytical solution. Numerical integration is
computationally expensive and can be unstable for
certain parameters. Thus, in our implementation, we
make the assumption that no type changes happen
in the unsampled parts of the tree, meaning we
observe all type changes in the reconstructed tree.
In the Supplementary Section 2 available on Dryad
at http://dx.doi.org/10.5061/dryad.zpc866t5n, we also
present the method and all analysis results without
this approximation (referred to as BDMM). With this
assumption, the differential equation for pi(t) simplifies
to Eq. 3.

dpi

dt
(t)=−(�+�i +�i)pi(t)+�i +�ipi(t)

2

pi(0)=1−�.

(3)

With this approximation, we can derive an analytical
solution for pi(t):

pi(t)=−
1
�i

(yi+�i(1−�))xie
−ct −yi(xi +�i(1−�))

(yi +�i(1−�))e−ct −(xi +�i(1−�))
,

where c=

√

(�+�i +�i)2 −4�i(1−�)�i,

xi =
−(�+�i +�i)−c

2
, and yi =

−(�+�i +�i)+c

2
.

(4)

Using Equation (4) in the differential equation
for qi,N(t) (Equation 2) allows us to derive qi,N(t)
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analytically:

qi,N(t)

=qi,N(te)ec(te−t)

(

(yi +�i(1−�))e−cte −xi −�i(1−�)

(yi +�i(1−�))e−ct −xi −�i(1−�)

)2

.

(5)

For an edge N in type i which starts at time ts
and ends at time te (ts > te), qi,N(ts) is the likelihood
of the full subtree descending from edge segment N.
The likelihood of edge segment N can be obtained as

fN =
qi,N (ts)
qi,N (te) =ec(te−ts)

(

(yi+�i(1−�))e−cte −xi−�i(1−�)
(yi+�i(1−�))e−cts−xi−�i(1−�)

)2
.

Following the tree decomposition described in Nee
et al. (1994), this allows us to write the probability density
of the phylogeny T and the type changes assigned to the
lineages S, with Ni being the set of edge segments in type
i, Bi being the set of birth events in type i (and for each
event b∈Bi, tb the time of this event), Si being the set of
extinct tips in type i, next being the number of extant tips,
and k being the number of type change events:

f (T ,S|�= (�,�,�))

=
∏

i

⎡

⎣

∏

N∈Ni

fN ×
∏

b∈Bi(T )

�i(tb)×
∏

s∈Si(T )

��i

⎤

⎦

×

(

�

n∗−1

)k

×�next . (6)

Note that the transition term mk =
(

�
n∗−1

)k
contains

only the contribution of the instantaneous type change
events, as the contribution of the waiting times between
events is already included in the edge segment likelihood
fN . If n∗ =1, then k =0 and this transition term becomes
mk =1 and is thus removed from Equation 6. Note also
that if the tree starts with 2 lineages at time t1 instead of
1 lineage at time tor, the likelihood becomes 1

�r
f (T ,S|�=

(�,�,�)).
Surface plots showing how pi(t) and fN change in

function of the model parameters can be found in
Supplementary Figure S13 available on Dryad.

1.3 Bayesian Inference

We implemented our model in a Bayesian framework
as an add-on to the popular Markov chain Monte-Carlo
(MCMC) inference software BEAST 2 (Bouckaert et al.
2014), which allows to estimate S (the type history)
and � (the rates �, �, and �) from a phylogeny based
on Equation 6. The inference can be performed on
a fixed tree T , or directly on sequences, in which
case T is inferred jointly with the other parameters
using the substitution and clock models provided
by BEAST 2. In a joint inference, we sample from

the following distribution:

f (T ,S,�,�|D)=
P(D|T ,�)f (T ,S|�)f (�)f (�)

P(D)

with the data D being the sequence alignment, � being
the parameters of the sequence evolution model, f (�)f (�)
being the prior distributions for the model parameters,
and f (D|T ,�) being Felsenstein’s phylogenetic likelihood
(Felsenstein 1981) for the sequencing data. If we
condition on a fixed tree T , we use D=T .

While we infer n∗ for our data, the number of types
assigned to the reconstructed phylogeny, n, may be
smaller than n∗, that is, n≤n∗. To reduce the complexity
of the computation, we do not sample the birth and death
rates associated with the types which are not currently
assigned to the tree, and instead marginalize over those
rates. This marginalization introduces an additional

term (n∗−1)!
(n∗−n)! to the probability density to account for the

sampling of n∗−n unassigned types.
It has been shown that in unstructured models,

the three parameters �,�, and � are not identifiable
(Stadler et al. 2013). In order to avoid potential parameter
correlations in the structured model, we require the
sampling probabilities � and � to be provided as inputs.

More details on the implementation can be found in
the Supplementary material available on Dryad.

1.4 Simulation Study

To study the behavior of our method, we simulated
trees under our model. We used a stochastic forward
in time simulation process which takes the following
inputs:

• a stopping condition: the process is stopped upon
reaching a certain number of tips or after a certain
time had passed

• a rate � of type change

• the total number of types in the process n∗

• a function to sample birth rates and death rates for
all types

• sampling rates or sampling numbers for the extant
tips and extinct tips

The specific parameter values were chosen in function
of the purpose of the data set and are detailed in the
following sections. The birth–death process is started
with either one or two lineages and is simulated using
the Gillespie algorithm (Gillespie 1976), which consists
in randomly drawing the waiting times between events
and the nature of these events (in this case, speciation,
extinction, or type change events). The process continues
until the stopping condition is met or all lineages
descending from one of the starting lineages have gone
extinct, in which case the resulting tree is discarded. At
the end of the process, lineages are discarded based on

D
o

w
n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/s
y
s
b
io

/a
rtic

le
/6

9
/5

/9
7
3
/5

7
6
2
6
2
6
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syaa016#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syaa016#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syaa016#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syaa016#supplementary-data


2020 BARIDO-SOTTANI ET AL.—MULTITYPE BIRTH–DEATH MODEL 977

the sampling settings to obtain the reconstructed tree. If
the sampling settings lead to no lineages being sampled,
the resulting tree is also discarded.

1.4.1 Validation: sampling from prior.—To ensure that the
implementation of our model is correct, we performed
a comparison of the distribution of trees obtained
from forward in time simulations of the process to the
distribution obtained from running an MCMC inference
without sequence data under our model with the same
priors. This “sampling from the prior” procedure has
been described in Vaughan et al. (2014).

We performed two sets of simulations, one with death
(i.e., �i >0 ∀i) and one without death (i.e., �i =0 ∀i).
The distributions obtained without death should match
if the model is correctly implemented; however, we
expect a discrepancy when simulating with death, due
to the approximation of no type changes on unsampled
lineages made in the probability density function used
by the MCMC.

The number of tips was fixed to 50, and tmrca was
fixed to 1.0. The priors used were the following:
LogNormal(1.5,1.0) for the birth rates �i and
LogNormal(1.0,1.0) for the type change rate �. The
prior for the death rates �i was the Dirac function 	0
in simulations without death and LogNormal(−1.0,0.5)
in simulations with death. The prior on n∗ was set to
Poisson(4).

The forward in time simulation was performed as
follows. Parameters for five different types were drawn
from the prior distributions, then a tree was simulated
starting with two lineages in the same type, with this
initial type being chosen uniformly at random. The
simulation was stopped after a time t=1.0, or when
all lineages had gone extinct, whichever came first.
The simulated tree was kept in the data set if the
following two conditions were met: the number of
extant tips was ntips =50 and the time of the most
recent common ancestor tmrca =1.0, that is, neither of
the original two lineages had gone fully extinct. New
parameters were drawn from the priors for the next
simulation, independent of the previous draw having
resulted in a tree which was kept or not.

We assessed the match between the two distributions
of trees on two measures: the gamma statistic, which
measures the balance of recent branching events in a
tree against older events, and the Colless statistic, which
measures the left–right balance of lineages in a tree. We
also assessed the match between the distributions of type
positions on the trees on two measures: the number of
tips in the largest type (i.e., the type with the maximum
number of tips) and the total number of sampled types.

1.4.2 Accuracy of the inference.—We assessed the quality
of the MTBD inference on simulated data sets covering
a range of possible configurations: constant birth and
death rates, multiple types with different birth rates,
multiple types with different death rates, and multiple
types with different birth and death rates. Some of these

data sets were simulated using the forward in time
process described previously. Our parameter choices
for � and � are displayed in Figure 3. In short, we
performed one set of simulations with �=0. Then,
we performed a set of simulations with two different
birth rates (�1 =1,�2 =10,�=0.5). Next, we performed
a set of simulations with two death rates, where the
net diversification (birth–death) matched the simulation
with the birth rate variation (�=10.5,�1 =10,�2 =1).
The rationale for keeping the net diversification the same
was to investigate the difference of performance of the
method when varying birth versus death rates in the
light of as few changes as possible across the simulations.
Finally, we did a set of simulations with five birth rates
and one death rate. We chose “low” and “high” values of
� such that the resulting trees would contain respectively
between 1 and 3 type changes and between 10 and 14
type changes on average, excluding the changes on edges
leading to tips. The “low” � value was thus set to 0.2 for
data sets with 2 types, and 0.29 for the data set with 5
types, while the “high” � value was set to 2.61.

This process often led to trees where one of the
types only covered a small portion of the tree, and
so there was little signal for the presence of two
types. Previous research showed that using trees with
inadequate signal for multiple diversification regimes
could lead to misleading conclusions about the accuracy
of the inferences (Rabosky et al. 2017). To address this
issue, we also simulated so-called joined trees, which
were made of two trees simulated separately under a
constant birth–death process. The root of the smaller
tree was then attached to the bigger tree such that the
resulting tree was ultrametric. These joined data sets
were thus characterized by the proportion p of tips in
type 1 rather than by a change rate �.

No sequences were simulated, and all analyses
were performed with fixed tree topologies. Thus, we
estimated S and � for a fixed tree T . We measured
the accuracy of the parameter estimates as well as the
coloring S.

2 RESULTS

We developed and implemented the MTBD model as a
package within the BEAST 2 framework. It takes genetic
sequences or fixed phylogenetic trees as an input. The
output is the inferred trees (in the case of sequences)
and an assignment of lineage-specific birth and death
rates to all lineages in the tree. Changes of these rates
may happen anywhere along a branch. The standard
MTBD implementation assumes that there are no type
changes in the extinct parts of the tree (referred to as
“approximate MTBD” or simply MTBD). We have a
second, much slower implementation referred to as the
“exact MTBD,” which takes into account type changes in
extinct parts, that is, it does not make any approximation.
In what follows, we will first show evidence for the
correctness of our approximate MTBD implementation
in the absence of extinction in a simulation study. Then,
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FIGURE 2. Comparison of the distributions of multiple summary statistics on trees obtained from forward simulation (in green) and MCMC
sampling from the prior (in red) under a pure-birth MTBD process.

based on simulations, we investigate the accuracy of
the approximate MTBD when estimating the rates and
change times. In the Supplementary Section 3 available
on Dryad, we validate the exact MTBD and compare
the approximate MTBD to the exact MTBD, revealing
that the approximation has no major effect towards
our simulation results. We also explore the impact of
high or zero death rates in the Supplementary Section 4
available on Dryad, and the impact of asymmetric type
change rates in Supplementary Section 5. Finally, we
will present the results of an analysis of a lizard and

a hummingbird phylogeny using both approximate and
exact implementations of the method.

2.1 Validation: Sampling from Prior

The results of the simulations without extinction
are shown in Figure 2. The distributions obtained by
forward simulation and by sampling from the prior
match perfectly for all statistics, which provides strong
evidence that the MCMC method is implemented
correctly.
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FIGURE 3. Performance of the birth, death, and type change rates inference on different data sets, measured by the relative error (absolute
difference between the estimate and the true value, divided by the true value) and the coverage (proportion of 95% HPDs which contain the
true value). All measures are averages over 100 trees, with 200 tips for the data sets with 1 or 2 types and 500 tips for the data set with 5 types.
Tip errors are averaged over all tips, while tree errors are averaged over all edges, weighted by the edge lengths.

As expected, the simulations with extinction do not
fully match between the two methods, as the forward
simulation allows for type changes in the extinct parts
of the tree whereas our method assumes there were
none. As shown in Supplementary Figure S14 available
on Dryad, there is a slight discrepancy in the statistics
linked to the tree topology, and a stronger discrepancy
in the statistics linked to the type distribution.

The validation of the exact MTBD is shown in the
Supplementary Section 3.1 available on Dryad.

2.2 Accuracy of the Inference

We use simulated phylogenies to assess the accuracy
of the inference. Some data sets were simulated under
the model, using a fixed set of types and a change
rate �. Other data sets were created by simulating two
different trees under constant birth–death processes
and attaching them. These joined data sets were thus
characterized by the proportion p of tips in type 1 rather
than �.

2.2.1 Parameter estimates.—We evaluated the accuracy
of the parameter estimates for the birth rates, death
rates, and type change rates in simulated data sets by
estimating the relative error of the median estimate and
the coverage, that is, the proportion of inferences where
the true value appeared in the 95% Highest posterior
density (HPD) interval. The error on the birth and death
rates was evaluated both as an average across all tips and

as an average across the entire tree, weighted by the edge
lengths.

The results are shown in Figure 3. Estimates for
the parameter � are accurate for values around 0.2,
corresponding to between 1 and 3 type changes in the
tree on average. However, the estimates are much worse
when � is high, that is, 2.61. This is likely partly due to
the approximation of no type changes in the unsampled
parts of the tree being more violated when � is high,
but also to the presence of undetected type changes, as
detailed below.

Estimates of the birth rates are very accurate, except
for the estimates at the tips under high �. Since the
estimates averaged over the whole tree do not suffer in a
similar way, this exception is likely due to misattributing
tips to the wrong regime rather than increased error on
the regimes themselves: type changes affecting edges
leading to tips, which are more likely when � is high,
have a very weak to nonexistent signal and so cannot be
detected by the inference. This in turn leads to tips being
assigned a different type in the inference than the one
recorded in the simulation, and also to underestimating
�, particularly when � is high. Estimates of the death
rates are generally less accurate, although the true value
is still in the 95% HPD interval in at least 75% of the trees
in all data sets.

In conclusion, the MTBD method is able to recover the
correct birth and death rates from simulated phylogeny,
and is able to estimate the type change rate when it
is small. However, the type change rate is frequently
underestimated when the true value is high.
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FIGURE 4. Performance of the type number and coloring inference on different data sets, measured by the VI distance (difference between the
true and estimated type partitions of tips) and the difference between true and estimated number of types. Measures are shown for the original
true tree, and for the true tree recolored to remove small clades. All measures are averages over 100 trees, with 200 tips for the data sets with 1
or 2 types and 500 tips for the data set with 5 types.

2.2.2 Type number and positions.—We measure the
accuracy of the inference regarding the number of types
and the partition of tips into the different types. We
use the variation of information (VI) criterion (Meilă
2003) to measure the distance between the inferred type
placement and the truth: a measure of 0 indicates perfect
concordance between the two. The upper bound of the VI
distance depends on the number of types in the coloring
and varies between 1.39 for 2 types and 3.22 for 5 types;
however, in this article, we have rescaled all VI distances
so they range from 0 to 1, in order to make comparisons
easier. VI distances were calculated for each sample of
the posterior separately and on a “consensus” coloring
built from the parameter values inferred for each edge.
This consensus coloring put tips in the same type if the
median estimates of their birth and death rates over the
entire posterior were less than 10% apart, and is designed
to represent a summary of the coloring over the posterior.
Finally, we also estimated the posterior support for tips
to be in the same type, analyzed for both pairs in and
pairs not in the same type in the true coloring.

Results are shown in Figures 4 and 5. The first finding
is that the number of types inferred by MTBD is not
a reliable estimate of the underlying process (Fig. 4,
right). In particular, the median estimate is similar
for all data sets. Thus the precise number of inferred
types should not be considered a good indicator of
how many diversification regimes are in the process.
This is unsurprising, as this number counts regimes
that may be extremely similar as being distinct, and
in such cases is likely to suffer from unidentifiability.

This indicates that instead, one should use the actual
rate variation inferred by MTBD. The VI distance also
shows discrepancies between the sampled clusterings
and the truth on all data sets, in particular on the data
set with high �, the data set with 5 types and data
sets with identical birth rate and different death rates
(Fig. 4, left). The consensus clustering however is closer
to the truth on all data sets, which confirms that birth
and death rate estimates are reliable. Since type changes
happen at a constant rate throughout the process and
most of the length of a tree is concentrated towards the
tips, the simulation process will naturally create trees
which contain small clades of one type nested within
another type. We expect these clades to be difficult to
detect, as they cause small differences in the probability
density. To test this hypothesis, we recolored all clades
which contained less than six nodes (internal nodes
included) in the true coloring, by attributing the tips of
that clade to the ancestor type instead. Thus, the tips
belonging to small clades are not removed but simply
recolored (indicated as “With recoloring” in Figs 4 and
5). We observe a marked improvement in similarity, as
measured by the VI distance, when using this method,
confirming that those small clades are unlikely to be
detected by the MTBD inference. As seen earlier, the
death rate estimates are less accurate than the birth
rate estimates, and this is reflected by these results as
well: the inference cannot easily distinguish between two
types when the death rates are different but the birth
rates are identical even when those two types are clearly
delimited in the tree (see row 4 of Fig. 4). In conclusion,
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FIGURE 5. Posterior support for pairs of tips being inferred in the same type over different data sets. Measures are shown for the original
true tree, and for the true tree recolored to remove small clades. All measures are averages over 100 trees, with 200 tips for the data sets with 1
or 2 types and 500 tips for the data set with 5 types.

when types differ by their birth rates, the consensus
coloring represents an accurate estimate of the original
coloring, especially when excluding smaller clades. The
quality of the inference is however much worse on types
which only differ by their death rates.

We also looked at the posterior support for pairs of
tips being in the same type, shown in Figure 5: if the
inferred coloring is accurate, we expect pairs which are
in the same type in the true coloring (in red in the figure)
to have much higher support than pairs in different true
types (in green in the figure). The results are consistent
with the previous findings, showing that the posterior
support reflects the true type partition if small clades
are “excluded” (by recoloring as described above) and
types have different birth rates.

2.2.3 Tip type inference.—Figure 6 shows an example
of the posterior distribution on the birth rate for one
tip of a tree. The tree was originally simulated with
parameters �1 =1, �2 =10, �=0.5, and �=2.61. The
figure shows a clear bimodal distribution, which is
indicative that the inference has identified (at least) two
separate diversification regimes across the tree, but that
there is uncertainty on which regime this specific tip
belongs to. The two modes identified are at �̂1 ≈1 and
�̂2 ≈9, close to the true parameter values.

This figure illustrates both the power of the MTBD
inference, which is able to infer complex and nuanced
evolutionary dynamics, and the complexity involved in
interpreting the results. The median of the posterior is
here 8.0, which corresponds to the most sampled mode
for this tip, but entirely misses the mode with lower �.

The 95% HPD interval is [0.0187;9.97], which covers
both identified modes but gives no indication that the
distribution is bimodal. Finally, the mean estimate is 6.2,
which is a misleading summary of the distribution.

In this work, we have used the median estimates
to measure the accuracy of the inference, as it is the
most representative of the configuration with the most
posterior support. However, one should keep in mind
that commonly used summary statistics can be flawed
when summarizing distributions which are strongly
multimodal. Other measures such as the highest density
region (HDR) (Hyndman 1996) are more appropriate
for these distributions. The HDR can be composed
of multiple disjoint intervals and is thus a better
representation of multimodal distributions than HPD
intervals. As an example, the 90% HDR for the posterior
density shown in Figure 6, calculated using the R
packagehdrcde, is [−0.21;1.92],[6.97;10.35], and shows
the two modes clearly.

2.2.4 Comparison with the exact method.—For the exact
MTBD where rate changes in extinct parts of the tree are
properly taken into account, the accuracy is shown in
Supplementary Figures S3–S5 available on Dryad.

Regarding parameter estimates, using the exact MTBD
method results in more accurate estimates of � when
the true value is high (�=2.61), but also less accurate
estimates of � in some data sets. The inferred number
of types is increased; however, this is expected due to
the inclusion of all types in the exact MTBD, as opposed
to the (approximate) MTBD model which only samples
types observed in the tree. The VI scores are similar to the
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FIGURE 6. Kernel density estimation of a bimodal posterior distribution of the birth rate on one tip of the tree, as inferred by the MTBD
method.

results obtained from the approximate MTBD method,
although they are lower for data sets containing joined
trees simulated using two separate trees. As explained
above, these data sets were designed specifically to have
no extinct type changes and thus represent a violation
of the exact MTBD model, which explains the lower
performance. Finally, the measures of posterior support
for pairs of tips show little difference between the two
methods.

2.3 Empirical Data Sets

We reanalyzed two empirical trees which were
originally analyzed using BAMM: a phylogeny of
hummingbird species obtained from McGuire et al.
(2014) and a phylogeny of scincid lizards obtained from
Rabosky et al. (2014). Both trees contain only extant
species, with sampling proportions respectively �=0.86
and �=0.85. In both analyses, the sampling proportions
were fixed to the truth and the priors for the birth and
death rates were set to LogNormal(1.5,2.0). The tree
topology was fixed and the prior on the number of
types in the birth–death process n∗ was set to Poisson(4).
The prior on � was set to LogNormal(−4.0,1.0). We also
performed a second analysis on the lizards phylogeny
using the priors on birth rate and death rate which were
originally used with BAMM, that is, Exponential(1.0) for

both rates. Priors for � and n∗ were set to the same value
as the previous analysis. The BAMM settings used on
the hummingbirds phylogeny are not publicly available,
so a similar analysis was not possible.

Average diversification rates per edge, weighted by
the edge length, were logged for each edge. Figure 7a,b,
shows the results of the MTBD inference with lognormal
priors on both empirical phylogenies, summarized as
the median of the average diversification rate for each
edge.

The hummingbirds inference (Fig. 7a) shows some
similarities with the original analysis by BAMM, but
also differences. The diversification rates inferred by
BAMM were between 0.1 and 0.4, consistent with our
results. BAMM also found strong posterior support for
between 2 and 4 types with elevated diversification
in the clade that includes Bees, Mountain Gems, and
Emeralds, with particularly strong support for the
Bees clade having a distinct diversification regime. In
accordance with those results, the MTBD inference
identifies three clades with elevated diversification rate,
the Bees clade and two subclades of the Emeralds family.
The main difference between the two inferences is that
our method finds no evidence for time dependency in
the diversification rates, contrary to BAMM which infers
an average speciation decay of 0.35 to 0.15 over 25 myr,
corresponding to an exponential decay rate of 0.034
across the tree.
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FIGURE 7. Empirical hummingbirds phylogeny (a, c) and lizards phylogeny (b, d) colored by the median diversification rate inferred by MTBD
for each edge. Inferences were run with a prior favoring low values of � (a, b) or higher values of � (c, d).

On the lizard phylogeny (Fig. 7b), the results are
quite different from the original analysis performed
using BAMM. BAMM found strong support for two
distinct configurations: one configuration with two
separate diversification regimes, one in the Lerista and
Ctenotus clades and one in the rest of the tree, and
one configuration with three separate diversification
regimes, one in the Lerista clade, one in the Ctetonus
clade, and one in the rest of the tree. MTBD on the
other hand shows no evidence of separate diversification
regimes in the tree and infers a median speciation rate
of 0.125 and a median extinction rate of 0.005 across the
entire phylogeny. Similarly to the hummingbirds data
set, our method also detects no time dependency in the
diversification rate, although BAMM infers an average
speciation decay rate of 0.2.

As time dependency is not explicitly modeled in
the MTBD inference, detecting it requires inferring
widespread type changes across the tree. Thus the
absence of time dependency in our original inference
could be due to the prior on � being too low, and thus
moving the inference away from this configuration. To
test this hypothesis, we also ran an analysis with a much
higher prior on �, set to LogNormal(4.0,1.0). The results

are shown in Figure 7c,d. With the larger prior mean
on �, we can indeed recover signal for time dependency
in the lizards phylogeny, with edges close to the tips
inferred to have a lower diversification rate than edges
closer to the backbone of the tree. On the other hand, the
hummingbirds phylogeny still shows no strong evidence
for time dependency, and no longer detects the clades
identified as under different diversification regimes by
the previous analysis. Thus it appears that the results
are sensitive to the prior in �, and that the higher
diversification rate identified in some hummingbirds
clades by the original analysis is not robust to changes
in the inference settings. In conclusion, it is not possible
to conclude whether this data set contains evidence for
changes in diversification rates.

However, this also illustrates the necessity of being
careful when summarizing results from the MTBD
inference, as a more in-depth analysis shows that edges
in the hummingbirds phylogeny actually show a strong
bimodal distribution which is very similar from edge to
edge. The strong differences apparent in Figure 7c are in
fact due to small variations in this bimodal distribution
which lead the median to switch from one mode to
the other. The posterior distributions on selected tips of
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this phylogeny are shown in Supplementary Figure S15
available on Dryad.

Similar results were obtained when summarizing
based on the median speciation and extinction rate,
as well as when using the same priors as the original
BAMM analysis. They are shown in Supplementary
Figures S16–S19 available on Dryad.

In summary, the empirical analyses show two very
different situations when using the default priors: on
the hummingbirds data set, our method and BAMM
reach similar conclusions both regarding the presence
and positions of separate diversification regimes and
the parameter estimates. On the lizards phylogeny
however, BAMM and MTBD obtain very different
results, with MTBD finding no evidence of either rate
changes or time-dependent rates. Further analyses on
the empirical data sets show that MTBD is able to
infer a pattern of time-dependent rates in a piecewise
manner, however this requires the prior for � to have a
much higher mean than for detecting single clades with
different diversification regimes. Additionally, clades
with elevated diversification rates are no longer detected
in the hummingbirds data set when using the higher
prior, indicating that they may be spurious and the
product of specific model settings. The results obtained
with the higher prior are consistent with the results
obtained with the exact MTBD method, indicating that
the hummingbirds clades detected by BAMM and the
default MTBD may be spurious. On the other hand, the
time dependency shown by the lizards data set is also
detected by the exact MTBD. Overall, the MTBD results
are quite sensitive to the prior set on �, implying that
there is little signal for the number of type changes in
these two data sets.

It is not clear what is the source of the difference
between MTBD and BAMM. The two methods model
the type change process in different ways, as BAMM does
not include a type change rate. The results obtained with
BAMM were postprocessed using the recommended
BAMMtools package, which filters out some of the
inferred type changes. Some of the differences may also
be due to stochastic variation and a low amount of signal
in the data. Finally, it is to be noted that our comparison
was done using the published BAMM results for both
empirical data sets, which were obtained using BAMM
v1.0.0. BAMM has undergone significant changes since,
including several bugfixes and modifications of the
likelihood function, thus it is possible that the original
results do not reflect the results which would be obtained
with the latest version of the method.

2.3.1 Comparison with the exact MTBD.—The
diversification rate estimates using the exact MTBD
method on the empirical data sets are shown in
Supplementary Figure S6 available on Dryad. One thing
to note is that the results are less sensitive to the prior on
�, although the results obtained with a � prior placing
an emphasis on higher values show more variation in
estimates between edges, as expected.

On the hummingbirds data set, the clades with
higher diversification rate identified by BAMM are not
identified by the exact MTBD method with either � prior
settings, confirming that these clades may be spurious
results and the product of specific inference settings.
On the lizards data set, the results show a pattern of
interedge variation, with edges closer to the root having
a higher diversification rate than edges at the tips,
supporting the time dependency inferred by the original
BAMM analysis on this data set.

On both empirical data sets, the range of values
obtained with BAMM for the diversification rates
matches the estimates obtained with both versions of
MTBD.

For both data sets, MTBD estimates of the edge
speciation and extinction rates are strongly bimodal,
thus the median estimate shown in Supplementary
Figure S6 available on Dryad is only a partial
representation of the results. However, the results
obtained using the exact MTBD method are consistent
with the estimates from the approximate MTBD with
the high-� prior.

2.4 The Consequences of Assuming No Type Changes in
Extinct Parts of the Tree

The approximation of no type changes in the extinct
parts of the tree does not affect strongly the accuracy of
the results on the simulated data sets. For the empirical
analysis, the exact MTBD is less sensitive than the
approximate MTBD to the prior on �, and the results
obtained are consistent with the results obtained by the
approximate MTBD with the high-� prior.

This test confirmed that the performance impact of
using numerical integration instead of an analytical
approximation is important: runs were between 6 and
10 times slower for the same number of iterations when
using the exact MTBD inference as opposed to the
approximate method.

In conclusion, our approximation improves the
performance of the inference with respect to
computational time without strongly affecting the
results. One caveat of this conclusion is that our current
model uses symmetric transition rates between all
types. It is possible that the impact of the approximation
would increase in the presence of strongly asymmetrical
transitions, for instance if the types correspond to the
“exposed” and “infected” phases of an infection.

3 DISCUSSION

In this manuscript, we present an MCMC sampler for
colored trees where the tip types and the number of types
are unknown. This contrasts with previous approaches
like the State Speciation and Extinction models (BiSSE,
MuSSE, etc.) or BDMM, where the types at the tips are
fixed. We associate this sampler with a new MTBD for
Bayesian inference of lineage-specific birth and death
rates. The model is composed of multiple types, each
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associated with a specific birth and death rate, as well
as a type change rate. The positions and times of type
changes on the phylogeny then define the type to which
each lineage belongs. The MTBD model thus represents a
discretization of the underlying evolutionary process as
a series of separate evolutionary regimes. We provide the
likelihood function for this model and combine it with
the MCMC sampler to perform phylodynamic inference.

The two components, sampler and MTBD model,
can be used independently, as the sampler is not
dependent on the particular likelihood function used.
We demonstrate this in our work by testing both the exact
MTBD likelihood and an approximate version of this
likelihood. Thus the sampler could easily be reused in
association with other multitype phylodynamic models,
such as those based on the structured coalescent
(Notohara 1990). Further, the sampler could be combined
with models for gradual phenotypic evolution (Mitov
et al. 2019).

Regarding our new MTBD model, we have shown
using simulated data sets that the MTBD inference can
accurately estimate birth and death rates, and that those
estimates can be used to build an accurate partition of the
tree into types. However, our results also show that the
MTBD inference cannot detect clades with different rates
if the clades consist of very few tips. This is expected, as
the method relies on the pattern of relative edge lengths
to infer rates, thus small clades will not contain enough
signal for type changes to be detected. Additionally,
death rate estimates are less accurate than birth rate
estimates in all simulation conditions. This in turn leads
to lower accuracy when partitioning the tree into types
in data sets where types only differ by the death rate.
In this case, many trees are inferred as containing only
one type. Finally, the estimated number of types is not
a reliable representation of the true number of distinct
regimes in the underlying process.

One challenge of performing inference under the
MTBD model, also shared by other complex inference
models, is the computational complexity of calculating
the likelihood. To minimize the impact of this issue,
we make several approximations in the likelihood
calculation, including the assumption that there are no
type changes in the extinct parts of the tree. The method
BAMM (Rabosky et al. 2013) uses a similar assumption,
which has been criticized previously (Moore et al. 2016).
Thus, we tested our approximate likelihood against the
exact version. As we found no major differences in the
accuracy of our estimates between the two methods,
this approximation has no major drawbacks for the
investigated parameter choices, while ensuring much
faster run times (about 6- to 10-fold).

Our MTBD model differs from the model used by
BAMM in several key ways. First, the MTBD model
includes an explicit type change process, controlled
by the type change rate �, which is not present in
BAMM. Second, BAMM assumes that each type change
is the start of an entirely new evolutionary regime,
while the MTBD model allows the same type to be
present in multiple distinct parts of the tree. Although
these differences may seem minor, the results of the

comparison on the empirical data sets demonstrate
that those differences and assumptions can have an
important impact on the results. Thus, our work in
validating and testing MTBD under a variety of different
conditions, including an explicit test of the main
approximation allowing for no type changes in extinct
parts, improves on the foundational understanding of
multitype models in phylogenetics.

A unique and powerful feature of our approach is
that the MTBD model can be used in combination with
the rest of the BEAST2 framework to infer both the
tree topology and evolutionary parameters from genetic
sequences. It allows users to model the phylogenetic
tree distribution and in particular take into account the
phylogenetic uncertainty, compared to an approach such
as BAMM which enforces a fixed tree topology.

One should be aware that interpreting the results of
the MTBD inference requires more care than for other
models. This is primarily for two reasons, with the first
being that the types are not linked to specific tips. If two
MCMC samples contain k types, we cannot determine a
precise correspondence between the k types in the first
sample and the k types in the second. This problem is
compounded by the variation in the number of types
between different samples across the chain. Considering
different sampled types in the MCMC reveals a large
amount of uncertainty as shown in Figure 4. However,
the introduced consensus clustering obtained from the
rate estimates approximates the true clustering well.

The second reason is that the MTBD inference will
frequently produce multimodal posterior distributions
on the rates associated with specific nodes or edges.
This multimodality reflects the uncertainty of assigning
a node or edge to a particular type. For multimodal
distributions, the usual metrics used to describe
Bayesian parameter estimates, that is, the median and
HPD interval, give an incomplete picture of the output
by failing to distinguish between uncertainty around
the rate estimate and uncertainty on regime (i.e., type)
attribution. We suggest that the HDR is a more adequate
summary statistic for multimodal distributions, however
analyzing the output of the MTBD inference should be
tailored to the research question being considered, and
may require different metrics than the ones we have used
in this article.

Concerns about a more general form of
unidentifiability in complex birth–death processes
have recently been discussed (Louca and Pennell 2019).
In our work, we explicitly tested the identifiability of the
type change rate parameter �. Our results show that �
is identifiable, despite the variability we observe in the
empirical results depending on the prior on �. However,
more complex identifiability problems (i.e., affecting
a combination of parameters rather than a single one)
may still exist. Models containing lineage-specific
changes in birth and death rates were not the focus of
Louca and Pennell (2019), thus it is currently unknown
whether the MTBD model suffers from similar issues.
One way to avoid potential problems would be to avoid
a focus on point estimates such as the median estimate.
Instead, we should always consider the full posterior
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distribution as the output, which should continue to
properly represent uncertainty in inference results even
in the face of unidentifiability. However, due to its
high-dimension, the full posterior distribution is hard
to deal with.

Future work will focus on implementing explicitly
time-dependent birth and death rates in the MTBD
model to better accommodate situations where
diversity-dependent or environment-dependent
diversification is present. Additionally, the available
inference options should be generalized, in particular
regarding sampling schemes. Currently only type-
independent extinct and extant sampling are supported,
and the associated parameters are assumed to
have known (fixed) values. Similarly, the current
implementation of the MTBD model assumes that all
transitions are symmetric. Our simulations show that
parameter estimates remain reliable in the presence
of strongly asymmetric transition rates; however,
the inferred type partition becomes less accurate.
Including asymmetric transition rates would expand
the applicability of our model to real-world data, for
instance epidemiology data sets where the types could
correspond to “exposed” and “infectious” phases.
Moreover, it will be interesting to use our colored
tree sampler in association with other tree generating
processes. In particular, phenotype evolution models as
presented in Mitov et al. (2019) would be great models to
be linked with our sampler. Such a linkage would allow
to determine distinct regimes of phenotypic evolution
processes. In summary, we expect that our sampler for
colored trees will become a standard sampler within
BEAST2 for a range of models. Our analysis of the
MTBD model, using this sampler, provides a deeper
understanding of the MTBD models.

DATA AVAILABILITY

All simulations and analyses were done using custom
R scripts (available in the Supplementary Materials). The
method is publicly available as the BEAST 2 package
MSBD.
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The code and data are available from the Dryad
Digital Repository: http://dx.doi.org/10.5061/dryad.
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