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ABSTRACT Accurate vehicle detection in real-time is a challenging problem for engineers and researchers

working in the field of transportation engineering all over the world. To detect the vehicle presence in

the lane-based traffic, one of the widely used traffic detectors is inductive loop detectors (ILD). For less

lane disciplined and heterogeneous traffic, researchers have suggested another traffic detector known as a

multiple inductive loop detector (MILD) system. In order to extract the vehicle count from MILD data,

it is required to detect vehicle presence and segment the signature of different vehicles. This work is

focused on the automated processing of MILD signals to get total vehicle count information in real-time

under heterogeneous and less-lane disciplined traffic conditions. This study proposes a multivariate data

analysis framework for the detection and segmentation of vehicle signature from the acquired data, without

significant manual intervention. The major challenge in this process is the coupling of the multi-dimensional

loop data, due to cross-talk across the loops. To address this, principal component analysis (PCA) is used

with the additional benefit of dimensionality reduction. Though PCA is a well-known method, its application

to the current problem is not trivial and calls for tailoring of the method. Here, a new PC selection strategy

suitable for data under consideration is proposed, as the traditional approach does not fit this application

and tends to be low accuracy. Subsequently, the principal components are processed using a threshold-

based method, which uses the mean absolute deviation measure, to detect the vehicle presence. The results

show that the developed algorithm with the proposed strategy for PC selection achieved an average vehicle

count accuracy of 90.38 % whereas with the traditional approach the accuracy is 24.31 %.

INDEX TERMS Vehicle detection, multiple inductive loop detectors (MILD), PCA, mean absolute

deviation, multivariate analysis, intelligent transportation system (ITS).

I. INTRODUCTION

U
RBAN transportation is a sector that needs significant

improvement, as cities are getting revamped all over the

world. With limited infrastructure growth and a multi-fold

increase in vehicles on the road, chaos is created, resulting

in environmental and health hazards. With the advent of

the digital era, artificial intelligence (AI) and an increase

in computing facilities, the intelligent transportation system

(ITS) can make the lives of commuters easy and safe by

making them better informed and helping them to optimally

utilize the available resources. ITS can help in efficient

infrastructure usage along with congestion control and road

safety. Automated real-time data collection and its analysis

is a vital part of any ITS application and will assist in
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the development of an efficient real-time traffic monitoring

system [1] [2]. This system may include traffic flow control,

route planning, incident detection, detecting violations, and

tracking vehicles.

Vehicle detection is critical in traffic monitoring, as it helps

in obtaining real-time data on traffic volume, vehicle class,

speed, direction of movement, etc. [3], [4], [5]. The detec-

tion of a vehicle is highly dependent on the type of sensor

used. A variety of sensing devices are available to sense the

presence of a vehicle in real-time [4], [6], [7], [8], [9], [10].

While selecting a suitable sensing device, factors such as

application, accuracy, and cost should be taken into account.

Presently loop detectors and video cameras are in greater use

worldwide for this purpose [11], [12], [13]. However, during

congestion and bad weather condition, video cameras face

severe difficulty as they are not robust concerning illumina-

tion and occlusions (when a small vehicle is behind a big

vehicle) [12] [14]. Due to this, inductive loop detectors (ILD)

are preferred as a sensing device, especially for conditions

where occlusion is a serious issue. ILD′s simplistic hardware

design, resulting in a long life span and low-cost, is another

reason for its popularity [15]. Difficulty in installation and

maintenance, since loop detectors are installed below the

road surface, is the major shortcoming of this sensor [10].

Historically loop detectors are in use as traffic sensors

from the 1960s [10]. They work on the principle of mutual

inductance and can detect the presence and passage of a

vehicle [15]. ILD sensor consists of an inductive loop and

supporting electronic circuitry to acquire data [3]. Traditional

loop designs can detect either small vehicles or large vehicles

using distinct loop designs for the corresponding vehicle

type. A new loop design proposed by Ali et al. (2012)

can detect small as well as large vehicles [16]. Moreover,

traditional loop detectors are suitable for lane disciplined

vehicular traffic having no parallel movement of vehicles [3],

[11], [14]. Since the traffic in many countries, such as India,

is less-lane disciplined and heterogeneous, a different loop

configuration is required. This issue has been addressed by

the multiple inductive loop detector (MILD) system proposed

by Ali et al. (2013) [17]. A MILD system consists of multiple

loops of smaller dimensions connected in series to cover the

lane width. The dimension of the loops is such that only a

single two-wheeler can pass on it, whereas a large vehicle

may cover two or more loops [16], [17].

When a vehicle passes over the loop, it interacts with the

flux created by the electric current flowing through the loop

system, and causes a change in the loop inductance. The

associated electronic unit of the loop system records this

change in loop inductance as the raw output [10] [18]. Thus,

the measurements obtained using a loop detector consists

of vehicle signatures along with noise caused due to envi-

ronmental conditions and sensor errors. Therefore, a vehicle

occupied region has a vehicle signature superimposed with

noise, whereas a vehicle-free region has only noise [10] [19].

Thus, detection of vehicles from loop data necessitate

the identification of presence of vehicle and extraction of

its signatures from the acquired data using segmentation

techniques. Segmentation finds application in many domains

such as speech processing to detect the speech and pause

area [20], detection of action potentials (APs) in neuroscience

[21], license plate detection [22] and, vehicle detection using

image processing [23], [24], and vehicle detection from loop

data [19], [25].

Earlier studies in vehicle detection using loop detector data

sets are limited to lane disciplined traffic [3], [14], [19], [26]

and cannot be used directly for lane-less traffic. The main

hindrance with MILD data processing is that the measure-

ments across the loops are coupled due to close spacing;

making the use of a univariate method to each loop and de-

termining vehicle count erroneous. As the MILD system uses

multiple loops to acquire data, the resulting measurements

are multi-dimensional. Thus, analysis of the data coming

from multiple loops is similar to the analysis of correlated

variables in other domains [27]. Under such situations, the

solution has been to fuse these readings [28] or to construct a

virtual set of readings which are decoupled or decorrelated

[29]. For the latter option, a method that decouples these

readings while still preserving the vehicle count is required.

Following this line of thought, current study proposes to

convert these coupled readings to a decoupled set of readings

in a virtual world using multivariate data analysis.

Multivariate data analysis can be carried out in different

ways depending on the objective. In this work, the objective

is to decouple the acquired loop readings and reduce the

dimensionality. Dimensionality reduction helps to capture

the overall information from the multiple sensors in a lower

set of variables or virtual sensors so that the data can be

analyzed in that lower-dimensional world [30]. Multi-loop

data, the readings of which are coupled with each other, can

be converted to either a single virtual loop or many virtual

loops that are not coupled with each other, depending on

the need [31]. Here, an important point to be mentioned

is that the virtual loop data is not necessarily physically

interpretable. However, the virtual loop data is not used in

this study for understanding or deriving any connection with

the physics of the vehicle detection process and hence can

still be useful.

This problem of constructing virtually decoupled read-

ings have been studied in-process data analytics, and sev-

eral solutions have been found, among which the principal

component analysis (PCA) is the most popular one. Apart

from decoupling, the built-in benefit of PCA is that it gives

dimensionality reduction [14], [32], [33]. A standard problem

with the use of PCA is that of selecting the appropriate

PCs. For example, in signal compression, fault detection,

pattern recognition, or dimensionality reduction, the standard

criterion that is applied is based on how much variability or

the desired feature has been captured by the top few PCs [32],

[34]. However, our goal here is to arrive at vehicle count

as accurately as possible and hence the requirements are

different. For the data sets under consideration, vehicle oc-

cupied regions (vehicle signature) are very sparse compared
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to vehicle-free regions and the noise variance of some of the

variables is higher compared to that of others. Therefore, it is

necessary to apply a different PC selection strategy. For this

purpose, a new PC selection strategy that is contextualized

for this application is proposed.

Subsequently, the principal components are individually

analysed to identify and detect the vehicle’s signatures. For

this purpose, a statistical measure of variance, namely, the

mean absolute deviation (µAD) based segmentation tech-

nique, is selected due to its robustness and sensitivity features

[19], [35].

The major contribution of this work is a three-stage online

vehicle detection algorithm for MILD data. These stages are

listed below:

1) Decoupling of acquired multidimensional data

2) Dimensionality reduction

3) Detection and segmentation of vehicle signatures

Thus, this study proposes an algorithm that is less demanding

computationally and data wise, to detect the vehicle, segment

the vehicle signatures, and extract the total vehicle count in

real-time for less-lane disciplined and heterogeneous traffic

scenarios. PCA is used in a unique way to decouple the multi-

dimensional measurements and dimensionality reduction in

order to reduce the complexity. A novel mechanism is sug-

gested for PC selection suited to this application. Further, the

optimal segment size is selected for processing data in real-

time to reduce the waiting time for adequate data collection

and maintaining acceptable accuracy in vehicle detection.

Finally, a mean absolute deviation (µAD) based univariate

algorithm is used for vehicle detection, which is immune

to outliers and sensitive to signatures/magnetic profiles of

different vehicle classes.

The paper is organized as follows. In Section II, the

motivation behind this work and the problem formulation

is discussed. Section III reviews the necessary theoretical

background. Technical details of the proposed methodology

for vehicle detection in heterogeneous and lane-less traffic

conditions are discussed in Section IV. Insights regarding the

conducted experiment and data acquisition framework are

also given in Section IV. Experimental results are presented

in a step-wise fashion in Section V and the findings are dis-

cussed. Finally, Section VI presents the concluding remarks.

II. PROBLEM STATEMENT

The first part of this section demonstrates, using full data

set, why the algorithms developed for lane-based traffic are

not necessarily suitable for less lane disciplined traffic. For

this, the algorithm proposed by Singh et al. [19] for the seg-

mentation of vehicles from single loop system data in lane-

based traffic is used for the MILD system data, by treating

individual loop as a single loop entity. The bias correction

factor (α) and the threshold value (h), that are required for the

algorithm, have been calculated by characterizing the noise

of each loop separately. Results are presented in Table 1,

where L1, L2, and L3 represent loop 1, loop 2, and loop

3 data respectively. This data set consists of two-wheeler,

FIGURE 1. A sample MILD data segment.

three-wheeler, and other large vehicles. Using a segment of

data Figure 1 illustrates the occupancy of loops by different

types of vehicles. However, it can be seen that getting total

vehicle count is difficult with this approach, considering the

following points:

• A large vehicle can occupy two or more loops at a time,

whereas a small vehicle such as a cycle or bike can

occupy a single loop.

• A three-wheeler or a four-wheeler vehicle signature

detected by individual loops of a MILD system can be

of different length due to different tuning parameters of

the corresponding loop.

• All 3 loops can be occupied by a four-wheeler or com-

binations such as 3 two-wheelers or 1 three-wheeler and

1 two-wheeler at any point of time.

• Since loops are placed very near to each other, there is a

possibility of partial occupancy of one or more loops.

If the total vehicle count is to be extracted from Table 1 data,

then the simple way is to sum the vehicle counts detected by

individual loops. Since large vehicles occupy multiple sensor

loops, they are counted multiple times while performing

the summation. This results in erroneous vehicle count. The

total vehicle count extracted using Table 1 is 1411 and the

estimated count is 1039, while the true vehicle count is 1123,

TABLE 1. Vehicle detection statistics for sample MILD data segment using

univariate data analysis

Loop No. q q̂ Type I error Type II error

L1 314 112 202 3
L2 265 204 61 12
L3 832 723 109 18

Total vehicle count 1411 1039 379 33

Note: q - True vehicle count; q̂ - Estimated count of correctly
detected vehicles ; Type I error - Vehicle is present but not
detected; Type II error - Vehicle is not present but detected.
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FIGURE 2. Schematic depicting vehicle detection and counting.

showing a mismatch. This example clearly illustrates that

a decentralized analysis is not going to give any favorable

results. It highlights the need for a multivariate data analysis

framework that overcomes the coupled nature of the readings

and that it is preferable to work with as few virtual loops as

possible as it makes analysis easier, less time-consuming, and

easy to visualize the outcome.

Based on these, the main objective of the study can be

stated as: Given noisy measurements of a MILD system,

detect the presence of a vehicle and extract the total vehicle

count (q̂).

A single virtual loop can be hypothesized in place of mul-

tiple loops in such a way that the output of this virtual loop

consists of most of the information associated with multiple

loop data. A schematic depicting the problem formulation

for vehicle detection is shown in Figure 2. The notations

followed are listed in Table 2.

The noisy measurements acquired from the sensor are

assumed to be related to the corresponding true values by the

following additive noise model

xl [k] = x∗

l [k] + el [k] , (1)

where xl [k], x
∗

l [k] are the noisy and noise-free measure-

ments of the lth loop at time k, respectively and el [k] is

the error in the measurement of the corresponding loop. It

is also assumed that the errors el [k] in the measurements are

zero mean and white; that is, stationary and also mutually

uncorrelated as

E {el [i] el [j]} = 0 ∀ i 6= j, (2)

TABLE 2. List of symbols

Symbols Description

Ld Densely occupied loop
PC Principal components
x∗

l
Noise-free measurements

xl Noisy measurements
el Error in measurements
xs Segmented data
q True vehicle count
q̂ Estimated vehicle count
i, j, k Sample index
N Sample size of data segment

and there is no significant correlation between errors across

loops of MILD system.

A multivariate data analysis based approach is adopted

to solve the above problem. Principal component anal-

ysis (PCA) is used for constructing virtually decoupled

readings from the acquired multidimensional data, X =
[

x1 x2 x3

]

. Apart from decoupling, the built-in benefit

of PCA is that it transforms the raw data into a lower dimen-

sion of virtual readings or principal components (PC). This

virtual space represents the same information as represented

by original raw data. The solution to the PCA problem is

given by the eigenvalue decomposition of the covariance

matrix ( 1
N
X

T
X). The principal component is represented as

a linear combination of the variables i.e. loops, as

PCj = aj1x1 + aj2x2 + aj3x3, j = 1, 2, 3 (3)

where constants aj1, aj2, and aj3 are elements of the jth
eigenvector. The densely occupied loop (Ld) plays a crucial

role while selecting the PC in the virtual domain. Ld can be

characterized as the loop which is occupied by the maximum

number of vehicles compared to other loops in a fixed dura-

tion. Subsequently, vehicle signature is detected using µAD

based vehicle detection algorithm from the virtual readings

i.e., in the transformed domain. The coming section provides

a brief overview of µAD based algorithm and PCA, which

are used in this study to process this data.

III. THEORETICAL BACKGROUND

A. µAD BASED ALGORITHM

The mean absolute deviation based algorithm, proposed by

Singh et al., is a threshold-based approach and is used in

this study for vehicle detection and segmentation [19]. The

µAD measure is used as a feature in this algorithm since it is

fairly adaptive in capturing the information about the shape

and scale of the distribution [36]. The standard deviation

of the data is estimated using a sliding window approach.

Here, µAD is chosen to estimate the standard deviation. For

a segment of data, µAD is calculated using:

µAD = α · mean(|x− median(x)|), (4)

where x is the vector of observations, and α is a bias correc-

tion factor.

As the mean absolute deviation is a biased estimator of

standard deviation, a correction factor (α) is used to correct

the bias [35]. Data segments corresponding to vehicle-free

regions i.e. noise are manually extracted from the historical

loop data. Through a statistical analysis of noise segments

bias correction factor and threshold value are calculated [19],

[35]. Figure 3 shows the noise sample extracted manually

from the raw data and its probability density function which

is estimated using non-parametric kernel density estimation

(KDE). Subsequently, a threshold value (h) is used to per-

form the thresholding operation to distinguish the vehicle

activity sections and vehicle-free sections from the mean

absolute deviation data. Segmented data has non-zero val-

ues for vehicle occupied region and zero for the remaining

4 VOLUME 4, 2016
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(a)

(b)

FIGURE 3. Noise analysis (a) Manually extracted vehicle free region, (b)

Histogram with kernel distribution fit.

region. Continuous non-zero streams are counted from the

segmented data to estimate the total vehicle count. The only

constraint of this method is that the data should be unidimen-

sional.

B. PCA-BASED ALGORITHM

Principal component analysis is a well established multivari-

ate statistical analysis technique, mainly used for dimension-

ality reduction or data compression, without significant infor-

mation loss and at the same time increases interpretability as

a few PCs represent nearly all information in condensed form

[29], [33], [37]. The basic concept of PCA is to construct

new uncorrelated variables that are linear combinations of

the variables present in the given data, preserving most of

the information [29]. Suppose X is an m × n measurement

matrix consisting of m samples of n variables. Measurements

of each variable are standardized to have zero mean and unit

variance [38]. Correlation matrix (S) of X can defined as:

S =
1

N
X

T
X. (5)

S is a square and symmetric matrix whose diagonal elements

are the variances of n - variables. Principal component matrix

P is defined as:

P = XV, (6)

where V is an n×n square matrix that contains eigenvectors

of S. Columns of the matrix P are known as the principal

components. The first principal component is computed by

projecting the measurement matrix (X) on the first column

of matrix V, which is also known as the coefficient matrix,

second principal component is computed by projecting the

matrix (X) on the second column of matrix V, and so on.

Eigenvalues of S are arranged in descending order. Thus,

the first principal component has maximum information; the

second has lesser information than the first PC, and so on.

However, there is no guarantee that the PCs corresponding to

maximum variance will contain desired features for a specific

application [33], [38].

The proposed methodology adopted in this study to extract

vehicle signatures from the multidimensional measurements

is discussed next.

IV. METHODOLOGY AND EXPERIMENTAL DETAILS

A. METHODOLOGY

Loop detector data consists of vehicle signatures along with

noise [10]. To extract the true vehicle signatures from the

acquired noisy data, characterization of noise plays a signifi-

cant role. Noise characterization involves fitting an appropri-

ate distribution on historical data of the vehicle-free region

as discussed by Singh et al. [19]. It helps in determining

the threshold value to distinguish the vehicle occupied and

vehicle-free region and subsequently getting the vehicle sig-

natures [35].

The MILD system setup used in this study consists of

three-loops. Hence, the output data is three dimensional. The

acquired raw data is decoupled using PCA by projecting it

FIGURE 4. Flow chart of the proposed algorithm.
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into a new set of orthogonal basis, also known as principal

components (PCs) [29]. Since the µAD based algorithm for

extracting vehicle count information can be applied only

to univariate data, the dimension of the decoupled readings

needs to be reduced.

In order to reduce the dimension of the decoupled data

in the virtual domain, one of the principal components that

has the maximum contribution from the densely occupied

loop (Ld) is selected. To find out the Ld, loop-wise vehicle

count is extracted using an earlier developed algorithm for

vehicle detection from a single loop system [19], by treating

the individual loop of the MILD system as a single loop

entity. Loop-wise vehicle count data help in identifying the

loop, which is occupied by vehicles most of the time, and

eventually, this loop is considered as Ld.

The selected univariate data in the virtual domain is further

processed using µAD based algorithm to extract total vehicle

count information. A threshold is used on mean absolute

deviation (µAD) measure to achieve the task of detection and

segmentation of vehicle occupied and the vehicle-free region

as

xs [k] =

{

0 if µAD [k] < h

x [k] otherwise,
(7)

where h is the threshold value. Afterward, the segmented

data, xs, is used to extract the total vehicle count (q̂). The

proposed algorithm is presented as a flow chart in Figure 4.

Its implementation involves the following steps:

1) Get multivariate MILD data as input

2) Determine the densely occupied loop

3) Apply PCA on MILD data for decoupling and dimen-

sionality reduction

4) Select the appropriate principal component for further

processing

5) Implement threshold-based µAD algorithm on se-

lected univariate data to detect vehicle presence

6) Use segmented data to estimate total vehicle count

The next subsection gives details of the data acquisition

framework.

B. DATA ACQUISITION

The inductive loops are fabricated using a 4 mm common

use electric wire as illustrated in Figure 5(a). The experi-

mental setup used for data acquisition in this study consists

of the inductive loops and the associated electronic circuitry

as shown in Figure 5(b).

The data acquisition platform is developed in NI Lab-

VIEW 2014 software [39]. A multifrequency sinusoidal sig-

nal is generated using ArbExpress software and is used as

input. A function generator (AFG3022B) is used to reproduce

the multifrequency sinusoidal signal. This signal is amplified

and used to energize the inductive loops. Measurements are

acquired using a 16-bit data acquisition system (DAQ). The

change in output voltage corresponding to each frequency is

recorded using suitable bandpass filters [17].

(a)

(b)

FIGURE 5. (a) Loops designed for experiment, (b) Experimental setup.

1) Electrical Equivalent Circuit of MILD System

The MILD system used consisted of 3 loops to cover the

road width and were connected in series. This configuration

enables the system to sense small as well as large vehicles,

even in case of parallel vehicle movement. The electrical

equivalent circuit of the MILD system is shown in Fig-

ure 6. A known resistance Rs is connected in series with

the loops to measure the voltage, V0. The MILD system

has three LC circuits with L1, L2, and L3 representing the

inductance of the three loops. Resonance frequencies (f1, f2
and f3) of all three LC circuits are calculated theoretically

using respective inductance and capacitance values. A multi-

frequency sinusoidal input signal, vin(t) is generated using

these frequencies and given as input to energize the data

acquisition circuit, as illustrated in Figure 7.

The input signal is generated using the mathematical form

FIGURE 6. Electrical equivalent circuit of series connected multiple loop.

6 VOLUME 4, 2016
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FIGURE 7. (a) Snapshot of ArbExpress software used to generated input

signal, (b) Multifrequency input signal.

given by equation (8).

vin(t) = v0(sin 2πf1t+ sin 2πf2t+ sin 2πf3t), (8)

where, f1, f2, and f3 are resonance frequencies, defined as,

f1 =
1

2π
√
L1C1

, f2 =
1

2π
√
L2C2

, andf3 =
1

2π
√
L3C3

.

Then the output current can be expressed as:

I0(s) =
Vin(s)

Z1 + Z2 + Z3 + ZRs

, (9)

where Z1, Z2, and Z3 represent the equivalent impedance of

loop 1, loop 2 and loop 3 respectively. The output voltage

across series impedance ZRs
can then be expressed as:

V0(s) =
ZRs

Z1 + Z2 + Z3 + ZRs

Vin(s), (10)

For the current study, data is collected for nearly 4 hours

in a heterogeneous and lane-less traffic condition. A total of

1123 vehicle signatures are collected, which includes cycle,

bike, auto, light commercial vehicle (LCV), car, bus, and

truck signatures. Video recording of the complete data ac-

quisition process is also done to verify the results. Snapshots

of acquired data are shown in Figure 8.
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FIGURE 8. Acquired raw data illustrating vehicle signature.

Here, it is important to mention that the two-wheeler gen-

erally occupies a single loop, a three-wheeler occupies two

loops, whereas four-wheeler or bigger vehicles occupy three

loops. It is assumed that while crossing the loops, vehicles

are not accelerating or decelerating and vehicle signatures

are time-invariant. The next section presents the results and

analyses the findings.

V. RESULTS AND DISCUSSION

The proposed algorithm has been used for the detection of

vehicle signatures in lane-less traffic using the MILD system.

To begin with, in the first subsection, a case study is presented

which explains the importance of decoupling in MILD data

processing during the extraction of vehicle signatures. In the

next subsection, a novel PC selection strategy is suggested

suiting this application. The effect of segment size on vehicle

count accuracy was evaluated and is presented in subsection

V-C. The success of the algorithm is also evaluated on

the data sets occupied by different classes of vehicles and

associated results are presented in subsection V-D.

A. A CASE STUDY ILLUSTRATING THE IMPACT OF

DECOUPLING ON MILD DATA PROCESSING

Heterogeneous traffic consists of two-wheelers, four-

wheelers, and other large vehicles. When data is acquired

using the MILD system two-wheeler signatures are captured

by only one loop while in the case of a four-wheeler or other

large vehicles all three loops capture the signature at the same

time. When vehicle count is extracted using this data, a four-

wheeler is counted multiple times due to the coupled nature

of measurements. For this, PCA-based decoupling is done.

With the help of an example, the significance of decoupling

is illustrated next.

Consider a sample data set that consists of a total of 7

vehicle signatures as shown in Figure 9(a). This data segment

consists of 1 four-wheeler (S5) and 6 two-wheelers (S1,

S2, S3, S4, S6, and S7). Signatures, S6 and S7, represent

nearly parallel moving two-wheelers. PCA is used to de-
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(a)

(b)

FIGURE 9. (a) Sample data, (b) Transformed data in virtual domain.

couple the raw data. The appropriate variable is selected in

the virtual domain and shown in Figure 9(b). Out of seven

vehicle signatures, six signatures decoupled successfully and

one signature is missed. The four-wheeler signature (S5)

is successfully decoupled and indicated as TS5 in Figure

9(b). Two-wheeler signatures S6 and S7, which are partially

overlapping due to parallel movement, are superimposed in

the virtual domain and are represented as TS6, resulting in

the loss of one signature. How PCA helps in dimensionality

reduction will be discussed next.

B. PC SELECTION STRATEGY

A PC selection is proposed for this specific application to

achieve the highest count accuracy. Four raw data segments

of sample size 1000 are considered to explain this strategy.

One of the data segments is shown in Figure 10 for illustra-

tion purposes. From this figure, it can be easily seen that the

vehicle occupied regions are very sparse in the first loop.

Principal component coefficients are calculated using PCA

and are presented in Table 3. Each column of the table

contains coefficients for one principal component (PC), and

the columns are arranged in descending order of their vari-

ance. Here, unit scaled principal component coefficients i.e.,

eigenvectors, represent the directions of the new orthogonal

feature space, and eigenvalues give their magnitude. The

projection of a segment of the raw data onto the principal
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FIGURE 10. Raw data segment (Set 1).
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FIGURE 11. Projection of the raw data segment (Set 1) onto the principal

component axes.

component (PC) axes are shown in Figure 11.

For the data sets under consideration, the noise variance

of loop 1 data is much higher compared to other loop data,

making the traditional PC selection strategy impractical. Ac-

curate extraction of vehicle count is the goal of this work

and hence our desired features are vehicle signatures. From

the visual analysis of Figure 11, it is obvious that PC 1, if

PC is selected with traditional approach, is not very useful as

it contains very few signatures in comparison to other PCs.

Therefore, in order to achieve the highest vehicle count accu-

racy, a different PC selection strategy is proposed. Loop-wise

TABLE 3. Principal component coefficients of data segments

(a) Set 1 (b) Set 2

PC 1 PC 2 PC 3 PC 1 PC 2 PC 3

Loop 1 0.9162 -0.3789 0.1303 0.4209 0.8109 -0.4066
Loop 2 -0.1805 -0.1000 0.9785 0.7640 -0.5585 -0.3229
Loop 3 0.3577 0.9200 0.1601 0.4889 0.1747 0.8546

(c) Set 3 (d) Set 4

Loop 1 0.4188 0.8109 -0.4086 0.5214 0.7903 0.3218
Loop 2 0.6500 -0.5819 -0.4887 0.2475 -0.5009 0.8293
Loop 3 0.6341 0.0610 0.7708 0.8166 -0.3527 -0.4568
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TABLE 4. Loop wise estimated vehicle count (q̂)

Data set Loop 1 Loop 2 Loop 3

1. 0 3 9
2. 5 5 6
3. 2 4 7
4. 4 7 10

TABLE 5. Selected PCs

PCs

Data set Before filtering After filtering

1. 2 3
2. 3 3
3. 3 3
4. 1 2

vehicle count information helps in identifying the densely

occupied loop and, in turn, the selection of an appropriate

PC. For individual loops, vehicle count is calculated using

µAD based segmentation algorithm and presented in Table

4. Based on vehicle occupancy data, as given in Table 4,

the densely occupied loop (Ld) is identified. Among these

projections, as shown in Figure 11, one with maximum

contribution from the densely occupied loop is selected using

Table 3. Here, a pre-filtering operation is also performed

using a moving average filter on the loop data to see the effect

of noise on PC selection. On filtered data, PCA is performed

and the selected PCs for different data segments are shown

in Table 5. It can be seen that PC 1 is still not the preferred

principal component for further processing to detect vehicle

signature.

Both traditional and newly proposed PC selection strategy

is implemented on complete data and the results are presented

in Table 6, which signifies the importance of the proposed

PC selection strategy. The performance of the proposed al-

gorithm is evaluated using three metrics, namely, accuracy,

Type I and Type II error. These metrics are graphically

shown for all data segments in Figure 12. The coming section

discusses the effect of sample size on vehicle count accuracy.

TABLE 6. Vehicle detection statistics for different PC selection strategy

Metrics Traditional (%) Proposed (%)

Accuracy 24.31 90.38
Type 1 error 75.69 9.83
Type 2 error 16 7.64

TABLE 7. Vehicle detection statistics (N=1000)

Data Set PC q q̂ Type I error Type II error

1. 2 6 5 1 1
2. 3 5 4 1 3
3. 3 5 5 0 8
4. 1 14 8 6 0

80.12 % 26.49 % 30.27 %

FIGURE 12. Performance of the proposed algorithm with traditional PC

selection strategy.

C. SELECTION OF DATA SEGMENT LENGTH

The sample size (N ) of data segments plays a vital role in the

extraction of traffic variables. A large data segment size in-

creases the vehicle count accuracy along with computational

time. Thus there is a trade-off between count accuracy and

computational time. Keeping this in mind, data segments of

sizes 1000, 2000, and 3000 are considered for evaluation.

Value of N larger than 3000 results in large computational

time, which is not advisable for field application.

Twelve raw data segments, four each of sample sizes of

1000, 2000, and 3000, are randomly selected. One of the

data segments of sample size 1000 is shown in Figure 10 for

illustration. Actual vehicle counts were manually extracted

from the recorded video for corroborating the results.

All data segments are processed using the proposed algo-

rithm. Raw data is decoupled and transformed from multi-

dimension space to a lower dimension using the PCA al-

gorithm. Subsequently, the µAD based algorithm is applied

to process the selected PC, which gives the total vehicle

count. Type I and Type II errors are calculated to evaluate

the accuracy of the proposed algorithm.

The procedure of decoupling, selecting an appropriate PC

TABLE 8. Vehicle detection statistics (N=2000)

Data Set PC q q̂ Type I error Type II error

1. 3 11 9 2 0
2. 1 19 14 5 0
3. 3 18 13 5 3
4. 2 21 16 5 1

75.98 % 29.65 % 6.16 %

TABLE 9. Vehicle detection statistics (N=3000)

Data Set PC q q̂ Type I error Type II error

1. 3 16 15 1 1
2. 3 32 25 7 0
3. 2 26 21 5 1
4. 3 27 27 0 12

88.16 % 14.25 % 10.39 %
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TABLE 10. Class wise vehicle detection accuracy

Vehicle class q q̂ Accuracy (%)

Cycle, Motorbike 979 873 89.17
Auto 16 14 87.5
LCV 7 7 100
Car 106 106 100
Bus, Truck 15 15 100

Total 1123 1015 90.38

and using µAD to calculate the vehicle count is repeated on

other data segments. Vehicle count results for the different

data segments of sample size 1000, 2000, and 3000 are listed

respectively in Table 7, 8, and 9.

From Table 7, 8 and 9, it can be seen that segments with

sample size 3000 have the highest vehicle count accuracy and

Type I and Type II error rate is also moderately low, which

makes it appropriate sample size for processing large data.

The optimal sample size of 3000 is still high, considering

computational time requirement and need to be reduced in

the future by improving the proposed algorithm.

Subsequently, the algorithm is implemented on the com-

plete data set for heterogeneous and lane-less traffic. Class

wise vehicle detection accuracy are presented in Table 10. It

can be observed from the table that two-wheeler vehicles are

the major contributor to detection error. It is because these

signatures are not consistent. These inconsistencies in vehicle

signatures are due to different designs and materials, such

as metal and fiber, used in their manufacturing. Out of the

total 1123 vehicle signatures, 1015 are identified correctly

with Type I error 108 and Type II error 84 by this method.

Figure 13 shows the performance of the proposed algorithm.

The results of this study are compared, with earlier works

on heterogeneous less lane-disciplined traffic, to validate the

performance, as shown in Table 11. Ali et al. [25], which used

data from the MILD sensor for similar traffic condition, and

one of the most recent studies from similar traffic conditions,

though using different sensor [12], are used in this compara-

tive study.

The use of multiple PCs to improve the vehicle count

accuracy is not attempted in this work as it will increase

the time taken to do analysis. This approach will also make

the analysis more complex since a univariate algorithm has

been used for vehicle detection. In the future, a multivari-

ate vehicle detection algorithm will be developed that can

be implemented directly on the acquired multivariate raw

data, eliminating the requirement of univariate data for the

currently proposed algorithm. Some of the limitations of the

proposed method are:

1) To calculate the threshold value, using noise character-

ization, manual intervention is required to identify the

vehicle-free region. However, this is a one-time pro-

cess and hence does not affect the automated counting

process.

2) If there is any parallel movement of vehicles, there is

a possibility of missing vehicle signatures during the

decoupling of the multivariate raw data, which needs

(a)

(b)

FIGURE 13. Performance of the proposed algorithm on real-time field data (a)

actual Vs estimated vehicle count, (b) with new PC selection strategy.

to be addressed in the future.

The next subsection will discuss the performance of the

proposed algorithm on data sets occupied by different vehicle

classes.

TABLE 11. Comparison of vehicle detection methods for heterogeneous and

Less lane disciplined traffic.

Feature Set Ali [25]
Satyanarayana
[12]

Proposed

Sensors MILD
Camera and
LiDAR

MILD

Data set (Vehicles) 372 4507 1123

Measure
Inductive
signature

Video and Binary
image

Inductive
signature

Method Amplitude based
Binary image ex-
traction

µAD & PCA

Accuracy rate (%) 88.17 98, 91.3 90.38

Cost Low High Low

Challenges
Installation and
maintenance

Illumination and
occlusion

Installation and
maintenance

Note:- µAD: mean absolute deviation.

10 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3120470, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 12. Vehicle detection statistics

Data Set q (TW+FW) q̂ (%) Type I error (%) Type II error (%)

1. 26 (26+0) 21 (80.77) 5 (22.73) 1 (4.55)
2. 15 (0+15) 15 (100) 0 (0) 0 (0)
3. 16 (12+4) 15 (93.75) 1 (6.25) 1 (6.25)

Note:- TW: two-wheeler; FW: four-wheeler.

D. PERFORMANCE EVALUATION OF PROPOSED

ALGORITHM ON THE DATA SEGMENTS OCCUPIED BY

DIFFERENT CLASSES OF VEHICLES

Vehicle count accuracy for data segments, occupied by dif-

ferent types of vehicles, are evaluated using the proposed

method, and results are presented in Table 12. Here, three

cases are considered: only two-wheeler, only four-wheeler,

and a mix of two-wheeler and four-wheeler.

The first data set consists of only two-wheelers. For this

data set, due to parallel movement, some of the two-wheeler

signatures are superimposed in the virtual domain resulting in

the loss of vehicle signatures. In this case, vehicle detection

accuracy is the least. When a data segment is occupied by

only four-wheelers, vehicle detection accuracy is highest as

explained using the second data set. Here, complete decou-

pling of four-wheeler vehicle signatures in the virtual domain

result in the highest accuracy. The third data set consists

of both two-wheelers and four-wheelers. Hence, the vehicle

count accuracy of the third data set is in between the first and

second data sets. The time complexity aspect of the proposed

algorithm is discussed in the next subsection.

E. PROCESSING TIME

For this study, the system used had the following configura-

tion: Intel(R) Core(TM) i7-4770 CPU @ 3.40-GHz processor

and 16-GB RAM, and the OS is 64-bit Windows 10 Pro.

Algorithms are implemented using the MATLAB platform.

The processing time required to run the proposed algorithm is

obtained by averaging the execution time for 1000 runs. The

execution time of the algorithm, for the accurate extraction

of vehicle count from a segment of MILD data, is “0.18

seconds". To estimate the parameters, correction factor (α)

and a threshold value (h), the algorithm took “0.15 seconds".

VI. CONCLUSION

This study proposed an algorithm to detect the vehicle sig-

natures from MILD system data for the less-lane disciplined

and heterogeneous traffic scenario and extract the total vehi-

cle count. A threshold-based mean absolute deviation (µAD)

algorithm has been used to achieve this task of vehicle

signature detection, after decoupling the measurements and

reducing the MILD data dimension using PCA. The signifi-

cance of the proposed PC selection strategy compared to the

traditional approach is also illustrated on the complete data

set for this application. Finally, the efficacy of the proposed

algorithm is demonstrated on real-time field traffic data con-

sisting of 1123 vehicle signatures. The proposed algorithm

gave an accuracy of 90.38 % in vehicle count with moderate

Type I and Type II error of 9.83 % and 7.64 % respectively.

Further, the performance of the proposed algorithm is

evaluated using data segments occupied by different classes

of vehicles. The highest vehicle count accuracy is achieved

for data segments occupied by only four-wheeler, compared

to the cases of data segments occupied by only two-wheeler

or a mix of two-wheeler and four-wheeler. Future research di-

rections may include improving the accuracy of the proposed

algorithm with minimal requirement of historical data and

can be extended even further to the extraction of classified

vehicle count.
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