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METHODOLOGY ARTICLE Open Access

A multivariate approach to the integration of
multi-omics datasets
Chen Meng1, Bernhard Kuster1,2, Aedín C Culhane3,4* and Amin Moghaddas Gholami1*

Abstract

Background: To leverage the potential of multi-omics studies, exploratory data analysis methods that provide
systematic integration and comparison of multiple layers of omics information are required. We describe multiple
co-inertia analysis (MCIA), an exploratory data analysis method that identifies co-relationships between multiple high
dimensional datasets. Based on a covariance optimization criterion, MCIA simultaneously projects several datasets
into the same dimensional space, transforming diverse sets of features onto the same scale, to extract the most
variant from each dataset and facilitate biological interpretation and pathway analysis.

Results: We demonstrate integration of multiple layers of information using MCIA, applied to two typical “omics”
research scenarios. The integration of transcriptome and proteome profiles of cells in the NCI-60 cancer cell line
panel revealed distinct, complementary features, which together increased the coverage and power of pathway
analysis. Our analysis highlighted the importance of the leukemia extravasation signaling pathway in leukemia that
was not highly ranked in the analysis of any individual dataset. Secondly, we compared transcriptome profiles of
high grade serous ovarian tumors that were obtained, on two different microarray platforms and next generation
RNA-sequencing, to identify the most informative platform and extract robust biomarkers of molecular subtypes.
We discovered that the variance of RNA-sequencing data processed using RPKM had greater variance than that
with MapSplice and RSEM. We provided novel markers highly associated to tumor molecular subtype combined
from four data platforms. MCIA is implemented and available in the R/Bioconductor “omicade4” package.

Conclusion: We believe MCIA is an attractive method for data integration and visualization of several datasets of
multi-omics features observed on the same set of individuals. The method is not dependent on feature annotation,
and thus it can extract important features even when there are not present across all datasets. MCIA provides
simple graphical representations for the identification of relationships between large datasets.

Keywords: Multivariate analysis, Multiple co-inertia, Data integration, Omic data, Visualization

Background

There has been rapid progress in high-throughput tech-

nologies and platforms to assay global mRNA, miRNA,

methylation, proteins, and metabolite profiles of cells are

readily available. Advances in RNA-sequencing and mass

spectrometry (MS) based proteomics have dramatically

improved coverage and quality of genomic, transcrip-

tomic and proteomic profiling [1-4]. Increasing number

of studies including The Cancer Genome Atlas (TCGA)

and ENCyclopedia of DNA Elements (ENCODE) pro-

jects systematically profile large number of biological

samples resulting in multiple levels of quantitative infor-

mation [5-8]. Recent advances of MS based proteomics

provide a complementary approach to genomics and

transcriptomic technologies [3,4] and systematic analyses

can now be carried out to identify and quantify the ma-

jority of proteins expressed in human cells [9-12]. These

data yield unprecedented views of molecular building

blocks and the machinery of cells. Interpreting these

large-scale datasets to derive information about a bio-

logical system represents a considerable challenge often

faced by investigators.

Multiple omics data analysis can be broadly defined by

some common questions, which are dependent on the
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data collected; multiple datasets measuring the same

biological molecules or multiple datasets each measuring

different biological molecules. In the first case, given

multiple transcriptomics data from different microarray

or RNA-sequencing studies, the aim may be to discover

which platform is the most informative with highest

quality data, identify robust biomarkers across datasets

or highlight platform specific discrepancies in measure-

ments. In the second case, given multiple different data

such as transcripts, proteins and metabolites, the object-

ive may be to integrate and concatenate information to

increase the breath and coverage of available data in a

biological network. In this case, specific platform dis-

crepancies are less important and performance of data

integration is more likely to be assessed using system

biology or pathway approaches.

Nevertheless, both analyses face common challenges

associated with integrating data from disparate technolo-

gies. Several meta-analysis studies map identifiers from

each platform to a common set of identifiers to generate

a single concatenated matrix for subsequent analysis

[13,14]. However, this data simplification overlooks sev-

eral fundamental platform and biological biases. Plat-

forms are not universal and measure different molecules.

Filtering genes to their intersection may considerably

reduce data coverage. In addition, the many-to-many

mapping of gene identifiers from multiple platforms

complicates direct comparison of molecules across mul-

tiple levels. Moreover, because correlations between dif-

ferent platforms are probably lower than expected [15],

it may not provide gains in data quality or study power.

Such filtering may also introduce bias because platform

discrepancies could reflect biological variation. For in-

stance, poor correlation between a transcript and its

translated protein may result from biological processes

such as microRNA post-transcriptional repression [16,17].

Similarly, correlations between proteins and metabolites

of pathways can diverge if proteins are expressed in an in-

active form, in which case its abundance may not repre-

sent activity.

Ordination methods, such as principal component

analysis (PCA), independent component analysis (ICA)

and correspondence analysis (COA), are exploratory

data analysis approaches that have been applied to

analyze omics data including transcriptome and prote-

ome studies [18-22]. Graphical representation of mea-

surements (samples) and variables (genes, proteins) on a

lower dimensional space facilitates interpretation of glo-

bal variance structure and identification of the most in-

formative (or variant) features across datasets. These

methods permit visualization of data that have consider-

able levels of noise and data where the number of vari-

ables exceeds the number of measurements, which is

typical in omics studies. However, these approaches do

not solve the problem of comparing many datasets

simultaneously.

Studies have extended these approaches to couple two

datasets together [23]. One such approach is co-inertia

analysis (CIA) [24]. CIA was originally applied to study

ecological and environmental tables, where it was

employed to link environmental variables with species

characteristics [25]. Culhane and colleagues introduced

CIA in genomics, when they compared data from two

microarray platforms [26]. An advantage of this method

is that it does not require the mapping or filtering of

genes to a common set. The relationship between co-

inertia analysis and related methods including Procrustes

analysis [24], canonical correlation analysis with Elastic

Net penalization (CCA-EN) and sparse Partial Least

Squares (sPLS) have been described previously [27]. CIA

and sPLS both maximize the covariance between eigen-

vectors and are efficient in determining main individual

effects in paired dataset analysis. By contrast CCA-EN

maximizes the correlation between eigenvectors and

tends to discover effects present in both datasets, but

may omit to discover strong individual effects. Variables

selected by CCA-EN and sPLS are highly similar but

CIA selected marginally different marker genes that may

have some redundancy [27]. A noteworthy advantage of

CIA is that it can be coupled with several dimension re-

duction approaches, including PCA or correspondence

analysis, such that it can accommodate both discrete

count data (e.g. somatic mutation) and continuous data

[26]. These approaches are performed on each dataset

separately and can be integrated using CIA [24]. How-

ever, all above methods including CIA are limited to the

analysis of two datasets, limiting their application in

modern multi-omics studies. Several approaches have

been proposed for integrating more than two datasets,

such as consensus PCA (CPCA) [28], regularized gener-

alized canonical correlation analysis (RGCCA) [29],

sparse generalized canonical correlation analysis (SGCCA)

[30] and penalized canonical correlation analysis (PCCA)

[31]. SGCCA and PCCA originally focus on the feature se-

lection from multiple datasets, but also can be used for

multiple table integration problem.

Here, we describe another method, multiple co-inertia

analysis (MCIA), for the analysis of more than two

omics datasets, extending its application in the field of

environmental science and, recently, phylogenetics [32].

MCIA is related to consensus PCA (CPCA) which both

maximize the square covariance between eigenvectors

and are subject to similar constraints [28]. CPCA is less

sensitive to multi-collinearity within each dataset than

generalized canonical correlation analysis [28]. We illus-

trate the application of MCIA using two different ex-

amples, and show that integrated analysis is more

insightful than analysis of the individual datasets. First,
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we demonstrated the power of MCIA via applying it to

the integration and comparison of multi-omics data in-

dependent of data annotation. We employed MCIA to

identify common relationships among multiple gene and

protein expression data of the NCI-60 cancer cell line

panel of the National Cancer Institute [8,11,33]. The in-

tegrated analysis revealed that cell lines are clustered ac-

cording to anatomical tissue source and showed a

significant degree of correlation between transcript and

protein expression. Second, we assessed the concordance

in gene expression data obtained from microarray and

next generation RNA-sequencing of 266 samples of high

grade serous ovarian cancer. MCIA integrated ovarian

cancer gene expression data from different sources which

captured distinct subsets of the transcriptome (<47% of

genes were present on all four platforms) to reveal a set of

biomarkers that were consistently highly ranked by all

four platforms and were biologically relevant to ovarian

cancer. To enable community access to MCIA, we imple-

mented the method into the R-Bioconductor (omicade4)

package as an easy-to-use tool for bioinformaticians and

biologists.

Methods

Mathematical basis of MCIA

A typical omics dataset is a matrix where the number of

features exceeds the number of measurements (rows and

columns of the matrix, respectively). MCIA requires a

set of tables where either features or measurements are

matched and have equal weights. MCIA is performed in

a two-step process. First a one table ordination method,

such as PCA, COA or non-symmetric correspondence

analysis (NSC) [34] is applied on each dataset separately,

which transforms data into comparable lower dimen-

sional spaces.

In our analysis, given an omics data table M = [mij]

with 1 ≤ i ≤ n and 1 ≤ j ≤ q, where M is a (n x q) matrix, i

indicates row index and j for column index. We denote

the row and column sums of M as mi+ and m+j respect-

ively, and m++ as the grand total. The relative contribu-

tion or weight of row i to the total variation in the data

set is denoted ri and calculated as ri =mi+/m++ while the

relative contribution of column j is denoted as cj =m+j/

m++. Similarly, the contribution of each individual

element of M to the total variation pij can be calculated

as pij =mij/m++. We then derive a new matrix X with the

values defined above as

xij ¼
pij

ri
−cj ð1Þ

where xij is the centered row profile, i.e. the relative

abundance of selected variable to the measurement’s

weight.

The second step in MCIA is a generalization of CIA

[26]. It solves the problem of simultaneous analysis of a

set of statistical triplet (Xk, Qk, D) where k = 1, …, k,…,

K and Xk is a set of transformed matrices. Qk is a qk ×

qk matrix with rij in diagonal elements, indicating the

hyperspace of features metrics. D is an n × n matrix

which is an identity matrix indicating equal weight

across all columns in all tables. MCIA maximizes the

sum of the squared covariance between scores of each

table with synthetic axes ν, that is:

f u1;…;uk;…;uK; vð Þ ¼
X

K

k¼1

wkcov
2 XkQkuk; vð Þ ð2Þ

where cov2 stands for the square of covariance of quan-

tities inside parenthesis and ωk is the weight of each

table. The v represents the reference structure or syn-

thetic center and uk are auxiliary axes. The score of each

individual table would then be XkQkuk. In contrast with

other ordination methods, MCIA finds solutions (uk and

v) sequentially. Multiple matrices Xk can be weighted

and concatenated to a single matrix X = [ω1
1/2X1 |…| ωK

1/2

XK]. Similarly, a single feature metric Q could be

concatenated as Q = [Q1|…|Qk].The first order solutions

of u1
1 to uk

1 and v1 are given by the first principal compo-

nent of the following eigen-system:

wXQXTDv ¼ λv ð3Þ

then the normalized auxiliary axis uk
1 are

u1
k ¼ XT

KDv1=jjXT
KDv1jjQk

k ¼ 1;…;Kð Þ ð4Þ

Where ||•|| is the norm in the Qk metric. The subse-

quent solutions are found with residual matrices from

the calculation of the first order solution with the con-

straint that the remaining order axes are orthogonal with

the previous sets, namely:

vjTDvs ¼ 0 and u
jT
k Qku

s
k ¼ 0 1≤ j < sð Þ ð5Þ

The residual matrices used by second order solution is

deflated as

X1 order2ð Þ ¼ X1‐X1P
1
k ð6Þ

where the projection matrix Pk
1 is

P1
k ¼ u1

k u1
kQku

1T
k

� �

‐1
u1
kQk ð7Þ

The superscript T and −1 stand for matrix transpos-

ition and matrix inversion respectively. Therefore, the

formula (6) removes the dimension that is spanned by

vector uk
1 (k = 1, …, K) to get a residual matrix, which

is passed to the SVD to find the second order solution.

These steps are repeated until the desired number of

axes (principal components, dimensions) is generated.
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As a result, MCIA provides a simultaneous ordination of

columns (measurements) and rows (features) of multiple

tables within the same hyperspace, with features or mea-

surements sharing similar trends will be closely pro-

jected. The detailed description of MCIA and the proof

that these axes are maximally co-variant are given in

Chessel and Hanafi [26,35].

Datasets

We analyzed publicly available sets of data from two stud-

ies: (i) transcriptomic [8,33,36] and proteomic [11] data-

sets of the NCI-60 cancer cell line panel, the latter one

generated in our group, and (ii) an ovarian cancer dataset

generated as part of the TCGA project [37]. In each study,

there are multiple datasets measuring molecules (mRNA

or proteins) from the same samples (cell lines or tumors).

NCI-60 data

The NCI-60 panel is a collection of 59 cancer cell lines

of leukemia, lymphomas, melanomas and carcinomas of

ovarian, renal, breast, prostate, colon, lung and central

nervous system (CNS) origin. The NCI-60 transcriptome

data were downloaded from Cellminer [38] and were ob-

tained on four different platforms; Affymetrix HG-U133

plus 2.0, HG-U133, HG-U95 and Agilent GE 4x44K

[39]. Affymetrix data were normalized using GC robust

multichip averaging GCRMA; [39] and Agilent data

were log transformed as obtained from the Cellminer.

Although data filtering is not required to perform

MCIA, to facilitate data interpretation, microarray data

were filtered to exclude probes that do not map to an of-

ficial HUGO gene symbol. The probe with highest aver-

age value was retained when multiple probes mapped to

the same gene. Filtering produced datasets of 11,051;

8,803; 9,044 and 10,382 genes on Agilent, HG-U95, HG-

U133 and HG-U133 plus 2.0 platforms respectively. The

lung cancer cell line NCI-H23 was excluded since its ex-

pression profile was not available on the HG-U133 plat-

form. A Venn diagram representing the overlapping

genes in the processed data for each platform is pro-

vided in Additional file 1: Figure S1.

The proteome profiles of cell lines were produced

from a conventional GeLC-MS/MS approach and label-

free quantification, as described in [11]. The international

protein index (IPI) identifiers were mapped to official gene

symbol to facilitate subsequent pathway interpretation.

Data were log transformed (base 10) and no filtering or

additional normalization were performed. This dataset

represents 7,150 protein expressions across 58 cell line in

NCI-60 panel.

Ovarian cancer datasets

Gene expression of tumors from ovarian cancer patients

were profiled using two microarray platforms (Agilent

customized platform G4502A and Affymetrix GeneChip

HG U133 plus 2.0) and RNA-sequencing on Illumina

HiSeq platform. Data were downloaded from the NCI-

TCGA data portal 07/08/2013; [370]. Patient samples

(266 out of 489) that were present in all four datasets

were included in the analysis. The Agilent and Affyme-

trix data were normalized and summarized by lowess

and robust multichip averaging (RMA), respectively [40].

The transcript expression levels of the Illumina RNA-

sequencing data were determined using two different

pre-processing pipelines (RPKM and RSEM) denoted as

RNASeq and RNASeqV2, respectively. Normalization

and quantification of RNASeq followed the RPKM

method [41] whereas the alignment and gene expression

quantification in RNAseqV2 were obtained by MapS-

plice and RSEM [42,43]. In RNASeq and RNASeqV2;

20,657 and 20,135 genes were detected (before filtering).

These data were filtered to exclude genes with more

than 15 missing values. Only genes mapped to an official

gene symbol were retained. For the features mapped to

the same gene symbol, the one with the largest average

expression value was kept. Remaining missing values

were replaced with a positive value far smaller than the

lowest expression value in each dataset (10−15 in RNA-

Seq and 10−10 in RNASeqV2) and then, the expression

values were log transformed (base 10). After filtering,

the Agilent, Affymetrix, RNASeq and RNASeqV2 data-

sets contained 17,814; 12,042; 16,769 and 15,840 gene

expression measurements respectively. The Venn dia-

gram representing the overlap of genes in these datasets

is shown in Additional file 1: Figure S2.

Results and discussion

Integrated analysis of the NCI-60 cell line transcriptome

and proteome

The NCI-60 panel, a collection of 59 cancer cell lines

derived from nine different tissues (brain, blood and

bone marrow, breast, colon, kidney, lung, ovary, prostate

and skin) has been extensively used in in vitro high-

throughput drug screen assays. They have been molecu-

larly profiled using comparative genomic hybridization

array [44], karyotype analysis [45], DNA mutational

analysis [46,47], transcripts expression array [33,48], mi-

croarrays for microRNA expression [8] and protein ex-

pression [11].

MCIA was applied as an exploratory analysis of four

transcriptomic studies (Agilent n = 11,051; HGU95 n =

8,803; HGU133 n = 9,044 and HGU133 plus 2.0 n = 10,382)

and one proteomic study (GeLC-MS/MS; n = 7,150) of

the 58 cell lines. Figure 1A shows the projection of cell

lines onto the first two principal components (PCs) of

MCIA. Similar to the visualization employed in CIA [26],

the datasets are transformed into the same projection.

The coordinates of the five measurements for each cell
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line are connected by lines. The length of which indicates

the divergence (the shorter the line, the higher the level of

concordance) between the mRNAs and protein expression

levels for a particular cell line. The MCIA plot of the first

two principal components shows similar trends in tran-

scriptome and proteome profiles, indicating that the most

variant sources of biological information were similar. Cell

lines originating from the same or closely related anatom-

ical source of tissue were projected close to each other

and converged into groups. The colon, leukemia, melan-

oma, CNS, renal and ovarian cell lines segregated largely

according to their tissue of origin. Seven out of eight mel-

anoma lines clustered together, and the remaining one,

LOX-IMVI, has been reported to lack melanin production

[49]. These results are consistent with independently per-

formed hierarchical clustering analysis (Additional file 1:

Figure S3).

There was greater divergence in the cell lines from tu-

mors with more intrinsic molecular heterogeneity (e.g.

breast and NSCLC cell lines). The transcriptome and

proteome profiles of the individual breast and lung cell

lines were projected close in space demonstrating that

the expression profiles shared a high degree of consen-

sus. The tight projection of multiple data types from di-

verse technology platforms provides evidence that the

observed spread of cell lines reflected the biological vari-

ance (tumor cell lines heterogeneity), as opposed to

inter-study technical or other stochastic variance. For in-

stance, we observed that the estrogen receptor positive

breast cancer cell line MCF7 displays an epithelial

phenotype and clustered to colon cancer lines. In con-

trast, the cell line negative for the estrogen receptor,

HS578T, clustered with the stromal/mesenchymal clus-

ter of glioblastoma and renal tumor cell lines. This

A

B

Figure 1 MCIA projection plot. (A) The first two axes of MCIA represent transcriptomic and proteomic datasets of the NCI-60 panel. Different
shapes represent the respective platforms and are connected by lines where the length of the line is proportional to the divergence between the
data from a same cell line. Lines are joined by a common point, representing the reference structure which maximizes covariance derived from
the MCIA synthetic analysis. Colors represent the nine NCI-60 cell lines from different tissues. The epithelial and mesenchymal features are
separated along the first axis (PC1, horizontal). Melanoma and leukemia cell lines were projected on the negative side of second axis (PC2, vertical).
(B) Summarizing the concordance between platforms by representing pseudo-eigenvalue space of NCI-60 datasets. The pseudo-eigenvalue space
represents overall co-structure between datasets and shows which platform contributes more to the total variance.
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suggests that HS578T exhibits more invasive mesenchy-

mal features compared to T47D and MCF7.

Overall co-structure comparison using MCIA

Each PC has an associated eigenvalue which represents

the amount of variability contained in that PC. The first

three PCs of the MCIA accounted for 17.4%, 14.2% and

9.7% of variance respectively (each eigenvalue divided by

the sum of all eigenvalues; Additional file 1: Figure S4).

The observation that the first two PCs capture less than

a third of the structure in the datasets (Figure 1A) re-

flects the complexity inherent in cell lines of 58 tumors

from nine different organs. In order to identify the

contribution of each dataset to the total variance, that is,

to what extent each dataset deviates or agrees with

what the majority of datasets support, we extracted the

MCIA pseudo-eigenvalues. Figure 1B shows the pseudo-

eigenvalues associated with the first two principal compo-

nents of each dataset. Comparison within microarray data

revealed that Affymetrix HGU133 Plus 2.0 accounts for

the highest variance on axis 1 and 2, possibly because this

platform contains informative features, or features that are

poorly detected or absent on other platforms. We ob-

served that the similarity within transcriptome datasets is

greater than the similarity between transcriptome and

proteome data, which is consistent with the results shown

by Figure 1A.

One of the most attractive features of MCIA is that it

can be used to highlight lack or presence of co-structure

between datasets, thus it allows selection of the stron-

gest features from each dataset for subsequent analysis.

For instance, we observed in particular, large variation

between the protein and transcript expression patterns

of two cell lines, melanoma SKMEL2 and ovarian

IGROV1. The proteome coordinates of SKMEL2 were

close to the origin and far from the transcriptomic data

that was projected on the negative end of PC2 with the

other melanoma cell line data. The poor information

content in proteome data of the SKMEL2 cell line could

reflect the lack of expression of melanin related genes

on protein level. Similarly, the incongruence of the

proteome and transcriptome data of the ovarian cell line

IGROV1 may be due to expression of less epithelial

markers that projected on the positive direction of axis 2.

To characterize the overall correlation between each

pair of high dimensional data we calculated the pair-

wise RV coefficient, a multivariate generalization of the

squared Pearson correlation coefficient [50]. For each

pair of datasets, the RV-coefficient is calculated as the

total co-inertia (sum of eigenvalues of co-inertia, i.e.

sum of eigenvalues of the product of two cross product

matrices) divided by the square root of the product of

the squared total inertia (sum of the eigenvalues) from

the individual analysis. As the co-structure between two

datasets increases, the RV score move towards to 1. A

zero RV score indicates no similarity. The overall simi-

larity in structure between microarray data was higher

than the similarity between microarray and proteomics

data; average RV coefficient > 0.9 and 0.76 respectively

(Additional file 1: Figure S5).

When MCIA was performed on the same transcrip-

tome data and the subset of proteome data that were

quantified in all 58 cell lines (n = 524 proteins, no miss-

ing values), the filtered proteome data had a higher

consensus to the co-structure and increased pseudo-

eigenvalues (Additional file 1: Figure S6).

MCIA axes describe biological properties

In contrast to traditional clustering methods, MCIA pro-

jects the original data onto a lower dimensional space,

maximizing the covariance of each dataset with respect

to the reference structure. In MCIA plots, a gene that is

highly expressed in a certain cell line will be projected in

the direction of this cell line and the greater the distance

from the origin, the stronger the association. In order to

identify biomarkers that are highly associated with can-

cer cell lines of different origins, we examined the fea-

ture space of mRNAs and proteins that were projected

in the same direction and space (Figure 2).

The first axis (PC1, horizontal axis), which explains

the largest variance, separated cells with epithelial or

mesenchymal characteristics, suggesting that epithelial-

mesenchymal transition (EMT) is an essential mechan-

ism defining different classes of cancers (Figure 2A).

EMT has been shown to play an important role in epi-

thelial cell malignancy and metastasis [51]. Epithelial

markers, including SLC27A2, CDH1, SPINT1, S100P and

EPCAM had high weights on the positive side of PC1

(Figures 2B-F). At the opposite end, mesenchymal and

collagen markers, including GJA1, which is involved in

epicardial to mesenchymal cell transition, and TGFβ2

were observed (Additional file 2: Table S1). The second

(vertical) axis, PC2, clearly separated melanoma and

leukemia from other epithelial cancer types. The strongest

determinant of the vertical axis is a set of melanoma-

related genes, namely melanoma-associated antigens

(MAGEA), melanogenic enzyme (GPNMB) as well as

TYR, DCT, TYRP1, MALANA, S100B and BCL2A1. The

top 100 genes with greatest weights on PC1 and PC2 were

selected from each dataset (Figures 2B-F) and the full list

of markers is provided in Additional file 2: Table S1.

Among 1,377 selected genes, 145 were measured in three

or more datasets. MCIA enables the study of the union of

features from all studies. Among the NCI-60 datasets, less

than 12% of the total 17,805 genes studied were measured

in all five datasets. By observing highly ranked genes

across studies, one can identify robust markers that could

be subject to further analysis.
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Integration of proteomics and transcriptomics

complements the biological information

To further evaluate the biological significance of the fea-

tures selected by MCIA, we employed Ingenuity Pathway

Analysis (IPA: http://www.ingenuity.com) to discover sig-

nificant canonical pathways which discriminate different

cell lines (Figure 3). In MCIA plots, samples and features

are projected onto the same space. The genes with stron-

gest association to a cell line are those projected in the

same direction and have the highest weights (greater dis-

tance from the origin). As features have been transformed

on the same scale, the union of features from each individ-

ual dataset can be easily extracted and concatenated to

provide greater coverage in pathway analysis. Features

strongly associated to each tissue type from both tran-

scriptome and proteome datasets can be concatenated

and mapped to signaling pathways. There is no require-

ment to extract equal numbers of features from each data

type. For example we observed that features strongly asso-

ciated with leukemia related features tended to be

enriched in the proteins (Figure 3A). The most extreme

features associated with the leukemia cell lines were

selected from all platforms using their coordinates and

were subjected to the functional and pathway analysis.

The full list of features, the coordinate feature selection

criteria and their functional and pathway analysis are pro-

vided in Additional file 3: Tables S2 and Additional file 4:

Table S3.

Complementary information can be obtained by inte-

grating data from different platforms and data types

which increases the genome coverage and power of sub-

sequent pathway analysis. While numerous genes were

over-expressed in both the transcriptome and proteome

data, some (HCLS1, PECAM and two integrins, ITGAL,

ITGB2) were identified exclusively in the proteome data-

set (Figure 3A). We observed that leukocyte related bio-

logical functions, such as activation of mononuclear

leukocyte, mobilization of Ca2+ and activation of lympho-

cyte were most strongly associated with the leukemia cell

lines (Additional file 3: Table S2). Enrichment analysis

suggested that the most significantly enriched pathways

are, leukemia extravasation signaling pathway (p = 1.04−11;

Figure 3B), which is responsible for leukocyte migration

and related to metastasis in leukemia cell lines [52], T cell
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receptor signaling (p = 5.25−5) and iCos-iCosL signaling in

T helper cells (p = 8.32−5; Additional file 4: Table S3).

To further demonstrate the advantage of combining

multiple layers of information in pathway analysis, we

performed identical analysis only based on transcrip-

tome markers from all of the four microarray studies.

Although leukocyte extravasation signaling was still the

most enriched pathway, it did not reach the same level

of significance (p = 1.14−4). In addition, pathways that

are not strongly associated with leukemia were also sig-

nificantly enriched (p < 0.01; hereditary breast cancer

signaling and NFAT in Cardiac Hypertrophy). Several

pathways that are associated with leukemia and were de-

tected in the combined analysis were absent, including

NF-kB pathway and PI3K Signaling in B lymphocytes

(Additional file 4: Table S3).

We repeated this analysis on the set of MCIA discov-

ered features associated with melanoma (Additional file

3: Table S2). The selected features comprised of proteins

and genes that are highly expressed in melanoma cell

lines, such as TYR, TYRP1 and BCL2A1. These were sig-

nificantly enriched in the biological functions or pathways

associated with eumelanin biosynthesis and disorder of

pigmentation including the melanocyte development and

pigmentation signaling pathway (Additional file 3: Table S2;

Figure 3C). Melanocytic development and pigmentation is

regulated in large part by the bHLH-Lz microphthalmia-

associated transcription factor (MITF) and MITF activity

is controlled by at least two pathways: MSH and Kit sig-

naling. BCL2A1 is transcriptionally activated by MITF and

serves as an anti-apoptosis factor [53]. Interestingly, the

upstream regulator of MITF, lEF1, was also consistently

identified on the same direction in all transcriptome data-

sets (Figure 2). It is of note that, although all five datasets

contributed to the coverage of this pathway, MITF was

solely detected in the Affymetrix data. MCIA can increase

coverage and, the power of pathway (and other annota-

tion) analyses as it does not require mapping or pre-

filtering of features to the subset common to all datasets.

MCIA allows easy integration of multiple omics levels to

identify classes that are relevant in the given biological

context.

Comparison of MCIA and regularized generalized

canonical correlation analysis (RCGGA)

In generalized canonical correlation analysis (GCCA) sev-

eral sets of variables are analyzed simultaneously. Several

generalizations of CCA have been described. These

A B

C

Direction 

sensing

Actin 

cytoskeleton

Proteome 

Actin cytoskeleton 

contraction
Cell Survival

Pigmentation

Figure 3 Integrative pathway analysis. (A) Shows the coordinates of proteins from the proteomics dataset (see as Figure 2F), where proteins
from the leukemia tail are highlighted. In contrast to the microarray data, leukemia features are clearly represented in the proteome dataset.
(B) The leukocyte extravasation signaling pathway is significantly enriched in analysis resulting from integration of leukemia features from all
platforms. Colors indicate features from different datasets. (C) Melanocyte development and pigmentation signaling pathway was enriched in
melanoma genes.
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employ different methods, including sum of correlations

(SUMCOR), sum of squared correlations (SSQCOR) and

sum of absolute value correlations (SABSCOR) [29]. Re-

cently Tenenhaus and coworkers introduced regularized

generalized canonical correlation analysis (RGCCA) to

generalize RCCA to multi-block data analysis of data

where the number of variables exceed the number of cases

[29]. We compare MCIA to several RGCCA methods that

are defined by different shrinkage parameters and opti-

mization criteria (Additional file 1: Figure S7-S9).

First, we compared three different optimization criteria

in RGCCA, namely SUMCOR, SABSCOR, SSQCOR

with MCIA. As depicted in Additional file 1: Figure S7,

the SUMCOR method and MCIA algorithm consistently

return similar results with positively correlated axes

(Additional file 1: Figure S7). Also the identified compo-

nents from the SABSCOR and SSQCOR methods are al-

ways highly correlated to the MCIA results, but it is

important to note that the correlation could be either

positive or negative. This is inconvenient for the com-

parison and integration of multiple omics datasets, as

the components from one dataset might be inverted in

another dataset.

By tuning the shrinkage parameter т, which can range

from 0 to 1, RGCCA balances optimizing the intra-table

and inter-table covariance. Additional file 1: Figure S8

and S9 show that the identified components are nearly

identical across datasets for т = 0. The smaller the

shrinkage parameter т, the higher is the correlation be-

tween neighboring components from different datasets.

But the variance of each individual dataset is less well

explained by the components. In contrast, the results of

RGCCA with a shrinkage parameter of т = 1 are very

similar to MCIA results. In this case, RGCCA gives pri-

ority to finding a component that explains its own block

well [29]. Similarly, MCIA maximizes the variance

within each table and the covariance of components of

each table with a consensus reference structure through

a synthetic analysis. It is important to note that in omics

data analyses, the number of features is generally much

larger than the number of observations. Therefore, a low

т should be avoided as it results in overfitting of the data

and apparently perfect correlations, which rarely repre-

sent meaningful information.

Integrated analysis of microarray and RNA-sequencing

ovarian cancer datasets

In the ovarian cancer datasets, MCIA was applied to

several microarray and RNA-seq gene expression data-

sets; Agilent, Affymetrix, RNASeq, RNASeqV2 which

contained 17,814, 12,042, 16,769, and 15,840 genes re-

spectively. In the MCIA space, the first PC (horizontal

axis) accounted for 19.6% of the total variance and the

second PC (vertical axis) accounted for 10.6% of variance

(Additional file 1: Figure S10). In comparison to micro-

array data, RNA sequencing data typically contains many

missing values. These are generated when multiple experi-

ments are combined. We excluded genes (rows) with high

number of missing values. After filtering genes with more

than 15 missing values in RNA-seq data, the four datasets

contributed similarly to the total variance (Figure 4 and

Additional file 1: Figure S11). Among the two RNA-seq

datasets, RNASeq consistently tended to be more variant

than RNASeqV2 on PC1-5 (Additional file 1: Figure S12).

RNASeq and RNASeqV2 were generated from the same

Illumina RNA-sequencing data but using two different

pre-processing approaches. MCIA results indicated that

normalization and quantification with the RPKM method

(RNASeq) outperforms MapSplice and RSEM (RNA-

SeqV2). The informativeness or variance in RNA sequen-

cing data tended to be sensitive to pre-processing and

filtering algorithms which is expected given that methods

for processing these data are still emerging. In addition,

Affymetrix profiles were generally more variant than Agi-

lent as indicated by greater pseudo-eigenvalues on PC1-3.

When the microarray and RNASeq data were compared,

we detected several outlier genes that were highly variant

on PC1 and PC2 on RNASeq but absent on the micro-

array platforms. These include CDHR4 and HESRG

which are highly expressed by the differentiated subtype

(Figure 4) [54].

MCIA identified ovarian subtypes

We applied MCIA to compare the consistency and dis-

crepancy in gene expression profiles of ovarian cancer

tumors obtained by RNA-sequencing and Affymetrix

and Agilent microarray technologies (Figure 4A). The

results revealed high overall similarity in structure be-

tween the four datasets and three platforms.

Recent microarray gene expression profiling studies

have reported four subtypes of ovarian cancer (prolifera-

tive, immunoreactive, mesenchymal and differentiated)

[37,55]. These HGS-OvCa subtypes can be clearly distin-

guished along the first two MCIA axes (Figure 4A). The

first axis generally separated samples with immunoreac-

tive versus proliferative characteristics. Whereas the sec-

ond axis distinguished tumors with a mesenchymal

subtype which show a short survival time [56] from the

differentiated ovarian cancer samples. Consistent with

other studies, MCIA identified large overlap between the

four subtypes, indicating that most samples exhibited

features of multiple subtype signatures [56]. In order to

find whether this classification correlates with clinical

factors, we compared the first two PCs with clinical re-

cords provided from the TCGA data portal and the

Verhaak study [56]. This comparison revealed that age

at diagnosis was significantly negatively correlated with

PC1 and positively correlated PC2 (Pearson correlation
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p = 1.29−3 and p = 3.56−4 respectively), suggesting that

differentiated and immunoreactive patients tend to

present at younger age. The percentage of stromal cells

is positively correlated with PC2 (Pearson correlation p =

1.79−3), which is in consensus with the mesenchymal sub-

type having greater percentage of stromal cells [56]. Other

clinical factors, such as somatic mutation, drug treatment

and tumor stages did not significantly correlate with either

axis.

MCIA suggests robust subtype biomarkers

Both microarray and RNA sequencing data resulted in a

similar ordination of tumor samples in the MCIA space.

In order to identify which genes contribute significantly

to the divergence of samples, we examined the gene ex-

pression variables superimposed onto the same space

(Figure 4B-E). The top 100 genes from the end of each

axis were selected. The full list of selected genes and

their enriched pathways are provided in Additional file 5:

Table S4. Each dataset contained different genes. Approxi-

mately 47% of genes (9,755 genes) were measured on all

four datasets (Additional file 1: Figure S2). Among 1096

genes selected as the top 100 genes from each datasets on

PC1 and PC2 only 82 genes were in at least three plat-

forms and 27 (2.5%) were present in all datasets. Several

of these “robust” markers, have been previously implicated

in ovarian cancer [37,56]. Many T-cell activation and traf-

ficking genes, such as CXCL9, CD2 and CD3D were pro-

jected onto the positive end of the first axes, which

represented the immunoreactive subtype tumors. MCIA

revealed new markers that might be associated with the

immune system, including SH2D1A, RHOH, SAA1,

SAA2 and GNLY. This is further corroborated by numer-

ous GO terms significantly associated with genes on this

end of the axis (DAVID functional annotation) [57]. For

instance, significantly enriched gene sets include glycopro-

tein, chemotaxis, defense and immune response (FDR <

0.01, Additional file 5: Table S4). The genes at the opposite

end of the MCIA axes included transcriptional factors

SOX11, HMGA2, along with several cell cycle promoters,

such as BEX1, MAPK4 as well as nerve system develop-

ment regulators (TBX1, TUBB2B), which characterize the

proliferative subtype. Genes that are expressed on the

positive end of axis 2, such as POSTN, CXCL14 and

HOXA5, define the mesenchymal cluster. Other potential

mesenchymal subtype markers for ovarian cancer include

ASPN, homeobox alpha genes as well as collagens. ASPN

is a critical regulator of TGF-beta pathway that induces

the epithelial mesenchymal transition. Gene set analysis

revealed that mesenchymal genes are enriched in GO
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PC1
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PC1

PC2
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Figure 4 Cross-platform comparison of transcriptional expression profiles of ovarian cancer using MCIA. (A) Visualization of the
concordance of patient gene expression profiles from multiple platforms. The samples are colored according to four subtypes of patients [56].
Axis 1 clearly separates the proliferative and immunoreactive subtypes, whereas the mesenchymal and differentiated subtypes are separated by
axis 2. The inset represents the pseudo-eigenvalues of each dataset on the first two PCs. (B-E) Show the coordinates of genes from each platform.
Top consensus genes, common to all platforms from the end of each axis, are colored and labeled.
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terms including cell adhesion, skeletal system develop-

ment, collagen and ECM receptor interaction pathway

(Additional file 5: Table S4).

The robust markers at the differentiated end include ovi-

ductal glycoprotein 1 (OVGP1/MUC9), SPDEF, KIAA1324,

GJB1 and ALPPL2, some of which have already been re-

ported as ovarian biomarkers. For instance, OVGP1 has

been suggested as a possible serum marker for the detec-

tion of low grade ovarian cancer [58]. Although the

TCGA dataset is all high grade serous ovarian cancer, in

our analysis, it was highly expressed in differentiated sub-

type. Human SPDEF protein plays a significant role in

tumorigenesis in multiple cancers, including ovarian can-

cer and has been reported to suppress prostate tumor

metastasis. A recent study on prostate cancer demon-

strated that SPDEF suppresses cancer metastasis through

down-regulation of matrix metalloproteinase 9 and 13

(MMP9, MMP13), which are required for the invasive

phenotype of cells [59]. Our analysis implied that SPDEF

and matrix metalloproteinase plays a similar role in the

development of ovarian cancer. In addition, it has been

shown that, in a mouse model, POSTN down-regulates

ALPP mRNA [60]. POSTN and ALPPL2 were projected

onto the diametral ends of axes 2, which implies that the

same mechanism of regulation exists in ovarian cancer

and can be exploited to distinguish subtypes. Interest-

ingly, the DAVID gene set analysis of markers for the dif-

ferentiated phenotype did not reveal as strong gene set

enrichments as described for the other subtypes (lowest

FDR = 0.0022 vs. 10−47 to 10−9; Additional file 5: Table S4)

indicating that this subtype exhibits considerably higher

degree of heterogeneity.

Conclusion
In the present study, we described multiple co-inertia

analysis (MCIA), an exploratory data analysis method

that can identify co-relationships between multiple high

dimensional datasets. MCIA projects multiple sets of

features onto the same dimensional space and provides a

simple graphical representation for the efficient identifi-

cation of concordance between datasets. The sets of fea-

tures may have none or few features in common. By

transforming multiple sources of data onto the same

scale, the most variant features are transformed onto

the same scale. This allows one to extract and easily

combine sets of omic features (genes, proteins, etc.) for

greater power in subsequent pathway analysis. MCIA

provides a consensus reference structure of datasets,

revealing similar trends among multiple tables. Com-

pared to RGCCA, we found that MCIA is most similar

to the SUMCOR version of RGCCA with т = 1 in

practice.

Our integrative analysis of NCI-60 cell line panel indi-

cated that, although both transcriptome and proteome

cell lines were clustered according to their lineage, they

provides complementary information. We demonstrated

that integrated analysis of gene and protein expression

data increases the power of pathway analysis and yields

more information than an analysis of gene expression

alone. MCIA highly ranked the leukemia extravasation

signaling pathway. This pathway was overrepresented

with features that were predominantly from the proteo-

mics data and were enriched in biological functions of

“activation of mononuclear leukocyte and lymphocyte”.

MCIA of high grade serous ovarian cancer revealed four

previously described subtypes of ovarian cancer and pro-

vided novel subtype markers. An advantage of MCIA is

that it couples multiple set of features measured on the

same set of samples. Since it does not rely on feature an-

notation, it is not limited by the immaturity of annota-

tions. There is no prerequisite to filter or map features

(genes) to a common set thereby considerably increasing

genome coverage.

In a study that compares CIA with other sparse mul-

tiple table analysis methods (sPLS and CCA-EN), LeCao

et al. suggested that CIA may result in redundancy when

it is used for feature selection since it does not include a

built-in procedure for variable selection [27]. Similarly,

MCIA does not impose any sparsity in the result, so

MCIA selects much more features than methods intro-

ducing the Lasso penalty, such as SGCCA [30] or PCCA

[31]. Hence, the interpretation of MCIA selected fea-

tures would have to be coupled with other methods,

such as enrichment analysis, in order to reveal func-

tional insights. We also note that the MCIA algorithm

finds solutions in a sequential manner and each order of

components requires a singular value decomposition

(SVD) for a large dataset. The computationally intensity

of the algorithm increases with sample size as more

components are retained. For instance, the CPU time of

analysis of the NCI-60 data with 5 kept principal com-

ponents was around 68 seconds on Intel Xeon 1596

MHz using one thread of a Linux server.

In conclusion, we believe MCIA is a useful method for

integration of multiple omics datasets where the same tis-

sue or cell lines have been assayed multiple times. MCIA

is available to the community via an R-Bioconductor

(“omicade4”) package which includes documentation and

a vignette.

Availability of supporting data

The microarray data of NCI-60 cell lines are available

through CELLMINER (http://discover.nci.nih.gov/cell

miner/home.do). The NCI-60 proteomic data can be

downloaded from http://wzw.tum.de/proteomics/NCI60/

as well as from https://www.proteomicsdb.org. The ovar-

ian cancer data are available through the TCGA download

portal (https://tcga-data.nci.nih.gov/tcga/tcgaHome2.jsp).
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