A Multivariate Complexity Analysis of Lobbying in Multiple Referenda R. Bredereck¹, J. Chen^{$\overline{1}$}, S. Hartung¹, S. Kratsch², R. Niedermeier¹, and O. Suchý¹

 1 TU Berlin, Germany \cdot 2 Universiteit Utrecht, the Netherlands

Multi-Referenda Election

Input: Voters deciding \checkmark or \times on multiple issues. **Result:** An issue has value ✓ if the strict majority of voters decide \checkmark .

Lobby at most k=2 voters

such that all

issues get ✓?

Lobbying

Input: A multi-referenda election and a number k.

Can one lobby at most k voters such that ?: all issues get <

Issues:	Emissions trading	Nuclear power	Tax raise
Voter 1			 ✓
Voter 2		×	~
Voter 3	×		×
Voter 4	\checkmark		\checkmark
Voter 5	×		×
Result			
Parameters:	# lobbied vo	oters: 1	

Central Question:

How do natural parameters influence the computational complexity of Lobbying? \longrightarrow Analyze this by means of tools from **Parameterized Complexity**!

Central Conclusions:

• Lobbying with low budget is hard. [Christian et al., Review of Economic Design'07]

ullet Having only a few issues makes Lobbying easy. Our greedy algorithm is optimal for up to 4 issues. • Effective preprocessing for Lobbying is hard.

• Lobbying nay-sayers is hard.

Ħ	0	DD	le	C
	VC	ote	rs	

Further Results (New Models)

• Restricted Lobbying:

Can only change a limited number t' of issues per voter.

- NP-hard already for four issues.
- FPT wrt. (t', k).

• Partial Lobbying:

Not the full list of issues needs to be disapproved.

- FPT wrt. (g, k).

Complexity Theory in a Nutshell

• Problem x is **FPT** wrt. parameters (k, t) $\hat{}$ Solvable in $f(k,t)|x|^c$ time. (c being a constant)

No polynomial-size problem kernel indicates limits of preprocessing.

• W(2)-hard wrt. parameters (k, t) means an **FPT** algorithm is unlikely to exist.

Related Work

• First studied by Christian et al. [Review of Economic Design'07]

 Closely related to combinatorial markets in multi-agent systems. [Sandholm et al., AAMAS'02]

 Also related to Judgment Aggregation.

[Baumeister et al., ADT'11]