
Statistica Sinica 20 (2010), 1683-1707

A MULTIVARIATE CONTROL CHART FOR DETECTING

INCREASES IN PROCESS DISPERSION

Chia-Ling Yen and Jyh-Jen Horng Shiau

National Chiao Tung University

Abstract: For signalling alarms sooner when the dispersion of a multivariate pro-

cess is “increased”, a multivariate control chart for Phase II process monitoring is

proposed as a supplementary tool to the usual monitoring schemes designed for de-

tecting general changes in the covariance matrix. The proposed chart is constructed

based on the one-sided likelihood ratio test (LRT) for testing the hypothesis that

the covariance matrix of the quality characteristic vector of the current process,

Σ, is “larger” than that of the in-control process, Σ0, in the sense that Σ − Σ0 is

positive semidefinite and Σ 6= Σ0. Assuming Σ0 is known, the LRT statistic is de-

rived and then used to construct the control chart. A simulation study shows that

the proposed control chart indeed outperforms three existing two-sided-test-based

control charts under comparison in terms of the average run length. The applica-

bility and effectiveness of the proposed control chart are demonstrated through a

semiconductor example and two simulations.

Key words and phrases: Average run length, likelihood ratio test, multivariate

process dispersion, one-sided test, two-sided test.

1. Introduction

Statistical process control (SPC) is a fundamental methodology consisting
of many techniques that have been proven useful in quality and productivity
improvement of products and processes. Among these techniques, the control
chart is the featured technique for keeping processes in control by monitoring
key quality characteristics of interest. When the process is changed by some
assignable causes, an effective control chart should be able to detect the changes
quickly and signal requests for investigation. If assignable causes are found, then
subsequent corrective actions should be taken to eliminate them.

There are two phases of control charting in SPC, Phase I and Phase II. In
Phase I analysis, historical observations are analyzed to determine whether the
process is in control, to understand the sources of variation in the process, and to
estimate the in-control parameters of the process. In contrast, Phase II control
charting aims at on-line monitoring of future observations by using the control
limits, constructed based on the estimated in-control process parameters from
Phase I, to determine if the process continues to be in control. The objective of
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Phase II analysis is to quickly detect process changes. Obviously, a successful
Phase II process monitoring depends heavily on a successful Phase I analysis. In
this study, we focus on Phase II control charts. To avoid letting the estimation
error in Phase I interfere with the comparisons of various control charts, Phase
II studies usually assume that the characteristics of the in-control process are
known.

Practitioners used to monitor just one quality characteristic for a process,
but processes are now getting so complicated that multivariate SPC techniques,
which can provide simultaneous scrutiny of several possibly correlated process
variables, are in great need for monitoring and diagnostic purposes.

The purpose here is to propose a multivariate control chart designed for
detecting dispersion “increases” for processes in which two or more quality char-
acteristics need to be monitored simultaneously. For two multivariate processes,
perhaps there is no way to define precisely which has larger dispersion. However,
it is quite natural to say, for two covariance matrices, Σ is “larger” than Σ0

when Σ − Σ0 is positive semidefinite and Σ 6= Σ0. The proposed control chart
is intended for applications in which it is more urgent to signal out-of-control
conditions for dispersion increases than other kinds of changes.

Consider a multivariate process with p quality characteristics of interest,
and suppose that the p× 1 quality characteristic vector X follows a multivariate
normal distribution, Np(µ, Σ), with mean vector µ and covariance matrix Σ.
For monitoring the process mean vector µ, the Hotelling T 2 chart (Hotelling
(1947)) may be the most popular chart. However, the T 2 chart has a notorious
drawback in that it is sensitive not only to shifts in the mean µ but also to
changes in the covariance matrix Σ (Hawkins (1991, 1993); Mason, Tracy, and
Young (1995)). This confounding of “location” and “scale” shifts is clearly not
desirable in this setting.

Substantial works on SPC methods have been devoted to monitoring
the process mean, while relatively little research has addressed the moni-
toring of process dispersion. However, it has been recognized that shifts in
process dispersion can have a significant impact on process monitoring of the
mean. Moreover, as pointed out by many authors including Montgomery (2009),
monitoring process dispersion has its own importance. For these reasons, various
charts have been developed in recent years, including (i) Shewhart-type charts
based on the generalized variance by, for example, Alt (1985), Alt and Bedewi
(1986), Alt and Smith (1998), and Djauhari (2005); (ii) Shewhart-type charts
based on the likelihood ratio test (LRT) by Sakata (1987), Calvin (1994), Levin-
son, Holmes, and Mergen (2002), and Vargas and Lagos (2007); (iii) multivariate
exponentially weighted average (MEWMA) control charts by, for example,
Yeh, Huwang and Wu (2004), Reynolds and Cho (2006), Reynolds and Stoum-
bos (2006), Huwang, Yeh, and Wu (2007), and Hawkins and Maboudou-Tchao
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(2008); (iv) multivariate cumulative sum (MCUSUM) control charts by Chan
and Zhang (2001) and Runger and Testik (2004); and (v) other schemes different
from the above, for example, the Shewhart procedures proposed in Tang and Bar-
nett (1996a,b) based on decomposing the covariance matrix, and the multivariate
projection chart proposed by Hao, Zhou, and Ding (2008).

For more detail on multivariate control charts, readers are referred to review
papers by, for example, Wierda (1994), Yeh, Lin, and McGrath (2006), Bersimis,
Psarakis, and Panaretos (2007). Yeh, Lin, and McGrath (2006) reviewed the
multivariate control charts for monitoring changes in Σ that were developed
between 1990 and 2005; and Bersimis, Psarakis, and Panaretos (2007) reviewed
multivariate extensions for all kinds of univariate control charts: multivariate
Shewhart-type, MCUSUM-type, and EWMA-type control charts, as well as the
multivariate control charts based on Principal Components Analysis (PCA) and
Partial Least Squares (PLS).

Most of the techniques developed for multivariate dispersion monitoring in
the literature are centered on detecting changes of any kind in the covariance
matrix. However, for most practitioners, it probably matters more if the process
dispersion increases because, when this happens, the quality of products or pro-
cesses has deteriorated, and unnecessary wastes have been and will continue to
be produced. It would definitely be worthwhile to have a multivariate control
chart that can detect dispersion increases sooner than control charts designed for
monitoring general changes in the covariance matrix.

Suppose X is distributed as Np(µ0, Σ0) when the process is in control. We
consider testing

H0: Σ = Σ0 vs. H1: Σ ≥ Σ0 and Σ 6= Σ0, (1.1)

where Σ ≥ Σ0 denotes that Σ − Σ0 is positive semidefinite. Thus the out-of-
control condition has the variance of every linear combination of X, var(a′X),
greater than or equal to that when the process is in control, where a is any
nonzero p × 1 vector. When a process is in control, neither the process mean
nor the covariance matrix changes. However, (1.1) does not specify the status
of the process mean µ so H0 in (1.1) is not exactly the in-control condition.
Nevertheless, we continue to use the term “in control” even when not specifically
considering the status of the process mean.

In this paper, we present a simple, yet effective, one-sided LRT-based control
chart based on the exact likelihood function pertinent to detecting increases in
multivariate process dispersion.

For (1.1) with Σ0 known, the only work on one-sided tests seems to be
Calvin (1994), in which (1.1) is divided into two sequential testing hypotheses
and a two-stage control charting scheme is constructed. The process dispersion
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is considered to have increased only when the control charts of both stages are
out of control. In practice, Calvin’s method is more complicated than the usual
one-chart scheme.

It is important to emphasize that the proposed control chart is not intended
to be a substitute for any monitoring scheme that is designed for detecting general
changes in the covariance matrix. Instead, it should be used as a supplementary
tool with the purpose of earlier detection of dispersion increases so that wastes
might be reduced.

The rest of the paper is organized as follows. Section 2 describes the proposed
control chart in some detail. Section 3 provides a procedure for computing the
control limits. Section 4 compares, by simulation, the proposed chart with three
existing techniques based on the two-sided tests of H0:Σ = Σ0 vs. H1:Σ 6= Σ0

from the perspective of the average run length (ARL). Section 5 gives a semi-
conductor example and two simulated examples to demonstrate the applicability
and the effectiveness of the proposed chart. Section 6 concludes the paper with
a brief summary and some remarks.

2. One-Sided LRT-based Control Chart

In order to derive the LRT statistic for testing (1.1), we borrow some tech-
niques from Anderson, Anderson, and Olkin (1986), Anderson (1989), and Kuriki
(1993), though the model considered in these papers is different from the one con-
sidered here.

2.1. One-sided LRT statistic

Suppose the in-control process covariance matrix Σ0 is known. At time t, a
random sample {Xt1, . . . , Xtn} is taken from the process, with Xtj , j = 1, . . . , n,

independent and identically distributed (i.i.d.) as Np(µ,Σ), where µ and Σ are
unknown. To test if the process dispersion increases at time t, we derive the LRT
statistic.

Let the sample mean and the sample covariance matrix of this sample be,
respectively,

X̄t =
1
n

n
Σ

j=1
Xtj and St =

1
n

n
Σ

j=1
(Xtj − X̄t)(Xtj − X̄t)′. (2.1)

Then Bt ≡ nSt has the Wishart distribution with n − 1 degrees of freedom and
covariance matrix Σ, denoted Wp(n−1,Σ). The reason for using n instead of the
usual n−1 in the sample covariance matrix St is to simplify the derivation of the
LRT of (1.1). Dykstra (1970) proved that St is positive definite with probability
1 if and only if n > p.
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Theorem 1. The LRT statistic for testing (1.1) is

λ =


p∗

Π
i=1

{di exp [−(di − 1)]}n/2 , for p∗ > 0

1 , for p∗ = 0
, (2.2)

where d1 ≥ · · · ≥ dp > 0 are the roots of |St − dΣ0| = 0 and p∗ is the number of
di > 1.

The proof is given in the Appendix.
The testing procedure is usually performed by the statistic

T = −2 log λ =

n
p∗

Σ
i=1

[(di − 1) − log di] , for p∗ > 0

0 , for p∗ = 0
. (2.3)

The rejection region of the test is {T > Tα}, where the critical value Tα is the
(1−α)th quantile of the distribution of T . Since the distribution of T is not easy
to derive analytically, one can obtain Tα by Monte Carlo simulation.

2.2. The proposed control charts

To construct a control chart based on (2.3), simply take the critical value Tα

as the (upper) control limit. That is, if the monitoring statistic T is greater than
the control limit Tα, then the process is considered to be out of control. The
control limit can be obtained efficiently by a procedure given in the next section.

3. Control Limits

In the following, we show how Tα can be computed by generating data from
Np(0, Ip).

Since Σ is assumed symmetric positive definite, there exists a unique sym-
metric positive definite matrix Σ1/2 such that Σ=(Σ1/2)(Σ1/2) (Golub and Van
Loan (1989, p. 395)). To Simplify the notation, (Σ1/2)−1 is denoted by Σ−1/2.
Let Ztj ≡ Σ−1/2Xtj . Then {Ztj , j = 1, . . . , n} can be considered as a ran-
dom sample of size n from Np(Σ−1/2µ, Ip), if Xtj follows Np(µ,Σ). Thus
Z̄t ≡ Σ−1/2X̄t and S

(z)
t ≡ Σ−1/2StΣ−1/2 are the sample mean and sample

covariance matrix of the transformed sample, respectively. First, note that
nS

(z)
t is distributed as Wp(n − 1, Ip). Second, when the process is in control,

Σ=Σ0. Then |St − dΣ0| = 0 and
∣∣∣S(z)

t − dIp

∣∣∣ = 0 have the same roots, since

|St − dΣ0| = |Σ0|
∣∣∣S(z)

t − dIp

∣∣∣ and Σ0 is assumed positive definite. This implies
that, when the process is in control, the distribution of the monitoring statistic
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T based on the eigenvalues of StΣ−1
0 is the same as that based on the eigenval-

ues of S
(z)
t . Thus, without loss of generality, we can assume that the in-control

parameters µ0 = 0 and Σ0 = Ip when studying the distribution of T under Ho.
Here is a procedure for approximating the control limit, where N is the

number of simulated values of T in one simulation run and b is the number of
repeated runs.

Procedure 1. (For computing the control limit)

Step 1. Input p, n, α, N , and b.

Step 2. For t=1 to N ,
(i) generate n i.i.d. random vectors Xt1, . . . , Xtn from Np(0, Ip);

(ii) compute St by (2.1);

(iii) compute the eigenvalues of St, d1 ≥ · · · ≥ dp;

(iv) compute Tt by (2.3).

Step 3. Compute the (1 − α)th sample quantile of {T1, . . . , TN}.

Step 4. Repeat Steps 2−3 b times. Take the average of the b quantiles as the
control limit CLp, n, α.

The purpose of the replications in Step 4 is to give a more accurate quantile
estimate as well as to provide information on the precision of the computed
control limit CLp, n, α.

For p = 2, 3, 4, n = 5, 10, 15, 20, 25, α = 0.05, 0.01, 0.0027, N = 1, 000, 000,
and b = 100, Table 1 gives CLp, n, α and its standard error (in parentheses). We
observe the following from this table.

• For the same p and α, the larger the n is, the larger is CLp, n, α.

• For the same n and α, the larger the p is, the larger is CLp, n, α.

• The smaller the α is, the larger is the standard error. This is typical for
quantile estimators, especially when the tail is thin.

For cases not covered in Table 1, a MATLAB program we used for comput-
ing the control limits is available at http://www.stat.nctu.edu.tw/subhtml/
source/teachers/jyhjen.htm. SPC practitioners can compute the control limit
by simply inputting the appropriate parameters, p, n, α, N , and b, according to
their applications.

http://www.stat.nctu.edu.tw/subhtml/source/teachers/jyhjen.htm
http://www.stat.nctu.edu.tw/subhtml/source/teachers/jyhjen.htm
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Table 1. The control limits of the proposed control chart and their standard
errors (in parentheses) for various p, n, and α.

α = 0.05 α = 0.01 α = 0.0027
n = 5 3.05397 (0.00073) 5.74518 (0.00163) 8.04116 (0.00337)
n = 10 3.67012 (0.00083) 6.51889 (0.00193) 8.90371 (0.00352)

p = 2 n = 15 3.95820 (0.00071) 6.87760 (0.00185) 9.31402 (0.00345)
n = 20 4.13514 (0.00083) 7.10464 (0.00189) 9.56986 (0.00378)
n = 25 4.26165 (0.00076) 7.26285 (0.00178) 9.74458 (0.00361)

n = 5 4.80793 (0.00083) 7.92760 (0.00178) 10.48552 (0.00341)
n = 10 5.69597 (0.00080) 8.99673 (0.00213) 11.66028 (0.00355)

p = 3 n = 15 6.12026 (0.00102) 9.50740 (0.00209) 12.22800 (0.00377)
n = 20 6.38572 (0.00099) 9.82577 (0.00221) 12.58276 (0.00404)
n = 25 6.57258 (0.00093) 10.05576 (0.00206) 12.85012 (0.00396)

n = 5 6.64788 (0.00096) 10.15678 (0.00204) 12.95896 (0.00436)
n = 10 7.86886 (0.00104) 11.59488 (0.00207) 14.53483 (0.00442)

p = 4 n = 15 8.46550 (0.00096) 12.29732 (0.00218) 15.30894 (0.00382)
n = 20 8.84356 (0.00120) 12.74062 (0.00276) 15.79198 (0.00487)
n = 25 9.11189 (0.00121) 13.05840 (0.00236) 16.13724 (0.00431)

4. A Comparative Study

In this section, we compare the proposed one-sided LRT-based control chart
with three existing charts that are based on some two-sided tests of H0:Σ = Σ0

vs. H1:Σ 6= Σ0 in terms of ARL. We do not include some existing charts, such as
those by Yeh, Huwang and Wu (2004), Reynolds and Cho (2006), Huwang, Yeh,
and Wu (2007), and Hawkins and Maboudou-Tchao (2008), in the performance
study, since these are EWMA-type control charts, as opposed to the Shewhart-
type chart that we propose.

4.1. Two-sided LRT-based control charts

The two-sided LRT statistic given in Anderson (2003, p. 439) for testing
H0: Σ = Σ0 vs. H1: Σ 6= Σ0 can be expressed as

λ∗ =
∣∣StΣ−1

0

∣∣n/2exp{−n

2
trStΣ−1

0 +
pn

2
}. (4.1)

Since both St and Σ0 are symmetric and positive definite, from Theorem 4.14
of Schott (2005) and a simple transformation, there exists a nonsingular matrix
Z such that St = ZDdZ

′ and Σ0 = ZZ ′, where Dd = diag(d1, . . . , dp) with
d1 ≥ · · · ≥ dp being the roots of |St − dΣ0| = 0. Then (4.1) can be re-expressed
as

λ∗ = | Dd|n/2 exp{−n

2
trDd +

pn

2
} =

p

Π
i=1

{ di exp [−(di − 1)] } n/2. (4.2)
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Note that (4.2) (for the two-sided LRT) and (2.2) (for the one-sided LRT) are
of the same form. The only difference is that the one-sided LRT only includes
those di > 1 in the product while the two-sided LRT uses all di’s.

Unfortunately, the two-sided LRT based on λ∗ is biased. However, by re-
placing n by n− 1 in (4.1), one can obtain an unbiased two-sided LRT based on
the following modified likelihood ratio statistic:

λ∗(mod) = (
e

n − 1
)p(n−1)/2

∣∣BtΣ−1
0

∣∣(n−1)/2exp{−1
2
trBtΣ−1

0 }. (4.3)

See Sugiura and Nagao (1968). The control chart based on (4.3) is referred to
here as the “two-sided Modified-LRT” control chart.

4.2. A control chart based on decomposition

Assuming Σ0 is known, Tang and Barnett (1996a,b) proposed a multivariate
Shewhart chart for monitoring H0:Σ = Σ0 vs. H1:Σ 6= Σ0 that is based on
decomposing Bt/(n − 1) into the sum of a series of independent χ2 statistics.
Decompose Σ and Bt/(n − 1) the same way, and take σ2

i·1,...,i−1 and s2
i·1,...,i−1,

respectively, to be the conditional population and sample variance of the ith
variable given the first i − 1 variables. Also, take Σi,i+1,...,p·1,...,i−1 to be the
conditional population covariance matrix of the last p − i + 1 variables given
the first i − 1 variables. σ2

1 and s2
1 are, respectively, the population and sample

variance of the first variable. In addition, let ϑi and Ri (i = 2, . . . , p) denote,
respectively, the (p − i + 1) × 1 vectors of population and sample regression
coefficients when each of the last p− i + 1 variables is regressed on the (i− 1)th
variable while the first i − 2 variables are held fixed. When the current sample
of n observations is drawn, an appropriate statistic based on a decomposition is

T (decom) =
2p−1∑
j=1

Z2
j , (4.4)

where

Z2
1 = Φ−1

(
χ2

n−1

[
(n − 1)s2

1

σ2
1

])
,

Z2
j = Φ−1

(
χ2

n−j

[
(n − 1)s2

j·1,2,...,j−1

σ2
j·1,2,...,j−1

])
for j = 2, . . . , p,

Z2
p+1 = Φ−1

(
χ2

p−1

[
(n − 1)s2

1(R2 − ϑ2)′Σ−1
2,...,p·1(R2 − ϑ2)

])
,

and, for j = 3, . . . , p,

Z2
p+j−1 = Φ−1

(
χ2

p−j+1

[
(n − 1)s2

j−1·1,2,...,j−2(Rj − ϑj)′Σ−1
2,...,p·1,...,j−1(Rj − ϑj)

])
.
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Note that Φ−1(·) is the inverse of the distribution function of N(0, 1) and χ2
v[x] ≡

P (χ2
v ≤ x) is the distribution function of the χ2 distribution with v degrees of

freedom.
This decomposition is not unique since it depends on how the p variables

are arranged in order. Tang and Barnett (1996a) suggested the variables should
be arranged in decreasing order of importance from 1 to p to reflect the relative
importance of the variables.

When the process is in control, Zj ’s are i.i.d. as N(0, 1) and hence T (decom)

is distributed as χ2
2p−1. Thus the control chart can be established by plotting

T (decom)’s against the sampling sequence, and an out-of-control alarm is signaled
when T (decom) exceeds the control limit, χ2

2p−1(1 − α), the (1 − α)th quantile
of χ2

2p−1. The control charts based on (4.4) is referred to here as the “TB-
decomposed” control chart.

4.3. Comparisons

We compare the proposed chart with the two-sided LRT, two-sided Modified-
LRT, and TB-decomposed control charts in terms of ARL. Denote the in-control
ARL by ARL0 and out-of-control ARL by ARL1.

Let T be the test statistic. To estimate ARL, we first generate N statistics
T1, . . . , TN for a very large number N and then compute the proportion of Ti’s
that exceed the control limit constructed in Section 3 for achieving a preset false-
alarm rate α. After repeating the above steps b times, we obtain b proportions.
Two estimating procedures can be considered: (i) take the reciprocal of each
proportion as an estimate of ARL and then average these b ARL estimates to
get the final ARL estimate; (ii) average the b proportions and then take the
reciprocal of the average as the ARL estimate.

For the first ARL estimator, the standard error can be obtained easily by
taking the sample standard deviation of the b ARL estimates and then dividing
it by

√
b. The standard error of the second estimator can be obtained by the

following argument.
Note that, multiplying each proportion by N , we have b statistics that are

i.i.d. binomial(N, θ), where θ is the detecting power, i.e., the probability that
T statistic of a randomly selected sample exceeds the control limit. When the
process is in control, θ = α, the false-alarm rate. Denote the second ARL

estimator by ÂRL. Since ÂRL is the reciprocal of the maximum likelihood
estimator (MLE) of θ, then, by the asymptotic efficiency property of MLE, it
can be easily shown that ÂRL follows a limiting normal distribution with mean
1/θ and standard deviation

√
(1 − θ)/(Nbθ3). Then the standard error of this
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ARL estimator can be calculated by[
ÂRL

2
(ÂRL − 1)
(Nb)

]1/2

. (4.5)

It was found in our simulation study that the difference between the results of
the two estimating procedures was negligible. We thus only report the results of
the second approach.

Assume that the covariance matrix has been “increased” from Σ0 to Σ. As
shown before, the distribution of T in (2.3) is invariant in Σ0. Thus, without
loss of generality, we can assume that Σ0 = Ip when simulating the distribution
of T .

For simplicity, we consider p = 2. To create out-of-control scenarios, express
Σ as [

∆1 ρ
√

∆1∆2

ρ
√

∆1∆2 ∆2

]
,

where ∆i ≥ 1, i = 1, 2. This means the variance of the ith quality characteristic
has been increased by a factor of ∆i for i = 1, 2, and ρ is the correlation coefficient.

It can be easily shown that the eigenvalues of Σ − Σ0 are

1
2

[
(∆1 + ∆2 − 2) ±

√
(∆1 − ∆2)2 + 4ρ2∆1∆2

]
(4.6)

and, under the condition that Σ − Σ0 is positive semidefinite, the range of ρ is
restricted by

|ρ| ≤
[
(∆1 − 1)(∆2 − 1)

∆1∆2

]1/2

. (4.7)

Note that the case when only the correlation changes (i.e., ∆1 = ∆2 = 1 and
ρ 6= 0) does not satisfy (4.7).

In our comparative study, we set α = 0.0027 (i.e., ARL0 ≈ 370) and consid-
ered p = 2 and n = 5, 10 with the following three scenarios of Σ:

(1) ∆1 = ∆2 = c and ρ = 0 (that is, Σ = cΣ0) for c = 1.25, 1.5, 1.75, 2, 2.25,
2.5, 2.75, 3.

(2) ∆1 6= ∆2 and ρ = 0 for the following eight combinations: (∆1, ∆2) =
(1.25, 1), (1.75, 1), (2.25,1), (2.75,1), (1.25,1.75), (1.75,2.25), (2.75,1.25),
(2.25,2.75).

(3) For ρ 6= 0, under the condition (4.7), we chose |ρ| =0.2 and 0.4 for the fol-
lowing four combinations: (∆1,∆2) = (1.75, 1.75), (1.75, 2.25), (2.25, 2.25),
(2.25, 2.75). Note that these combinations were selected from scenarios (1)
and (2) so that we could study the effect of ρ on ARL performance.
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Table 2. ARLs and their standard errors (in parentheses) of the control
charts under study for n = 5 when Σ − Σ0 is positive semidefinite.

p = 2 n=5

∆1 ∆2 One-sided
Two-sided

LRT Modified-LRT TB-decomposed

[ρ = 0]
0.00 0.00 370.237 (0.71143) 369.686 (0.70984) 370.450 (0.71204) 370.600 (0.71248)
1.25 1.25 69.2106 (0.05716) 440.129 (0.92231) 272.795 (0.44973) 115.050 (0.12287)
1.50 1.50 23.8224 (0.01138) 358.564 (0.67802) 128.429 (0.14498) 39.9944 (0.02497)
1.75 1.75 11.5632 (0.00376) 208.000 (0.29926) 57.1190 (0.04279) 18.1724 (0.00753)
2.00 2.00 6.91187 (0.00168) 105.702 (0.10816) 28.6055 (0.01503) 10.1564 (0.00307)
2.25 2.25 4.73748 (0.00092) 55.3383 (0.04079) 16.4050 (0.00644) 6.57161 (0.00155)
2.50 2.50 3.56269 (0.00057) 31.7439 (0.01760) 10.5358 (0.00325) 4.71030 (0.00091)
2.75 2.75 2.85965 (0.00039) 19.8941 (0.00865) 7.37932 (0.00186) 3.63512 (0.00059)
3.00 3.00 2.40662 (0.00029) 13.4635 (0.00475) 5.52952 (0.00118) 2.96044 (0.00041)

1.25 1.00 129.516 (0.14683) 404.098 (0.81132) 316.865 (0.56315) 207.232 (0.29760)
1.75 1.00 28.2042 (0.01471) 269.094 (0.44060) 112.851 (0.11935) 49.0024 (0.03395)
2.25 1.00 11.4874 (0.00372) 109.151 (0.11351) 39.5069 (0.02452) 18.1628 (0.00752)
2.75 1.00 6.53473 (0.00154) 46.5300 (0.03140) 18.4330 (0.00770) 9.51687 (0.00278)

1.25 1.75 21.5994 (0.00980) 291.257 (0.49621) 103.678 (0.10506) 32.1836 (0.01797)
1.75 2.25 6.77878 (0.00163) 93.6812 (0.09019) 26.8064 (0.01362) 9.58700 (0.00281)
2.25 2.75 3.54941 (0.00057) 30.3433 (0.01644) 10.3241 (0.00315) 4.62188 (0.00088)
2.75 1.25 5.89136 (0.00130) 48.2448 (0.03316) 17.8396 (0.00732) 8.62655 (0.00238)

[ρ = 0.2]
1.75 1.75 10.6472 (0.00331) 150.438 (0.18390) 45.6064 (0.03046) 17.0810 (0.00685)
1.75 2.25 6.47171 (0.00151) 72.6989 (0.06156) 23.1351 (0.01088) 9.27298 (0.00267)
2.25 2.25 4.60650 (0.00087) 44.4238 (0.02927) 14.7008 (0.00544) 6.44080 (0.00150)
2.25 2.75 3.49432 (0.00055) 25.9099 (0.01293) 9.59569 (0.00281) 4.57628 (0.00087)

[ρ = 0.4]
1.75 1.75 8.69711 (0.00241) 77.1564 (0.06733) 28.1557 (0.01467) 14.3449 (0.00524)
1.75 2.25 5.70170 (0.00124) 42.4345 (0.02731) 16.3980 (0.00643) 8.38249 (0.00228)
2.25 2.25 4.24177 (0.00076) 27.6573 (0.01428) 11.2343 (0.00359) 6.03881 (0.00136)
2.25 2.75 3.32637 (0.00051) 17.9877 (0.00741) 7.91568 (0.00208) 4.42330 (0.00082)

In the simulation study, we took N = 1, 000, 000 and b = 100 to ob-
tain the ARL estimate along with its standard error for each scenario. For
α = 0.0027, the control limits obtained from the empirical distributions of the
one-sided LRT, two-sided LRT, and two-sided Modified-LRT were, respectively,
8.04116, 22.68151, and 17.67692 for n = 5; 8.90371, 17.53596, and 15.45388 for
n = 10. Moreover, the control limit of the TB-decomposed control chart was
χ2

3(0.9973)=14.15625 for both of n = 5, 10. Tables 2−3 give, respectively for
n = 5 and 10, the estimates of ARL and their standard errors (in parentheses)
of the four charts under comparison for the scenarios (1)−(3) described above.
The following are observed.

• The ARL1 value of the one-sided LRT control chart was much smaller than
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Table 3. ARLs and their standard errors (in parentheses) of the control
charts under study for n = 10 when Σ − Σ0 is positive semidefinite.

p = 2 n=10

∆1 ∆2 One-sided
Two-sided

LRT Modified-LRT TB-decomposed

[ρ = 0]
0.00 0.00 370.932 (0.71344) 368.923 (0.70764) 369.441 (0.70914) 370.835 (0.71316)
1.25 1.25 43.9506 (0.02880) 334.228 (0.61012) 159.591 (0.20098) 81.0847 (0.07256)
1.50 1.50 12.2232 (0.00409) 101.751 (0.10213) 41.2284 (0.02615) 20.8143 (0.00927)
1.75 1.75 5.46448 (0.00115) 31.6456 (0.01752) 14.4928 (0.00532) 8.26446 (0.00223)
2.00 2.00 3.21706 (0.00048) 13.0682 (0.00454) 6.90922 (0.00168) 4.40205 (0.00081)
2.25 2.25 2.26244 (0.00025) 6.84932 (0.00166) 4.09836 (0.00072) 2.86533 (0.00039)
2.50 2.50 1.77936 (0.00016) 4.27350 (0.00077) 2.82486 (0.00038) 2.13220 (0.00023)
2.75 2.75 1.50672 (0.00011) 3.02003 (0.00043) 2.16195 (0.00023) 1.73069 (0.00015)
3.00 3.00 1.34228 (0.00008) 2.33100 (0.00027) 1.77936 (0.00016) 1.49254 (0.00010)

1.25 1.00 92.9779 (0.08917) 351.719 (0.65868) 231.514 (0.35150) 160.955 (0.20356)
1.75 1.00 14.1212 (0.00512) 70.8578 (0.05922) 36.2783 (0.02155) 23.4440 (0.01111)
2.25 1.00 5.24672 (0.00108) 17.9949 (0.00742) 10.6060 (0.00329) 7.60861 (0.00196)
2.75 1.00 2.99625 (0.00042) 7.57638 (0.00194) 5.05989 (0.00102) 3.94264 (0.00068)

1.25 1.75 10.7408 (0.00335) 69.5597 (0.05760) 31.6737 (0.01754) 16.4837 (0.00649)
1.75 2.25 3.15698 (0.00046) 12.1154 (0.00404) 6.60213 (0.00156) 4.22095 (0.00076)
2.25 2.75 1.77361 (0.00016) 4.20565 (0.00075) 2.80186 (0.00038) 2.11249 (0.00022)
2.75 1.25 2.74637 (0.00036) 7.54463 (0.00193) 4.85443 (0.00095) 3.64625 (0.00059)

[ρ = 0.2]
1.75 1.75 4.96162 (0.00099) 23.0950 (0.01086) 11.8256 (0.00389) 7.62047 (0.00196)
1.75 2.25 3.01251 (0.00043) 10.1917 (0.00309) 5.93103 (0.00132) 4.07178 (0.00071)
2.25 2.25 2.20807 (0.00024) 6.13960 (0.00139) 3.85034 (0.00065) 2.82309 (0.00038)
2.25 2.75 1.75519 (0.00015) 3.94734 (0.00068) 2.70926 (0.00035) 2.10128 (0.00022)

[ρ = 0.4]
1.75 1.75 3.96379 (0.00068) 12.2423 (0.00410) 7.52998 (0.00192) 6.03234 (0.00135)
1.75 2.25 2.65893 (0.00034) 6.84659 (0.00166) 4.53534 (0.00085) 3.61603 (0.00058)
2.25 2.25 2.05579 (0.00021) 4.65686 (0.00089) 3.24149 (0.00049) 2.65271 (0.00034)
2.25 2.75 1.69227 (0.00014) 3.31454 (0.00050) 2.44803 (0.00029) 2.04522 (0.00021)

that of the other three control charts for all cases tested. This indeed con-
firms our expectation that the one-sided control chart would outperform the
two-sided control charts when detecting dispersion increases. Furthermore,
the TB-decompsed control chart had a better ARL1 performance than both
of the two-sided LRT and Modified-LRT charts. Note that the two-sided
LRT control chart is biased, in the sense that some of its ARL1 values
exceeded ARL0(≈ 370), which made the two-sided LRT control chart the
worst in ARL performance.

• For all the combinations of ∆1 and ∆2 in scenarios (1)−(3), the ARL1

for n = 10 was smaller than that for n = 5. This confirms the general
expectation that detecting power gets larger when the subgroup size gets
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larger. For fixed n and ρ, the ARL1 decreased when both ∆1 and ∆2

increased or when one increased and the other one was fixed. This again is
not surprising since it is easier to detect larger shifts. Also, a smaller ARL1

resulted in a smaller standard error due to (4.5).

• For the effect of ρ, we first observe that, by (4.6), the eigenvalues of Σ−Σ0

depend on ρ through ρ2. Hence the sign of ρ does not play any role in ARL1

performance as confirmed in our simulation study. The most interesting
thing found in the simulation study was that ARL1 decreased when |ρ|
increased from 0 to 0.4. This suggests that the ability of the proposed chart
to detect increases in dispersion gets better as the correlation (positive or
negative) between the two quality characteristics becomes stronger. Our
explanation for this is that a stronger correlation implies a stronger binding
between the two variables, which allow them to borrow more strength from
each other.

4.4. Discussion

We have that the proposed one-sided control chart outperforms the two-sided
control charts under study when process dispersion “increases” in the sense of
the hypothesis H1 of (1.1). We are curious about its performance when used in
applications where this alternative hypothesis does not hold. For example, in
some medical applications where the variables are mostly related to characteris-
tics of diseases or health conditions, it is common to observe that the correlations
between variables change while individual variances remain the same.

To study this, we conducted a simulation study in the case of p = 2. Consider
three out-of-control scenarios in which Σ − Σ0 is not positive semidefinite: (i)
∆1 = ∆2 = 1 but ρ 6= 0; (ii) ∆1 ≥ 1 and ∆2 ≥ 1, but ρ does not satisfy (4.7);
and (iii) ∆1 ≥ 1 but ∆2 < 1.

The simulation settings were the same as the previous comparative study:
α = 0.0027, p = 2, n = 5, 10, N = 1, 000, 000, and b = 100. Tables 4 and 5 give
the ARL1 values along with their standard errors of the four charts for n = 5
and 10, respectively. We observe the following from the tables.

• It was encouraging to find that the proposed chart still performed quite
well when Σ − Σ0 was not positive semidefinite, as long as the dispersion
was not obviously “decreased” (scenarios (i) and (ii), and some cases of
(iii)), at least for the cases under our study. Furthermore, for most of cases
tested, the proposed one-sided chart still had the best ARL1 performance
and similar ARL1 behaviors to those discussed earlier in Subsection 4.3
were also observed.
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Table 4. ARLs and their standard errors (in parentheses) of the control
charts under study for n = 5 when Σ − Σ0 is not positive semidefinite.

p = 2 n = 5

∆1 ∆2 ρ One-sided
Two-sided

LRT Modified-LRT TB-decomposed

[scenario (i)]
1.00 1.00 0.2 241.467 (0.37444) 331.281 (0.60206) 306.952 (0.53690) 319.679 (0.57068)

0.4 117.237 (0.12640) 236.764 (0.36354) 183.298 (0.24749) 200.688 (0.28359)
0.6 62.0993 (0.04854) 127.948 (0.14416) 85.8477 (0.07908) 99.4134 (0.09862)
0.8 37.1216 (0.02231) 45.2206 (0.03007) 30.4298 (0.01651) 41.7354 (0.02664)

[scenario (ii)]
1.25 1.00 0.2 97.5270 (0.09582) 349.681 (0.65296) 247.601 (0.38882) 177.636 (0.23609)

0.4 56.5442 (0.04214) 230.471 (0.34912) 136.978 (0.15973) 113.419 (0.12026)
1.75 1.00 0.2 24.9742 (0.01223) 223.256 (0.33284) 92.1645 (0.08800) 45.2805 (0.03013)

0.4 18.9341 (0.00802) 134.917 (0.15613) 56.6780 (0.04229) 35.6890 (0.02102)
2.25 1.00 0.2 10.8204 (0.00339) 93.2794 (0.08961) 34.8933 (0.02031) 17.4749 (0.00709)

0.4 9.29471 (0.00268) 61.9994 (0.04842) 25.3581 (0.01252) 15.4480 (0.00587)
2.75 1.00 0.2 6.31083 (0.00145) 41.6692 (0.02657) 17.0274 (0.00682) 9.30205 (0.00268)

0.4 5.76330 (0.00126) 31.0067 (0.01698) 13.7645 (0.00492) 8.67726 (0.00240)
1.25 1.75 0.4 14.5090 (0.00533) 123.192 (0.13618) 47.4124 (0.03230) 23.9669 (0.01149)

0.6 10.6820 (0.00332) 57.7216 (0.04347) 25.4505 (0.01258) 17.0397 (0.00682)
1.75 1.75 0.6 6.82878 (0.00165) 37.2078 (0.02239) 16.4000 (0.00644) 10.8946 (0.00343)

0.8 5.44665 (0.00115) 16.2696 (0.00636) 8.83661 (0.00247) 7.45369 (0.00189)
1.75 2.25 0.6 4.80855 (0.00094) 23.1507 (0.01090) 10.7942 (0.00338) 7.03131 (0.00173)

0.8 4.04115 (0.00070) 11.5476 (0.00375) 6.54378 (0.00154) 5.33521 (0.00111)
2.25 2.25 0.6 3.73949 (0.00062) 16.2492 (0.00635) 7.96425 (0.00210) 5.32329 (0.00111)

0.8 3.24750 (0.00049) 8.88053 (0.00249) 5.22767 (0.00107) 4.27279 (0.00077)
2.25 2.75 0.6 3.04882 (0.00044) 11.6432 (0.00380) 6.06239 (0.00136) 4.08988 (0.00072)

0.8 2.73171 (0.00036) 6.97263 (0.00170) 4.28543 (0.00078) 3.47925 (0.00055)
2.75 1.25 0.4 5.17591 (0.00106) 29.9503 (0.01611) 12.9248 (0.00446) 7.80198 (0.00203)

0.6 4.54102 (0.00085) 18.8402 (0.00796) 9.32315 (0.00269) 6.75864 (0.00162)

[scenario (iii)]
1.25 0.80 0.0 188.331 (0.25777) 334.483 (0.61082) 291.345 (0.49644) 253.926 (0.40383)

0.2 145.347 (0.17463) 299.461 (0.51735) 243.570 (0.37935) 228.726 (0.34516)
1.25 0.40 0.0 272.843 (0.44985) 149.737 (0.18262) 146.297 (0.17634) 164.091 (0.20956)

0.2 244.688 (0.38197) 138.287 (0.16203) 133.019 (0.15284) 164.154 (0.20968)
1.75 0.80 0.0 32.9551 (0.01863) 228.114 (0.34377) 107.115 (0.11034) 53.6783 (0.03896)

0.2 29.7617 (0.01596) 197.066 (0.27594) 91.2182 (0.08664) 50.8804 (0.03593)
1.75 0.40 0.0 39.8513 (0.02484) 109.695 (0.11436) 64.7556 (0.05171) 42.9409 (0.02781)

0.2 38.0109 (0.02312) 100.673 (0.10051) 59.3872 (0.04538) 42.9464 (0.02781)
2.25 0.80 0.0 12.6149 (0.00430) 96.9783 (0.09501) 38.2198 (0.02332) 19.1926 (0.00819)

0.2 11.9708 (0.00396) 85.3480 (0.07838) 34.4474 (0.01992) 18.6352 (0.00783)
2.25 0.40 0.0 14.2953 (0.00521) 54.9371 (0.04035) 26.9594 (0.01374) 16.6700 (0.00660)

0.2 13.9168 (0.00500) 50.9571 (0.03602) 25.3424 (0.01250) 16.6127 (0.00656)
2.75 0.80 0.0 6.96777 (0.00170) 42.6784 (0.02755) 17.9914 (0.00742) 9.87401 (0.00294)

0.2 6.76649 (0.00162) 39.0199 (0.02406) 16.8230 (0.00669) 9.71524 (0.00287)
2.75 0.40 0.0 7.63496 (0.00197) 27.7384 (0.01434) 13.9041 (0.00499) 8.92949 (0.00251)

0.2 7.52037 (0.00192) 26.1925 (0.01315) 13.2982 (0.00466) 8.90093 (0.00250)
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Table 5. ARLs and their standard errors (in parentheses) of the control
charts under study for n = 10 when Σ − Σ0 is not positive semidefinite.

p = 2 n = 10

∆1 ∆2 ρ One-sided
Two-sided

LRT Modified-LRT TB-decomposed

[scenario (i)]
1.00 1.00 0.2 188.754 (0.25864) 246.959 (0.38731) 214.445 (0.31330) 253.878 (0.40372)

0.4 70.5451 (0.05883) 87.7278 (0.08170) 67.5256 (0.05508) 91.8554 (0.08755)
0.6 31.7797 (0.01763) 22.6752 (0.01056) 18.2046 (0.00755) 26.8080 (0.01362)
0.8 17.2348 (0.00694) 4.32312 (0.00079) 3.99955 (0.00069) 6.36128 (0.00147)

[scenario (ii)]
1.25 1.00 0.2 61.1838 (0.04747) 207.316 (0.29778) 130.295 (0.14816) 116.427 (0.12509)

0.4 29.8339 (0.01602) 67.5279 (0.05508) 44.0444 (0.02890) 49.7551 (0.03474)
1.75 1.00 0.2 12.1489 (0.00406) 50.8978 (0.03595) 27.7528 (0.01435) 20.8225 (0.00927)

0.4 8.69253 (0.00241) 24.1776 (0.01164) 15.0450 (0.00564) 14.2149 (0.00517)
2.25 1.00 0.2 4.90663 (0.00097) 15.2086 (0.00573) 9.32091 (0.00269) 7.22240 (0.00180)

0.4 4.15243 (0.00074) 9.91563 (0.00296) 6.66748 (0.00159) 6.02859 (0.00135)
2.75 1.00 0.2 2.89654 (0.00040) 6.88811 (0.00167) 4.71271 (0.00091) 3.83956 (0.00065)

0.4 2.64381 (0.00034) 5.30567 (0.00110) 3.86417 (0.00065) 3.48773 (0.00055)
1.25 1.75 0.4 6.62287 (0.00157) 21.2003 (0.00953) 12.7507 (0.00437) 10.2350 (0.00311)

0.6 4.70316 (0.00091) 8.84590 (0.00248) 6.29042 (0.00145) 6.05743 (0.00136)
1.75 1.75 0.6 3.07321 (0.00044) 6.12474 (0.00139) 4.42479 (0.00082) 4.15187 (0.00074)

0.8 2.46398 (0.00030) 2.74413 (0.00036) 2.32802 (0.00027) 2.47990 (0.00030)
1.75 2.25 0.6 2.25522 (0.00025) 4.19399 (0.00075) 3.16148 (0.00046) 2.88415 (0.00040)

0.8 1.92579 (0.00019) 2.28804 (0.00026) 1.97142 (0.00019) 2.01208 (0.00020)
2.25 2.25 0.6 1.84106 (0.00017) 3.23234 (0.00048) 2.51333 (0.00031) 2.30113 (0.00026)

0.8 1.63337 (0.00013) 2.01240 (0.00020) 1.75595 (0.00015) 1.76740 (0.00015)
2.25 2.75 0.6 1.58067 (0.00012) 2.56145 (0.00032) 2.06422 (0.00021) 1.88576 (0.00018)

0.8 1.45023 (0.00010) 1.78251 (0.00016) 1.58087 (0.00012) 1.56706 (0.00012)
2.75 1.25 0.4 2.42056 (0.00029) 5.19164 (0.00106) 3.71100 (0.00061) 3.24293 (0.00049)

0.6 2.13809 (0.00023) 3.52038 (0.00056) 2.76432 (0.00037) 2.68286 (0.00035)

[scenario (iii)]
1.25 0.80 0.0 137.158 (0.16004) 232.080 (0.35279) 185.797 (0.25257) 169.887 (0.22078)

0.2 95.6220 (0.09302) 161.147 (0.20393) 122.341 (0.13476) 136.195 (0.15836)
1.25 0.40 0.0 190.506 (0.26225) 37.5143 (0.02267) 37.5309 (0.02268) 46.3011 (0.03116)

0.2 165.199 (0.21169) 31.3924 (0.01731) 31.1212 (0.01708) 44.0131 (0.02887)
1.75 0.80 0.0 16.3332 (0.00640) 57.1911 (0.04287) 33.0358 (0.01870) 23.9667 (0.01149)

0.2 14.3968 (0.00527) 44.1376 (0.02899) 26.4527 (0.01335) 21.8864 (0.01000)
1.75 0.40 0.0 19.0766 (0.00811) 17.1791 (0.00691) 13.2818 (0.00465) 12.5253 (0.00425)

0.2 18.0272 (0.00744) 14.9439 (0.00558) 11.7222 (0.00384) 12.1337 (0.00405)
2.25 0.80 0.0 14.3968 (0.00527) 44.1376 (0.02899) 26.4527 (0.01335) 21.8864 (0.01000)

0.2 5.36199 (0.00112) 13.8391 (0.00496) 8.97365 (0.00253) 7.36641 (0.00186)
2.25 0.40 0.0 6.23301 (0.00143) 7.48878 (0.00191) 5.75069 (0.00125) 5.21777 (0.00107)

0.2 6.06873 (0.00137) 6.84196 (0.00165) 5.32961 (0.00111) 5.10552 (0.00103)
2.75 0.80 0.0 3.15201 (0.00046) 7.01277 (0.00172) 4.89211 (0.00097) 3.97254 (0.00068)

0.2 3.05875 (0.00044) 6.44060 (0.00150) 4.57939 (0.00087) 3.87765 (0.00066)
2.75 0.40 0.0 3.35417 (0.00051) 4.18256 (0.00075) 3.35480 (0.00051) 3.06708 (0.00044)

0.2 3.30258 (0.00050) 3.93561 (0.00067) 3.19140 (0.00047) 3.01726 (0.00043)
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• For fixed n, ∆1, and ∆2, stronger correlation enhanced detecting power for
each of the charts. However, the improving rates were different across the
charts. To see this, we highlight in Tables 4 and 5 the cases where the
one-sided chart no longer leads; there the improving rate of the one-sided
chart may not be as large as, say, that of the two-sided Modified-LRT chart,
because it starts losing its leading status when ρ gets too large. Nonethe-
less, the number of highlighted cases is not many. Also by comparing the
highlighted cases between Tables 4 and 5, we find that the effect of n is
similar. That is, while the detecting power increases for all charts as n

increases, the improving rate of the proposed chart is the slowest. There
are some cases that the proposed chart leads for n = 5, but not for n = 10.

• Scenario (iii) has one variance decreased while the other is increased from
the in-control case. It is noted that when one of the variances decreases
while keeping all other parameters fixed, the detecting power of the one-
sided chart drops while that of the other charts increases; the one-sided chart
is designed for detecting dispersion increases only and hence the power of the
chart gets lower as the size of decrease gets larger. On the other hand, since
the other charts are based on two-sided tests, they gain more power as the
size of decrease gets larger. This can be seen clearly from Figures 1−2 where
the ARL1 values for ∆1 = 1.25, 1.75, 2.25, 2.75, ∆2 = 0.4, 0.6, 0.8, ρ = 0, 0.2
are displayed, respectively, for n = 5 and n = 10. For fixed n, ∆1, and ρ, the
ARL1 of the proposed chart declines as the extent of decrease in ∆2 reduces
from 0.4 to 0.8, while those of the other three charts all trend up (with that
of the two-sided LRT chart being the largest). Also, for fixed n and ρ, the
ARL1 curve of the proposed chart gets flatter as ∆1 increases, since the
increase of ∆1 is offsetting the decrease of ∆2. For the three cases that the
dispersion seems “decreased”, (∆1, ∆2) = (1.25, 0.4), (1.75, 0.4), (2.25, 0.4),
the proposed chart still has better power than others for the last two cases.
While this seems a bit odd, the power does depend on the relative strength
between the conflicting “forces” of “increase” and “decrease”.

5. Examples

In this section, the application of the proposed control chart is illustrated
with a semiconductor example. In addition, two simulated examples are pre-
sented to demonstrate the better detecting power of the one-sided control chart
over the existing two-sided control charts when process dispersion increases.
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Figure 1. The ARL1 values for one-sided (◦), two-sided LRT (∇), two-sided
Modified-LRT (4), and TB-decomposed (∗) control charts for n = 5 in
scenario (iii).

5.1. A semiconductor example

Data related to a metal layer process for the semiconductor element of a wafer
were taken from a semiconductor company in Taiwan. The two quality character-
istics monitored are “after-develop-inspection-critical-dimension (ADICD)” and
“after-etch-inspection-critical-dimension (AEICD)”; these values are strongly re-
lated to the conductivity. The two dimensions are measured at five points on
each wafer after the develop-action and etch-action, respectively. Because the five
measurements on the same wafer are likely to be correlated, we take the average of
them as the representative of a wafer; averages of ADICD and AEICD of the same
wafer are denoted by X1 and X2, respectively. Note that X1 and X2 are corre-
lated and write X = (X1, X2)′. Fifty random samples, each of size 5, were taken

from the in-control process. The sample mean was ¯̄X =
(

0.79966
0.85744

)
and the
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Figure 2. The ARL1 values for one-sided (◦), two-sided LRT (∇), two-sided
Modified-LRT (4), and TB-decomposed (∗) control charts for n = 10 in
scenario (iii).

sample covariance matrix was S = (50 × 5 − 1)−1
50
Σ

i=1

5
Σ

j=1
(Xij − ¯̄X)(Xij − ¯̄X)′ =(

3.55462 × 10−4 1.30949 × 10−4

1.30949 × 10−4 4.86645 × 10−4

)
. The sample correlation coefficient between

the 250 X1’s and X2’s is ρ̂ = 0.32244. Since we assume Σ0 is known, we treat S

as the in-control process covariance matrix Σ0.
For p = 2, n = 5, and α = 0.0027, as given before, the one-sided, two-sided

LRT, two-sided Modified-LRT, and TB-decomposed control limits were 8.04116,
22.68151, and 17.67692, and 14.15625, respectively. We used these control limits
to monitor another 25 samples, each of size 5, taken on-line from the process.
The control charts are displayed in Figure 3. There the 7th, 10th, 12th, and
17th samples exceed the control limit of the one-sided control chart, while the
10th, 12th, and 17th samples exceed the control limits of the TB-decomposed
control chart, the 10th and 12th samples exceed the control limits of the two-
sided modified-LRT control chart, and only the 10th sample exceeds the control
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Figure 3. One-sided, two-sided LRT, two-sided Modified-LRT, and TB-
decomposed control charts on 25 new samples of the semiconductor example;
the one-sided control chart outperforms the other three control charts.

limit of the two-sided LRT control chart. This result matches the general obser-
vations made on the ARL1 performances of the four charts in Subsection 4.3. In
particular, this shows the one-sided control chart to be more sensitive than the
other three control charts.

By treating ¯̄X as the in-control mean, as a mean chart, the Hotelling T 2 chart
of the 25 new samples is presented in Figure 4. The control limit is χ2

2(0.9973) =
11.82901. Three points (7th, 12th, and 18th) exceed the control limit. Among
these three points, the 12th point was also detected by all the dispersion charts
and the 7th point was detected only by the proposed chart.

5.2. Simulated examples

Consider the example of the previous subsection. Assume the random vec-
tor X from the in-control process is distributed as Np(µ0,Σ0) with µ0 = ¯̄X
and Σ0 = S. We simulated some in-control data and out-of-control data to
investigate the effectiveness of the proposed control chart.
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Figure 4. The Hotelling T 2 control chart on 25 new samples of the semicon-
ductor example.

60 samples, each of size 5, were generated. The first ten and the 31st to 40th
samples were from the in-control process, the 11th to 30th samples were from
Np( ¯̄X,Σ1), and the 41st to 60th samples were from Np( ¯̄X,Σ2) with Σ1 ≥ Σ0

and Σ2 ≥ Σ0. Let

Σ1 =
[√

∆1 0
0

√
∆2

]
Σ0

[√
∆1 0
0

√
∆2

]
and Σ2 =

[√
∆′

1 0
0

√
∆′

2

]
Σ0

[√
∆′

1 0
0

√
∆′

2

]
,

where ∆1, ∆2, ∆′
1, and ∆′

2 are all greater than 1. Two scenarios were considered
for Σ1 and Σ2: (i)(∆1, ∆2) = (1.75, 2.25) and (∆′

1, ∆
′
2) = (1.75, 1), and (ii)

(∆1, ∆2) = (2.25, 2.25) and (∆′
1,∆

′
2) = (1.75, 1.75).

Figure 5 (6) depicts the one-sided, two-sided LRT, two-sided Modified-LRT,
and TB-decomposed control charts for scenario (i) ((ii)). It is striking to observe
that the one-sided control chart effectively picks, respectively, 4 (6) and 1 (3)
out-of-control points from the first and the second out-of-control regions, while
the two-sided LRT control chart does not detect any for either scenario. TB-
decomposed (two-sided Modified-LRT) picks 3 (1) out-of-control points from the
first and none (none) from the second out-of-control region for scenario (i); and
picks 4 (2) points from the first and 2 (0) points from the second out-of-control
region for scenario (ii). The figures also confirm that the first out-of-control
region is easier to detect than the second, and that scenario (ii) is easier to
detect than scenario (i), as expected.

6. Conclusions

In this paper, assuming the in-control covariance matrix Σ0 is known, we
have constructed a control chart for Phase II on-line monitoring based on the
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Figure 5. One-sided, two-sided LRT, two-sided Modified-LRT, and TB-
decomposed control charts for scenario (i) of the simulated example.

one-sided likelihood ratio test; this chart is particularly sensitive in detecting
dispersion increases for multivariate processes. The control limit can be obtained
by the Monte Carlo method. It is shown that the control limit does not depend
on µ0 and Σ0. For practitioners, control limits of various settings are given in
Table 1. For the settings not covered in the table, a MATLAB program for
computing them is provided at our website. A performance study showed that,
in terms of the average run length, the proposed control chart outperforms the
three existing control charts under study when process dispersion increases. The
applicability and effectiveness of the proposed chart are illustrated through a
semiconductor example and two simulated examples.

Although it is important to detect dispersion increases sooner so as to prevent
producing more defective or substandard product items, we emphasize that other
kinds of dispersion changes are important as well. Thus the proposed control
chart should be used as a supplement to the standard monitoring procedures
rather than as a substitute.

The proposed control chart is a Shewhart-like chart. It is well known that
EWMA and CUSUM charts are more sensitive to small changes. An EWMA
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Figure 6. One-sided, two-sided LRT, two-sided Modified-LRT, and TB-
decomposed control charts for scenario (ii) of the simulated example.

chart for effective monitoring of dispersion increases will be studied in another
paper.
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Appendix. Proof of Theorem 1

The likelihood function of n observations, Xt1, . . . , Xtn, is

L(µ, Σ) = (2π)−pn/2|Σ|−n/2 exp
{
−1

2
n
Σ

j=1
(Xtj − µ)′Σ−1(Xtj − µ)

}
. (A.1)

To maximize L(µ, Σ), we first note that µ̂ ≡ X̄t is the MLE of µ. Since Σ0 is
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known, rewrite the log likelihood function of (A.1), concentrated with respect to
µ̂=X̄t, as

`(µ̂, Σ) = −pn

2
log 2π − n

2
log |Σ| − n

2
tr

[
StΣ−1

]
. (A.2)

Let Θ ≡ Σ − Σ0. Assume that rank(Θ) = k, 0 ≤ k ≤ p. Since Θ is sym-
metric and positive semidefinite, from Theorem 4.14 of Schott (2005) there
exists a nonsingular matrix Γ such that Θ = ΓDςΓ′ and Σ0 = ΓΓ′, where
Dς = diag(ς1, . . . , ςp) with ς1 ≥ · · · ≥ ςk > ςk+1 = · · · = ςp = 0 being
the roots of |Θ − ςΣ0| = 0, by the assumptions that Σ0 is positive definite
and rank(Θ) = k. Let δ1 ≥ · · · ≥ δp be the roots of |Σ − δΣ0| = 0. Since
|Σ − δΣ0|=|Θ − (δ − 1)Σ0| = 0, we have δi = ςi + 1, i = 1, . . . , p. Let Dδ =
diag(δ1, . . . , δp). Then Dδ = Dς + Ip with δ1 ≥ · · · ≥ δk > δk+1 = · · · = δp = 1
and Σ = ΓDδΓ′. Hence, |Σ| = |ΓDδΓ′| = |Σ0||Dδ|. Similarly, there ex-
ists a nonsingular matrix Z such that St = ZDdZ

′ and Σ0 = ZZ ′, where
Dd = diag(d1, . . . , dp) with d1 ≥ · · · ≥ dp > 0 being the roots of |St − dΣ0| = 0.
Then tr(StΣ−1) = tr[(Γ−1Z)Dd(Γ−1Z)′D−1

δ ]. Substituting these results into
(A.2), we have the log likelihood function, concentrated with respect to µ̂=X̄t,

`(Dδ,Γ) = −pn

2
log 2π − n

2
log |Σ0| −

n

2
log |Dδ| −

n

2
tr

[
(Γ−1Z)Dd(Γ−1Z)′D−1

δ

]
.

(A.3)
Since ΓΓ′ = ZZ ′, we have Ip = Γ−1ZZ ′Γ′−1 = (Γ−1Z)(Γ−1Z)′. Thus Γ−1Z is
an orthogonal matrix. By a theorem of Von Neumann (1937) (stating that, for Q

orthogonal and Ds and Dt diagonal with positive elements, min
Q

tr(D−1
s QDtQ

′) =

tr(D−1
s Dt)), we obtain that min

Γ−1Z
tr[(Γ−1Z)Dd(Γ−1Z)′D−1

δ ] = tr(DdD
−1
δ ). There-

fore, maximizing `(Dδ,Γ) in (A.3) is reduced to maximizing

`(Dδ) = −pn

2
log 2π − n

2
log |Σ0| −

n

2
log |Dδ| −

n

2
tr(DdD

−1
δ )

= −pn

2
log 2π − n

2
log |Σ0| −

n

2

p

Σ
i=1

(log δi +
di

δi
) (A.4)

with respect to δ1, . . . , δp. Note that, for fixed di, log δi + di/δi reaches its min-
imum at δi = di. Let δ = (δ1, . . . , δp)′. Then the maximizer of `(Dδ) over
{δ | δ1 ≥ · · · ≥ δk > δk+1 = · · · = δp = 1} is δ = (d1, . . . , dk∗ , 1, . . . , 1)′, where
k∗ = min (k, p∗), with p∗ the number of di > 1.

To simplify notation, write max
µ,Σ

L(µ,Σ) for given k as L∗(k∗). Then, after

some simple algebra, the maximum likelihood function of (A.1) can be rewritten
as

L∗(k∗) = (2π)−pn/2e−pn/2|Σ0|−n/2 k∗

Π
i=1

d
−n/2
i

p

Π
i=k∗+1

exp
[
−n

2
(di − 1)

]
.
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It is trivial to show that L∗(k∗) is nondecreasing in k∗. Then the LRT
statistic for testing (1.1) is

max
H0

L∗(k∗)

max
H1

L∗(k∗)
=

L∗(0)
L∗(p∗)

=


p∗

Π
i=1

{di exp [−(di − 1)]}n/2 , for p∗ > 0

1 , for p∗ = 0
.
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