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Abstract—Goal: A brain-computer interface (BCI) provides a
way to translate the motion intentions of human using brain sig-
nals such as electroencephalogram (EEG) into control commands.
EEG signals are highly subject specific and non-stationary. One
of the most challenging tasks is to classify motion intentions since
the recorded EEG signals have inherent non-stationarities which
are due to changes in the signal properties over time within as
well as across sessions. Thus it becomes difficult to achieve a
stable operation of BCI. Method: We present a novel filtering
method based on the multivariate empirical mode decomposition
(MEMD) using subject independent BCI (MEMD-SI-BCI) for
classification of motor imagery (MI) based EEG signals to
achieve enhanced BCI. A subject independent BCI can be used
immediately by the new user without using the user’s training
data. The MEMD method helps to utilize the cross channel
information and enhance localization properties. It decomposes
multichannel EEG signals into a set of multivariate intrinsic mode
functions (MIMFs). These MIMFs can be considered narrow-
band, amplitude and frequency modulated (AM-FM) signals. The
statistical property, namely, mean frequency measure of these
MIMFs has been used to combine these MIMFs to compute the
enhanced EEG signals which have major contributions due to
μ and β rhythms over the motor cortex region. The objective
of the proposed method is to filter EEG signals before feature
extraction and classification to enhance the features separability
and ultimately the BCI task classification performance. The
common spatial pattern (CSP) feature has been computed from
the enhanced EEG signals and has been used as a feature set
for classification of left hand and right hand MIs using a linear
discriminant analysis (LDA) based classification method. Results:
We have achieved an improvement of >11% in the evaluation
stage using the MEMD-SI-BCI method when compared with
SI-BCI. Significance: This study helps to develop BCI systems
with intuitive motor imaginations, thus facilitates broad use of
noninvasive BCIs. We have evaluated our method on publicly
available BCI competition IV dataset 2A and have obtained
improved performance.

Index Terms—Brain-computer interface (BCI); empirical mode
decomposition (EMD); common spatial pattern (CSP); linear
discriminant analysis (LDA) classifier.

I. INTRODUCTION

A brain-computer interface (BCI) provides an alternate

means of communication for people suffering from neuro-

logical impairments [1]. It enables them to interact with the

external environment by sending commands to computer using

their brain activity measured by e.g. electroencephalogram

(EEG) signals. It has worked as promising tool for healthy

people and disabled people such as P300 spellers and video

games [2]. The BCI technology has many applications in

the biomedical engineering and neuroprosthetics [3], [4]. In

neurophysiology, motor intention shows enhancement (ERS:

Event-Related Synchronization) or attenuation (ERD: Event-

Related Desynchronization) of rhythmic activity in the specific

frequency bands of μ rhythm (8−13 Hz) and β rhythm (14−30
Hz) over the sensorimotor cortex [1], [5]. This phenomenon is

known as motor imagery (MI) response in frequency bands. It

can be explained as the mental rehearsal of a motor act without

actual execution of movement [1]. In BCI research community,

EEG based BCI has received attention due to high temporal

resolution, the ease of use and low cost when compared to

other non-invasive techniques available for measuring brain

activity, such as Magnetoencephalography (MEG), Positron

emission tomography (PET) scans. But, it suffers from serious

challenges such as non-stationarity, low signal to noise ratio

(SNR), highly subject specific data [6], [7] and artifacts such

as electrooculography (EOG) and electromyography (EMG)

and power line. The inherent non-stationarity present in the

recorded EEG signals makes the classification of motion

intensions one of the demanding tasks. Another major issue

of MI based BCI is that they are subject specific. The process

involves recording of EEG signals and training for each of the

new subject, which is very time consuming process.

Recently, empirical mode decomposition (EMD) based fil-

tering has been proposed [8] using the mean frequency mea-

sure of intrinsic mode functions (IMFs) in order to obtain

the enhanced EEG signals for BCI. Multivarite version of

EMD (MEMD) has been studied [9] to account for inherent

non-stationarity and utilize correlation information present in

multichannel EEG signals. The technique exploring the self-

organizing fuzzy neural network has been studied in order

to achieve the higher classification accuracy in MI tasks in

motor imagery based brain computer interface (MI-BCI) [10].

This paper extends our previously proposed single channel

EMD based filtering and presents the design of a novel multi

channel MEMD filtering based subject independent (SI)-BCI

by training the system on EEG data from multiple subjects.

The trained model has been used to solve the two-class

classification problem, namely, left and right hand MIs. It

should be noted that the MEMD method is adaptive data driven

method by nature and highly suitable for analysis of non-

linear and non-stationary signals like EEG. It provides a set
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of IMFs which can be considered as narrow-band amplitude

and frequency modulated (AM-FM) signals. The process is

two-fold, first we combine all of the data from several users

to create training set and then apply MEMD based filtering to

utilize the cross channel information present in the channels.

There are several variant of common spatial pattern (CSP)

which have been explored by different research groups [11],

[12]. The mean frequency of these IMFs is used to obtain

enhanced EEG signals corresponding to μ and β rhythms.

The CSP features have been computed from the enhanced

EEG signals. Further, a linear discriminant analysis (LDA)

classifier has been used to classify the feature set into left and

right hand MIs. A block diagram depicts the proposed method

in Fig.1. The remainder of the paper is organized as follows:

Section II describes the details about the BCI competition

IV dataset 2A. Section III presents the brief introduction of

MEMD. Section IV discusses about the CSP feature. Section V

provides details of the LDA classifier and section VI discusses

about the results obtained using the proposed methodology and

section VII concludes this paper.

II. BCI COMPETITION IV DATASET 2A DESCRIPTION

The proposed method has been investigated on the BCI

competition IV dataset 2A [13]. This dataset consists of

EEG signals performing four different motor imagery tasks:

movements of the left hand, right hand, feet, and tongue from

nine healthy subjects. The dataset contains two sessions, one

for training and one for evaluation. The sessions were recorded

on different days for each of the subjects. Each session

was recorded with 22 EEG channels and 3 monopolar EOG

channels (with left mastoid serving as reference) and includes

288 trials of data (72 for each of the four motor imagery

tasks). The EEG signals were bandpass filtered between 0.5

Hz and 100 Hz and sampled at the sampling rate of 250 Hz.

An additional 50 Hz notch filter has been applied to suppress

line noise. The time interval selection for the motor imagery

classification is a key factor that helps us to reduce the error

rates. In this paper, we have extracted CSP feature from the

enhanced EEG signals from fifteen channels as shown Fig.

2 between 0.5 s and 3 s after onset of the visual cue in the

training step, where as competition winner [11] extracted from

0.5 s and 2.5 s after onset of the visual cue in the training step.

Refer to Tangermann et al. [13] for further details on the BCI

competition IV dataset 2A.

III. MULTIVARIATE EMPIRICAL MODE DECOMPOSITION

(MEMD): A REVIEW

EEG signals tend to have low SNR and may suffer from

interference from EMG, EOG, or electrosurgical units (ESUs)

[1]. The signals of interest corresponding to μ and β rhythms

may have contaminating noise in the EEG signal, may cause

erroneous results. Hence, a method is required that can filter

out noise and does not undermine the original signal. Huang

et al. proposed EMD [14], that can decompose the original

signal into multiple IMFs, expressed as follows:

X(t) =
m∑

j=1

Cj(t) +RSm(t) (1)

where X(t) is the original signal in time domain, Cj(t)
is jth IMF, and RSm(t) is the the residue. Hence, we can

select the IMFs combination to re-construct the signal of our

interest and then, discard the remaining IMFs which contribute

to noise and other artifacts. However, single channel EMD

suffers from the mode mixing problem. An ensemble empirical

mode decomposition (EEMD) technique has been proposed

in [15] to overcome this problem. Unfortunately, EEMD is a

time-consuming method and may add noise into the original

signal. Further, Rehman and Mandic [9] have proposed an

multivariate version of improved EMD method utilizing the

cross channel information called MEMD. Later, in 2013 they

proposed a noise-assisted MEMD (N-A MEMD) method [16]

, which is not only suitable for dealing with multichannel

signals, but also solves the problem of mode mixing using

white Gaussian noise added to different channels. Hence,

the N-A MEMD method has been used in this paper. In

computation of N-A MEMD, the mean M(t) is calculated

by means of the multivariate envelope curves, expressed as

follows [16]:

M(t) =
1

P

K∑

P=1

eθP (t) (2)

where eθP (t) are the multivariate envelope curves for whole

set of direction vectors and P is length of the vectors. Then,

we compute the candidate IMF R(t) by R(t) = X(t)−M(t).
If the candidate IMF satisfies the stoppage criterion, the

candidate IMF becomes the multivariate IMF. If not, the

input X(t) will equal the remainder R(t) and compute the

remainder again. The whole process is repeated until all of

the multivariate IMFs are extracted. Regarding the stoppage

criterion, it is similar as in the original EMD proposed by

Huang et al. [14] using decomposing signal until the signal

becomes monotonic.

IV. COMMON SPATIAL PATTERN (CSP)

In this stage, the most widely used feature corresponding

to motor imagery (MI) based BCI has been extracted using

CSP algorithm from fifteen channels as shown in Fig. 2. It

aims at learning spatial filters which maximizes the variance

of spatially filtered signals in one mental imagery task and

simultaneously, minimizes the variance for other mental im-

agery task. The recorded EEG scalp potentials tend to have

very poor spatial resolution because of volume conduction.

The classification of EEG signals becomes difficult, if other

sources produce strong signals and the signal of interest is

weak in the specific frequency range [17].

As discussed in introduction, the CSP algorithm has shown

promising results in calculating spatial filters for detecting

(ERD/ERS) [17],[11]. It is a data-driven supervised decom-

position of signals parameterized by a projection matrix



Fig. 1: Block diagram of the proposed method.

Fig. 2: Headplot showing all the channels locations

W ∈ �Ch×Ch where Ch represents the number of selected

channels. W projects the single trial EEG signal E ∈ �Ch×T

in the original sensor space to Z ∈ �Ch×T , which is present

in the surrogate sensor space, as follows:

P = W × E (3)

where E is a Ch × T EEG measurement data of a single

trial, and T is the number of time points per channel. The

rows of W are the spatial filters and the columns of W−1 are

the common spatial patterns. The spatially filtered signal P
given in (3) maximizes the difference in the variance of the

two classes. A CSP analysis is applied in order to obtain an

effective discrimination of mental states that are characterized

by ERD/ERS effects. However, the variances corresponding to

only a small number of spatial filters are generally used. The

m first and m last rows of P i.e. Pt , t ∈ {1, 2, ..., 2m} from

the feature vector xt given in (3) is input to a classifier. In

this study, we have considered m = 4 and m = 5. The CSP

features of the single trial are then given by:

xt = log
var(Pt)∑m

i=1 var(Pt(:, i)) + var(Pt(:, Ch+ 1− i)
(4)

Then, the CSP based features are extracted to form an input

features for LDA classifier.

V. LINEAR DISCRIMINANT ANALYSIS

In this paper, we have implemented an LDA classifier which

is commonly implemented in EEG-based BCI applications.

The LDA classifier tries to reduce the dimensionality and

simultaneously protects most of the class discrimination infor-

mation. Suppose, we have a set of two classes denoted by cls1
and cls2. Then, we classify the n-dimensional sample points

x = {x1, x2, x3, ..., xn}, m1 samples to the class cls1, and

m2 samples to the class cls2. In this method, we try to enact

a line y = wtx from the set of all possible lines. The selected

line maximizes the discrimination between the two available

classes. For obtaining a good projection vector, we require to

measure the distance between the two classes chosen for the

study. The mean vector of each class in x-space and y-space

is represented by following equations [18]:

υi =
1

Ni

∑

xεwi

x, (5)

and ϑi =
1

Ni

∑

yεwi

y =
1

Ni

∑

yεwi

wtx = wtυi (6)
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Fig. 3: The EEG signal from C3, C1, Cz, C2 and C4 of the trial 1 of A01T with the first nine IMFs generated for the left

hand movement.
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Fig. 4: The EEG signal from C3, C1, Cz, C2 and C4 of the trial 1 of A01T with the first nine IMFs generated for the right

hand movement.



The objective function is expressed as the distance between

the two projected means. It can be defined as follows [18]:

J(w) = |ϑ1 − ϑ2| = |wt(υ1 − υ2)| (7)

However, the distance measured between projected means

may not always be a good measure because the standard

deviation between classes has not been considered. In order to

overcome this restriction, an enhancement of LDA has been

proposed and is known as Fishers LDA classifier. It determines

a decision boundary or most likely a hyperplane in the feature

space to classify the features in to distinct classes. It finds

out the separation boundary between two given distributions

in terms of the ratio of two group variances as given below

[18], [19]:

J(w) =
σ2

between

σ2
within

=
wt(υ1 − υ2)

2

wtS1w + wtS2w
(8)

where υ1, υ2 are the mean of the classes and S1, S2 are

the variances of the feature distributions between two classes

w1, w2 respectively. The maximum separation between two

classes can be shown by (9) as [18]:

w∗ = (S1 + S2)
−1

(υ1 − υ2) (9)

The w∗ is weight vector which provides optimum direc-

tion of projection of the data. In Fishers LDA, the decision

boundary uses following equation to classify the feature vector

D(m) as:

P (m) = D(m)wt + b (10)

where b is the bias or threshold. The features are assigned

to one of the classes based on the sign of the P (m).

VI. RESULTS AND DISCUSSION

The proposed MEMD-SI-BCI based filtering has been eval-

uated on publicly available BCI competition IV dataset 2A

[13]. The dataset contains EEG signals from nine healthy

subjects, denoted by A01-A09. Each subject contains one

training and one evaluation session. In this study, we have

considered EEG signals recorded from fifteen channels in Fig.

2 related to the sensorimotor areas from all nine subjects to

demonstrate the effectiveness of the proposed method. The

data were recorded from twenty bipolar channels and three

EOG channels with a sampling frequency of 250 Hz.

There are seventy two number of trials provided in each

session. Each trial involved a paradigm period of 7.5 second

[30]. In training stage, a single session namely ∧T has been

used. For the evaluation phase, we have used one session

namely, ∧E for computing the accuracy in the classification of

left and right MI EEG signals. It should be noted that, the ∧

in the session name denotes the subject number which ranges

from A01 to A09.

In order to compute the classification accuracy (in %) in

the training stage, we have applied 5-fold cross validation. In

the evaluation session, the model has been trained with LDA

classifier using 100% data from the A0βT and evaluated on

the 100% data for the session, A0βE, where β denotes the

subject number. Since the MI task starts at 3 second, we have

extracted the feature in both of the training and evaluation

sessions corresponding to EEG signals from 0.5 second to 2.5

second time-interval after the start of MI paradigm. We have

computed the classification accuracy using LDA classifier for

two class classification of the left and right hand MI EEG

signals in both training and evaluation sessions for each of

the subjects.

In order to explain the working of the MEMD method, we

have considered two single trial EEG signals from the dataset

A01T fifteen channels signals to obtain IMFs but we have

shown the plot for five channels. The left MI EEG signal from

channels and its first nine IMFs are shown in Fig. 3. Similarly,

the Fig. 4 depicts the right hand MI EEG signal from the five

channels and its first nine IMFs.

The statistical measure, namely, mean frequency has been

calculated for each multivarite IMFs of the EEG signals

from the selected fifteen channels in the motor cortex region

corresponding to left and right hand MI tasks. To achieve

enhanced EEG signals corresponding to left and right hand MI

tasks, the IMFs whose mean frequencies fall in the range 6-

24 Hz were selected. This frequency range takes into account

the μ band (8-13 Hz) and low β band (18-24 Hz). These

frequency bands have considerable importance in order to

classify left and right hand MI EEG signals. The CSP feature

is then computed for the enhanced EEG signals obtained using

the selected IMFs. In our study we have reported the results

obtained using two spatial filters m = 4 and m = 5 where m
denotes the the first m and the last m columns of spatial filter

matrix. Then, the extracted feature has been fed to as an input

feature to the LDA classifier for classification of left and right

hand MI EEG signals.

Table I presents the classification accuracy with MEMD

based filtering-SI-BCI (MEMD-SI-BCI) and with the raw

SI-BCI method for BCI competition IV dataset 2A. The

method has provided the enhanced EEG signals using subject

independent MEMD-BCI for the each of the nine subjects

in both training T and evaluation E sessions respectively. In

this work, only fifteen channels corresponding to motor cortex

have been considered of the provided twenty two channels for

obtaining the results.

Comparing the MEMD-SI-BCI results, it is clear that the

new method presented in this paper provides a significant

improvement in classification accuracy in evaluation session

of all nine subjects when compared with the with the raw SI-

BCI results. It has shown improvement >11% (p < 0.001)

in evaluation session with m = 4 and > 11% (p < 0.001)

in evaluation session with m = 5. In the training session,

since we have created generalized model for all the subjects,

there is slight improvement in the classification accuracy. The

nine of the nine subjects have shown improvement in the

evaluation stage with m = 4. A total of seven out of nine

subjects have shown highly significant improvement >10%

and the other two subjects have shown improvement >2%. On

the other hand, with m = 5, two of the subjects have shown

significant improvement of >20% and a total of seven subjects



TABLE I: CLASSIFICATION ACCURACIES USING THE PROPOSED METHOD BASED ON MEMD AND WITHOUT

MEMD STUDIED ON BCI COMPETITION IV DATASET 2A

Subject

Accuracy with MEMD-SI-BCI Accuracy with SI-BCI
Training Evaluation Training Evaluation Training Evaluation Training Evaluation

m = 4 m = 5 m = 4 m = 5
A01 70.14 91.67 72.16 92.36 68.2 69.44 68.2 68.06
A02 70.21 55.56 71.07 58.33 67.91 49.31 67.9 52.78
A03 69.22 90.97 67.45 91.67 68.36 70.83 68.14 71.53
A04 70.6 62.5 70.68 63.89 68.21 59.72 67.91 58.33
A05 68.91 61.11 71.45 59.03 68.29 49.31 68.52 49.31
A06 70.37 68.06 71.29 67.36 68.44 55.56 68.68 55.56
A07 70.29 61.11 70.37 60.42 68.3 50.69 67.98 51.39
A08 70.52 96.53 70.67 96.53 68.29 91.67 69.14 91.67
A09 65.44 65.97 67.82 66.67 67.9 54.86 68.36 56.94

Average 69.52 72.61 70.33 72.92 68.21 61.27 68.31 61.73
Std 1.64 15.79 1.62 15.81 0.19 13.95 0.41 13.45

p-value 0.034 0.001 0.005 0.001

have shown improvement in the range of >4% and <24%.

To conclude, with m = 4 and m = 5, we have achieved

improvement in all of the nine subjects in the evaluation

sessions. The p-values have been calculated using the anova2

command available in MATLAB.

VII. CONCLUSION

We have explored an application of the multivariate empir-

ical mode decomposition based filtering method using subject

independent design to achieve high performance in motor

imagery based brain-computer interface. A group of IMFs

whose mean frequencies fall in the frequency range of μ and

β rhythms have provided significant improvement in terms

of classification accuracy to classify the left and right hand

MI EEG signals when compared without using the MEMD

based filtering method. In future, it would be of interest

to propose new features based on the MEMD method and

connectivity analysis method to classify the MI EEG signals.

With the proposed method, enhanced feature separability has

been achieved using MEMD based filtering using subject

independent method resulting in low classification errors. It

has helped to reduce the performance deterioration due to

EEG non-stationarities to some extent in evaluation stage.

Adaptive classification techniques can be explored with the

present design to handle the non-stationarities more effectively

.
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