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A MULTIVARIATE EXTENSION OF HOEFFDING’S LEMMA

By HENRY W. BLocK"2 AND ZHAOBEN FaNG?
University of Pittsburgh

Hoeffding’s lemma gives an integral representation of the covariance of
two random variables in terms of the difference between their joint and
marginal probability functions, i.e.,

cov(X,Y) = [~ [* (P(X>x,Y>y) - P(X>x)P(Y>y))} dedy.

This identity has been found to be a useful tool in studying the dependence
structure of various random vectors.

A generalization of this result for more than two random variables is
given. This involves an integral representation of the multivariate joint
cumulant. Applications of this include characterizations of independence.
Relationships with various types of dependence are also given.

1. Introduction. It is well known that if a random variable (r.(r.) X has
distribution function (d.f.) F(x) with finite expectation, then

1) EX=["(1-F(x)ds— [° F(x)du.
0 -0
The extension to high-order moments is straightforward. That is, if E|X|" < oo,
@) EX" = n[j‘”x"-l(l ~ F(x))ds - [° 2" F(=) dx].
0 — o0

Hoeffding (1940) gave a bivariate version of identity (1), which is mentioned in
Lehmann (1966). Let Fy y(x, y), Fx(x), Fy(y) denote the joint and marginal
distributions of random vector (X,Y), where E|XY)|, E|X|, E|Y| are assumed
finite. Hoeffding’s lemma is

(3)  EXY- EXEY = f_°° f_°° (Fy. y(x, ¥) — Fx(x)Fy(y)} dxdy.

Lehmann (1966) used this result to characterize independence, among other
things, and Jogdeo (1968) extended Lehmann’s bivariate characterization of
independence. Jogdeo obtained an extension of formula (3) which we now give.
Let (Y,,Y,, Y;) be a triplet independent of (X, X,, X;) and having the same
distribution as (— X, X,, X;). Then

@) EX = %)X~ B)Xe = %) = [ [ [ Ky, uy, ug) duy duy d,
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1804 H. W. BLOCK AND Z. FANG

where
K (uy, uy, u3) = {P(B,A,4;) + P(B,)P(A,A,)
_P(Az)P(BlAs) - P(A3)P(B1A2)}
- {P(A1A2A3) + P(A;)P(A,4;)
—P(A;)P(A,A;) — P(A5)P(A\A,)}

and A;={X;<u;}, i=1,23, B, ={X, > —u,}. Jogdeo mentioned that a
similar result holds for n > 3. We give a different generalization of Hoeffding’s
lemma. Notice that expression (3) can be rewritten as

®) Cov(X,¥) = [ [” Covlxx(x), xv(»)) dxay,

where x x(x) = 1 if X > x, 0 otherwise, and that the covariance is the second-
order joint cumulant for the random vector (X, Y). In the following we extend
the results to the rth-order joint cumulant where r > 3.

2. Main results. Consider a random vector (X;,..., X,), where E|X;|” < oo,
i=1,...,r.

DEFINITION 1. The rth-order joint cumulant of (X,,..., X,) denoted by
cum(X,,..., X,) is defined by

6) am(X,...,X)=Y(-1)""Y(p- 1)!(E I X,.) (E I x,.),

JEY JEY,

where summation extends over all partitions (v,...,%,), p=12,...,r, of
{1,...,r}

It can be shown [see Brillinger (1975)] that cum( Xj, ..., X,) is the coefficient
of the term (i)'t, --- ¢, in the Taylor series expansion of log E(exp il]_,t;X)).
Furthermore the following properties are easy to check:

(i) cum(a,X,,...,a,X,)=a, -+ a,cum(X,,..., X,);

(ii) cum(Xj,..., X,) is symmetric in its arguments;

(iii) if any group of the X'’s are independent of the remaining X'’s, then
cum(X,,..., X,) = 0; G

(iv) for the random variable (Y}, X,,..., X,), cum(X, + ¥, X,,..., X,) =
cum(X,,..., X,) + cum(Y}, X,,..., X,);

(v) for p constant, r > 2, cum(X; + p, X,,..., X,) = cum(X,,..., X,);

(vi) for (X,,..., X,),(Y,,...,Y,) independent

cum(X, +Y,...,X,+Y)=cum(X,,..., X,) + cum(Y,,...,Y,);
(Vii) cum X] = EXJ, CuIn(Xj, Xj) = Val'XJ aIld Cum(Xi, X}) = COV(Xi, Xj)'

To represent certain moments by cumulants, we have the following useful
identity.
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LEmMMA 1. If E|X|™ < oo,
. . — EX, ---
) EX, X, — EX, EX,,

=Y eum(X,, ker) - cum(X,, kEr,),

where Y. extends over all partitions (v,,...,v,), p=1,...,m — 1, of {1,...,m}.

ProoF. In the case of m =2, p=m —1=1 and (7) reduces to the well
known

EX X, — EX,EX, = cam(X,, k € »;) = cov(X;, X;).
Notice that
EX, --- X, — EX, --- EX, = EX, --- X, ,X,, X,
(8) - EX, --- EX, ,EX,_.X,
+ EX, -+ EX,,_scov(X,,_1, X,,)-

Introduce the new notation Y,=X;, i=1,....m—-2, Y, =X, ,X,. By
Theorem 2.3.2 in Brillinger (1975), page 21, and induction we get (7). O

Our main result is the following.

THEOREM 1. For the random vector (X,,..., X,), r>1, if E|X||" < oo,
i=12,...,r, then

(9) c“m(Xn---,X,)=f°°

7 cam(xx(®), - xx, (x,)) dty -+

where x x(x;) = 1if X; > x;, 0 otherwise.

To prove the theorem, we need a lemma which is of some independent
interest.

LEmMA 2. If E|X, --- X,| < oo, we have

r

BX, -+ %= (077 e [ R = 5 el F)

Jj=1

(10) + 2 e(x,)e(x,) F(x )

i<j

4o +(—1)rj=1£[18(xj)} dx, --- dx,,

where e(x;) =1 if x; > C, 0 otherwise. Here x(%) represents
(Byyeees X1y X p1rees Big 13 Xip1re e s Xiy 1y Xiy s 15+ -5 Xp)- AlsO F(x(v-- ) ig
the marginal d.f. of X%, We omit the subscripts for F for simplicity when
there is no ambiguity, e.g., F(xV) is the marginal of (X,,..., X,).
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Proor. First, we have the identity
(11) xﬁj (e(x:) = I - o, 23( X0)) dix;

where I _,, .1(X;) = 1if X; < x,, 0 otherwise. Then by Fubini’s theorem

im=1

_E{/ _m_l
S AR AV {CEA R AE ) | PRy
[ LAr

+Y 1'[ e(xy)F(x;,x5) + - +(—1)’F(x)} dx, - dx,,

i<j k*i, j

Exl---x,=E{nf [e(x) s a(X)] )

T [e(2) = E (K] iy -+ i)

ez - £ [Te(xn) ()

j=1k

1=

which is just the right side of (10). O

REMARK 1. It is easy to see that (1) can be written as EX = [ _(e&(x) —
F(x)) dx, which is a special case of (10). Thus Lemma 2 is an extension of (1).

REMARK 2. Using the identity
Xn,_f nxn l[e(x) ( oox](X)] i

we can also obtain an extension of (2), i.e.,

EXM ... XM
= —]jkn e n ® e aox"’l_l...xnh_l
( ) 1 kf__w f_oo 1 k
k -
x{F(xl,..., %) = ¥ e(x,)Fx)
(12) j=1

+ ) E(xi)e(xj)F(x(i’ ”)

i<j ,
: +(—1)’*i_r11e(xi>} de, -+ dx,

where n; > 1, n, + --- +n, <r.
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REMARK 3. When the X;’s are nonnegative (12) reduces to

o0 0
EX{‘I-~-X,§‘*=/ ...fnl...nkx{a-l...xzrl
(13) — o0 0
XF(xl"”:xk)dxl e dxy,

where F(xl,...,xk) is the survivﬂ function P(X; > x;, i =1,..., k). The bi-
variate case of (13) was mentioned by Barlow and Proschan (1981), page 135.

The proof of the Theorem 1 involves routine algebra and the use of Fubini’s
theorem and Lemma 2. We have

cum(X,,..., X,)
- S -0 (E M1 %) (BT %)

JEY

= E(X,...,X.) - ZE(JQIXJ)E(JQXJ)
+ o+ (=) - DTTEX,

r

= 1 [T [ R = % ) Pa)

Jj=1

+ X &(x;)e(x;)F(x* )

i<j

,o +(-1)'j_1f[13(x,.)}dxl o dx,

: f:o{F(xj, jew)

- Y e(x,)F(x;, jE v, \ k)

kev,

_(_1)”v-+”vzf°° .

— 0

4o+ (=)™ [T els,)

JEN

x{Fai€n) = T d@)Fla,icn\ k)

ke,

+o ()™ [ elx) vy - d,

JEW

b (=0 [T T o) - R d - da,

0 —o0 =

where n, is the number of indices in »;, F(x;, j € »;) is the marginal of r.v.’s in
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v; and Fj(x) is the margmal of X;. All terms with &(x;) factors cancel and the
quantltlm 2,_1n J=2,..., p, are all equal to r. Thus

cum(X,,..., X,)

= (<07 o [7{F@) - TR, e m) G i€ m)

(0 - DTG ds, - s,
= [ {E YT e - DG e )
X -+ XF(x;, j€v,)} dry -+ da,
= - f:ocum(l — xx (%)l = xx.(x,)) dx, -+ dx,
=7 [ em(xx (), xx (2) dry - d,

The last equality follows upon using properties (i), (iii) and (iv) of the cumulant.
This completes the proof.

REMARK 4. The result of Theorem 1 gives that
o0 0
cum(X,,..., X,) = f_ . f_ cum(xxl(xl), . xXr(x,)) dx, --- dx,.
The integral can then be expressed in a variety of ways. A general form is
(—1)card Bcum(xxi(x,-), i€A;1-xx(x,), i€ B),

where A U B = {1,2,..., r}. We then have various combinations of the distribu-
tion and/or survival function in the integrand. Some examples:

(i) for A = ¢, card B = r the integrand is

(~1'{F@) = TF(x,, /< 0)F(xsi € 0,)
() - D TTEG):

(i) for B = ¢ the integrand is

F(x) - Zi(xj, JEv)F(x;,i€0,) + - +(=1)"(r - 1)! l_lLIlF_‘z(xz)

3. Applications. In some sense, the cumulant is a measure of the indepen-
dence of certain classes of r.v.’s.

The following result was shown by Jogdeo (1968). Let Fy y x(x;, x5, X3)
belong to the family .#(3), where .#(3) denotes the class of trivariate distribu-
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tions such that there exists a choice of and A;, i = 1,2, 3, such that

3
(14) P(X,Ayx,, XpA,%,, X3A3x3)A l_[ P(X;Ax;),
i=1

for all x,, x,, x5, where the A, A; each denote one of the inequalities > or <.
Then X;, X; for all i #j are uncorrelated and EX, X, X; = EX,EX,EX, if and
only if the X;’s are mutually independent.

Using Theorem 1, we get this conclusion directly. The “if” part is trivial.
Conversely, since F € .#(3) we know Fy, Xj(xi, x;) € M(2) [#(n) can be defined
similarly]. Since X; and X; are uncorrelated this implies the X;’s are pairwise
independent by Hoeffding’s lemma. Thus, using Remark 4, (9) becomes

EX,X,X, - EX,EX,EX,

= ifff:o{P(XlAlxv XA 0%y, X3A5%;5)

= P(X,A%,) P(X,8,2,) P(X505%5) } dx, dx? dx;.
Now since F € #(3) the integrand will not change sign, so that EX, X, X; =
EX,EX,EX, implies
P(X,0xy, Xp0p%5, X3A5x5) = P(X,8120) P(Xp4,%,) P(X305%5),
for all x,, x5, x; which means that the X;’s are independent.

The n-dimension extension is straightforward and is given in the following
discussion.

THEOREM 2. If Fy, . x(%,..-,%,) € M(n), then EX; --- X, =TI}_,EX,
for all subsets {i,,...,i,} of {1,...,n} if and only if X,, ..., X, are independent.

Proor. Fy  x(x,...,%,) € #(n) means FXil X,k(xi,""’xik)e*’”(k)

for any subset (i,,..., i;). By induction on n, using Theorem 1, we obtain

EX, --- X, - [1EX,

Jj=1

n
- if°° e T {P(X,.A,.x,., i=1,...,n) - 1‘[P(X,.A,.x,.)} dx, -+ d,.
-0 — o0 i=1
The integrand will not change sign, so EX, --- X, = [17_,EX; implies that the
X, are mutually independent. O

Several authors have discussed dependence structures in which uncorrelated-
ness implies independence. Among them are Lehmann (1966), Jogdeo (1968),
Joag-Dev (1983) and Chhetry, Kimeldorf and Zahed (1986).

We now give a definition from Joag-Dev (1983). Let X = (X,,..., X,,) be a
random vector, A be a subset of {1,...,n} and x = (x,,...,x,) a vector of
constants.
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DEFINITION 2. Random vectors are said to be PUOD (positive upper orthant
dependent) if (a) (which follows) holds, PLOD (positive lower orthant depen-
dent) if (b) holds and POD (positive orthant dependent) if (a) and (b) hold,
where

(a) P(X> %) > [TP(X> x),
(b) PX <x)> fIIP(X,.sx,.).

If the reverse inequalities between the probabilities in (a) and (b) hold the three
concepts are called NUOD, NLOD and NOD, respectively.

NotE. In Definition 2 in Block and Ting (1981), POD is used for what is
called PUOD in this paper.

DEFINITION 3. A vector X is said to be SPOD (strongly positiveiy orthant
dependent) if for every set of indices A and for all x the following three
conditions hold:

(c) P(X>x)ZP(Xi>xi’ieA)P(Xj>xj’ j€A°),
(d) P(X<x)>P(X;<x;,i € A)P(X; < x;, j € A°),
(e) P(X;>x,i€A, X;<x;, jEA)

<P(X;>x,i€A)P(X;<x,, j € A°).
The relationships among these definitions are as follows:

» PLOD
(15) Association = SPOD = POD N M(n).
PUOD 7

Since association, SPOD, POD, PLOD, PUOD are all subclasses of .Z(n),
Theorem 2 generalizes some results in Lehmann (1966) and it gives us another
proof of Theorem 2 in Joag-Dev (1983) as well as some new characterizations of
independence for POD random variables. Corollary 1 is the result of Joag-Dev.

COROLLARY 1. Let X,..., X, be SPOD and assume cov(X;, X;) = 0 for all
i # j. Then X,, ..., X, are mutually independent.

Proor. Since X,..., X, SPOD implies (X,,..., X,) € #(n) by Theorem 2
we need only check EX; --- X; = Hf=1EXiJ_ for all subsets {i,...,i,} of
{1,...,n}. When n =2 SPOD is equivalent to POD and uncorrelatedness
implies X, X, independent. By induction on n we may assume all subsets with
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n — 1 r.v’s are mutually independent and thus EX; --- X, = ’I_Ij?= lEX,-j for all

1<k<n-1 Hence cum(X,, k€ »,) =0, whenever 1 < card(»,) <n — 1.
So we only need to check EX, --- X, =[1?_,EX,. By Lemma 1, Theorem 1 and

j=1
because of the independence of any (n — 1) r.v.’s,

n
EX, --- X, - []1EX,
j=1

= Zcum(Xk, k (S Vl) M cllm(Xi, k (S DP)

(16) = cum(X,,..., X,)

o n
=fw ---f {P(X>x)—l_[P(XJ>xJ)}dxl"'dxn20.
) ) J=1
Similarly,

n

EX, --- X, - [1EX,
Jj=1

= E(-X,)(-X,)X, -+ X, — E(-X,)E(-X,)EX; --- EX

n

= Cllm(—Xl, _Xz, X3,..., Xn)
=f°° fw (P(—X, > %), =X, > x5, X3 > %3 -+ X, > %,,)
- — 0

—P(-X,>x,)P(—X;, > x,)P(Xy > x3) -+ P(X,>x,)} dx; -+ dx,

=f°° f°°

— 00 -0

(17)
{P(X1 < —x;, X, < —x,, X;>2x,,i=3,...,n)

~P(X, < ~x)P(X, < —x,) [| P(X, > x,-)} dx, - d,
i=3

=f_°° ”’]’°° {P(Xj< _xj’ j=1’2’ Xi>xi7i=3’--”n)

(e 2] — 00

—-P(X;< —x;, j=1,2)P(X;>x;,,i=38,...,n)} dx, -+ dx

J n

<0.

The last equality holds by the induction assumption of mutual independence and
the last inequality is due to SPOD. Combining (16) and (17) completes the
proof. O i

THEOREM 3. Let X,, X,, X; be POD and assume X;, X; for all i #j are
uncorrelated. Then X,, X,, X, are mutually independent.
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ProoF. The following two summands are nonnegative since X,, X,, X; are
POD. By Lemma 1 we then have

3
[P(Xl > x, Xy > x5, X3 > x3) — [1P(X, > x,)]
i=1

3
+ [P(X1 <x, X, <x, X;<x;) - [[P(X; < xi)]
i=1

= Cum(XX,(-”ﬁ): sz(xz): Xx:,(xa))

+ ) P(X;> xi)COV(Xx,(xj), XXk(xk))

i#j+k
+cum(1 - XXl(xl)!l - sz(xz): 1- an(xa))

+ )Y P(X;< xi)COV(Xxj(xj), XXk(xk))

i#j+k

= Z COV(XX,-(xi)! Xx,(xj))-

i)

Since X;, X; POD and cov(X;, X;) =0 we obtain cov(x x(x;), xX(x ) =
Thus P(X > x;,1=1,2,3) — l'[‘;*_ P(X > x,) =0, ie, X, X,, X, are mutually
independent. O

REMARK 5. For three r.v.’s X, X,, X; the mixed positive dependence de-
fined in Chhetry, Kimeldorf and Zahed (1986) implies POD but the converse is
not true as shown by an example in Joag-Dev (1983). Notice that since the mixed
positive dependence implies POD in Corollary 1, the SPOD can be relaxed to this
mixed condition.

THEOREM 4. Assume n = 2l + 1 is an odd positive integer and X, ..., X,

n

are POD. Then if E(X; --- X,)=EX, --- EX,, where 2 < k < 2l for any

subset {i,,..., i} of {1,...,2l+ 1}, it follows that X,,..., X, are mutually
independent.

Proor. By Theorem 2, we need only check EX, --- X, = EX, --- EX,.On
the one hand,
EX, --- X, - EX, --- EX,
=cum(X,,..., X,)

n

_f f {P(X > x;, z=1,...,n)—j]f[1P(Xj>xj)}dx1 e dxy

>0.
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On the other hand,

EX, --- X, — EX, --- EX,,
= (-)*""YE(-X,)--- (-X,) - E(-X,) -~ E(-X,)}
= (-1)*'eum(-X,,..., -X,)
= (—1)21+1f°° AR fw {P(Xl< _xt’i= 1,...,n)

n

Jj=1

1813

- T1P(X; < —xj)}dxl - dx,<0. O

REMARK 6. For n = 4 we construct in Example 1 POD r.v.’s such that any
three X,’s are independent but the X;’s are not mutually independent. This

shows that the conditions of Theorem 4 are reasonable. In Example

2 we show

that for POD r.v.’s cov(X;, X;) = 0 is not enough to give mutual independence

when 27+ 1 > 3.

ExaMpLE 1. Let X,,..., X, have the following distribution. It
check that for i+j+k, X, X; X, are mutually independent
X,..., X, are POD.

Pr
1/8
1/8
1/8
1/8
1/8
1/8
1/8
1/8
Since P(X; > 1/2, i=1,...,4) = [T*_,P(X; > 1/2) = 1/16 > 0, X,,
not mutually independent. Notice also that

P(X, <x, X, < xy, Xy> x5, X, > %)
—P(X, < %), X, < %) P(X3 > x5, X, > x4)

e

COoOr O MO KKK
OHOOHHOHJ’&
OHHMHOOOR M

O O O H O -

= cum(l - Xxl(xl)»l - sz(xz): Xx,,(xa): Xx4(x4))
= cum(xxi(xi), i=1,...,4)
4
=P(Xl>xl,i= 1,...,4) - l—IP(Xl>xl)
i=1

>0,
so these r.v.’s are not SPOD.

is easy to
and that

..., X, are
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ExamPLE 2. Let X,,...,X; have the following distribution:
X, X, X, X;| Pr
1/16
1/16
1/16
1/16
1/16
1/16
1/16
1/16
1/16
1/16
1/16
1/16
1/16
1/16
1/16
1/16
It is easy to check that this is PUOD and PLOD, thus it is POD. However
EX,X;=4/16 and EX; = 1/2 for all i, j.
In this example we can use Theorem 3 to prove that any X, X;, X, are
mutually independent since subsets of POD r.v.’s are still POD.

e

—
—
—

O H O H O FHHOOKFKOKOHRF H
O O M OHOKMFOOKHMHO

O O O H O HKMFHMHOOO MO M H =
O HHHH OO O HHOMMMOOO
O O O O OO OO HMFHKH H H H H

=]
[=

Newman and Wright (1981), using an inequality for the ch.f.’s of r.v.’s
X,,..., X,,, provided another proof for the characterization of the independence
of associated r.v.’s. This is Theorem 1 of Newman and Wright (1981). These
authors proved that if X|,..., X,, are associated with finite variance, joint and
marginal ch.f’s ¢(r,..., r,) and ¢,(r;), then

m
09 [otrn) - Tlatn)| <4 Ziminon(x, %)
J= j*

To extend this inequality, we need the following lemma.
LEMMA 3. For the r.v. (X,,..., X,,) with E|X,|™ < o0, m > 1,
cum(exp(ir,X,),...,exp(ir,,X,,))

(19) —foo ---fwi”'r rexpi’zn:rx
. . 1 m j=1jj

xcum(XXl(xl): LR Xxm(xm)) dxl e dxm’

where ry,..., 1, are real numbers and x x(x;) = 1 when X; > x;, and 0 other-
wise.
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Proor. This proof of the result is similar to that of Lemma 2. Use the
identity

exp(in X,) — 1= if_ rkexp(irkxk)(e(xk) - I(—oo,x,,](Xk)) dxy,.
Notice that

xxk(xk) forxk = O,

)-1 X;) =
8(xt) ("Uoka]( ‘) {XX,,(xk) -1 forx,<0.

After doing the obvious calculation, we obtain by property (v) (following Defini-
tion 1) of the joint cumulant that

cum(exp(iry X,,), k= 1,..., m)
= cum(exp(ir,X,) - 1, k=1,...,m)

- 20" - 0! 1 [E ] (exntinxs) )]

ke,

00 =) .m
=f ...f lrl...rmexp
— 00 — 00

SPICPERS§ v PER] | E

m
injxj)
=1

Jj=

= key
0 m
=f ~--f°°i"‘r1~-~rmexpi2rjxj)
-0 -0 j=1
Xcum(xxl(xl),...,xxm(xm)) dx, --- dx,. O

Using Lemma 3, we can obtain a result parallel to (18) for certain classes of
r.v.’s.

THEOREM 5. If X,,..., X,, are r.v’s such that E|X|™ < o0, j=1,...,m,

and cum(x x(%,),---; XXi,,(xk)) has the same sign for all subsets {i,...,1,} of
(1,...,m} andallx,,..., x,. Then

o(rrenr) = T16,(r)
(20) =

m
< l‘lllr,-|2|cum(xk, ke€w) - |cum(X,, k € v,)|.
ie

Here ¢(r,, ..., r,) and ¢,(r;) are the joint and marginal ch.f’s of (X,,..., Xp,),
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L extends over all partitions (v,...,7,), p=1,...,m—1, and whenever
card(v;) = 1, |ry| - |cum(X},, k € v;)| is replaced by 1. Here k € v,

PROOF. From Lemma 3, Theorem 1 and the fact that the cum(x x(x,),
-+ +»X x,(%)) all have the same sign we have for m > 1,
|cum(exp(ir,X,),...,exp(ir, X,,))|

) w R
f f iy - nexpli ) rx;
j=1

— 00 — o0

xcum(Xxl(xl)» E] Xxm(xm)) dxl t dxm

(21) w
<l bl [ [ jeum( (), xx () diy o d,

— 0

< rl el

_/:_oo e _/_oooocum(XX,(xl)’ ) XXm(xm)) dxl e dxm\
= |ry| - |1l leum(X,, ..., X,,.)|.

For m =1, cum(exp(ir,X,)) = E(exp ir;X;) = ¢,(r;) which is bounded by 1.
Combining (21) and Lemma 1, we get

'¢<r1,...,rm) 2100

m m
= }E [ 1exp(ir, X;) — I E exp(ir, X;)
k=1 k=1

=|Zcum(exp irX;, je V1) -+ - cum(exp ir;X;, j € vp)|
< Y |cum(exp irnX;, j € v) - |cum(exp inX;, j € vp)|
< inyl - Il Eleum( Xy, k € v,)] -+ Jeum(X,, & € 5,)].

Whenever card », = 1, |r;| |cum(X,, k € »,)| is replaced by 1, k € »,. O

REMARK 7. In Example 3 we define r.v.’s which are uncorrelated but not
mutually independent. By Corollary 1 they cannot be associated so that Theo-
rem 1 of Newman and Wright (1981) does not apply. However, Theorem 4 gives
an upper bound for the difference of ch.f’s, since it is easy to check
cum(x x(%;), Xx(%;)) = 0, i #j, and cum(x x(x,), X x,(%2), X x(*3) = O for all
Xy Xgy X



AN EXTENSION OF HOEFFDING’S LEMMA 1817 .

ExampLE 3. Consider the r.v.’s X, X,, X; with the following distribution:
X X, X | Pr
1 1 1]|1/4

1 0 0] 1/4
0O 1 o0]1/4
0O 0 1]|1/4
These are PUOD but not POD.
For nonnegative r.v.’s we can go further.
THEOREM 6. If the r.v’s X,,..., X,, are nonnegative (nonpositive) and

PUOD (PLOD) with finite mth moments, then

'cp(rl,...,r,..) - T1a()

<Inl-e Inl |EX, -+ X,, — EX, - EX,].

(22)

Proor. We prove the PUOD case only. Using Lemmas 1 and 3 and
Remark 3,

‘¢<rl,...,r,..>— Mo

J=1

0 w.m . m
=/ f 1ry - 1,eXp er,-xj
0 j=1

— 00

= Eexp(i Y rij) — 1 Eexp(ir;X))
Jj=1

(23) X[F(ay,..., %) — Fy(x,) -+ F(x,)] dx, -+ dx,,

IA

Il el [ [V )
—F(x)) -+ F(xy,) dxy - dx

---/(;w[ﬁ(xl,...,xm)

= [rl- |nl

r

—F) o F(X,)] dy -

= |rl - Iral |EX, -+ X,, — EX, -+ EX,|. O
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COROLLARY 2. Under the conditions of Theorem 5, if EX, --- X, =
EX, --- EX,, then X,,..., X,, are independent.

4. Cumulants and dependence. Cumulants provide us with useful mea-
sures of the joint statistical dependence of random variables. However, the
relationships with positive and negative dependence are not similar to those in
the bivariate (covariance) case. We give some examples to illustrate the relation-
ship between the sign of the cumulant and dependence in the trivariate case.

REMARK 8. By property (iii) of cumulants if any group of X’s is indepen-
dent of the remaining X’s, then cum(Xj,..., X,) = 0. The converse is true for
normal distributions when r = 2 but not for r > 2. For the trivariate normal, we
can have cum(X,, X,, X;) = 0, where X, X,, X, are not necessarily indepen-
dent.

REMARK 9. Assume EX; > 0 for i = 1,2, 3. Also assume that cov(X;, X;) > 0
for i, j = 1,2,3 [or the even stronger conditions cov(x x(%) xx,(%,)) = 0 and
cum(X;, X,, X;) > 0]. These do not imply PUOD as is shown in the following
example.

ExaMPLE 4. Let X, X,, X, take the values 0, +1 with: P(X; = x,, X, = x,,
Xy =x;3 x%%3#70)=0; PX;=X,=X;=0=0; PX;=0, X;=x,
Xp =2 ;,>00=1/9, 1, j,k=1,2,3, x;,=x,=1 or x;=x,= —1; and
P(X, =x,, X,=2x,, X;=2x;3)=1/36 for the remaining cases. It is easy to
check that EX; = EX, X, X, = 0, EX;X; > 0 and cum(X], X,, X;) = 0 but

P(X,>0,X,>0, X,>0) — P(X,>0)P(X,>0)P(X;>0)

= —(11/36)% < 0.

REMARK 10. Let EX; > 0 and assume (X;, X,, X;) PUOD. This does not
imply cum( X, X,, X;) > 0 as is shown in Example 5.

ExaMpLE 5. Let (X, X,, X;) have the following distribution. It is easy to
check that (X, X,, X;3) is PUOD and that EX; =0, but cum(X;, X,, X;) =
—-0.15 < 0.

X, X, X,| Pr

1 1 1] 0.35
1 1 -—-1| 0.05
1 -1 1{ 0.06
-1 1 1] 0.05
0 0 -1 0.05
-1 0 0| 0.05
0 -1 0| 0.05
-1 -1 -1/[035
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REMARK 11. Let (X, X,, X;) be associated. It need not be true that
cum(X;, X,, X;3) > 0 as is shown in Example 6.

EXAMPLE 6. Assume (X, X,, X,) are binary r.v.’s with distribution P(X, =
X,=X;=0=03 PX =x, X,=2xy X;=ux3)=01 for all other
{xy, 25, x5} € {0,1)%.

Checking all binary nondecreasing functions I'( X;, X,, X;) and A(X,, X,, X3)
we have cov(T, A) > 0. Thus (X, X,, X;) are associated but cum(X,, X,, X;) =
-0.012 < 0.

REMARK 12. If (X, Y) are binary and cov(X, Y) > 0, then (X, Y) is associ-
ated as was shown in Barlow and Proschan (1981). However, if (X, X,, X;) are
binary, then cov(X;, X;) >0, i,j=1,2,3, and cum(X,, X,, X;) >0 do not
imply (X;, X,, X;) associated as is seen in Example 7.

ExAMPLE 7. Assume (X, X,, X;) are binary r.v.’s with the following distri-
bution. Then cov(X;, X;) = 1/180 > 0 and cum(X;, X,, X;) = 1/135 > 0. How-
ever, for the increasing functions max(X,, X,) and max(X,, X,),

cov(max(X,, X,), max(X;, X;)) = —1/900 < 0,

so (X, X,, X;) are not associated.

el
>

X;| Pr

0 0 o0 0

0 0 1/|1/3
0 1 0]1/3
1 0 0]1/30
1 1 0/|1/10
1 0 11]1/10
0 1 1]1/10
1 1 1]/86/10

If we add some restrictions, some results can be obtained. We will give these
and omit the easy proofs.

ProposITION 1. If cov(X;, X;) =@ for i, j=1,2,3, then (X, X,, X;)
PUOD implies cum(X;, X,, X;) > 0 and (X,, X,, X;) PLOD implies
cum( X, X,, X;) <0.

REMARK 13. Notice that under the preceding assumptions we have the
peculiar situation that PUOD < NLOD and PLOD < NUOD.
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ProrosITION 2. Let (X, X,, X;) be a binary trivariate r.v. If
cov(X;, X;) > 0, cum(X,, X,, X3) >0 and additionally condition (M) holds,
then (X,, X,, X,) is associated for i, j, k = 1,2,3.

cov( X; 1 XX, X; 1 X,) =0,

(M)
cov(X; 1 X;, X; 1 X,) >0,

where
X;1X;=1-(1-X)(1-X;)=max(X, X).

To prove Proposition 2, we need to check for all binary increasing functions T
and A that cov(I'(X}, X,, X;), A(X;, X,, X;)) > 0. We leave this to the reader.
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