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Abstract

For the analysis of multivariate categorical longitudinal data, we propose an

extension of the dynamic logit model. The resulting model is based on a

marginal parametrization of the conditional distribution of each vector of re-

sponse variables given the covariates, the lagged response variables, and a set of

subject-specific parameters for the unobserved heterogeneity. The latter ones

are assumed to follow a first-order Markov chain. For the maximum likelihood

estimation of the model parameters we outline an EM algorithm. The data

analysis approach based on the proposed model is illustrated by a simulation

study and an application to a dataset which derives from the Panel Study on

Income Dynamics and concerns fertility and female participation to the labor

market.
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1 Introduction

Among the statistical and econometric models for binary longitudinal data, the dy-

namic logic model is of particular interest and finds application in many fields, such

as in the study of the labor market (Hsiao, 2005). For each subject in the sample,

this model assumes that the logit for the response variable at a given occasion de-

pends on a set of strictly exogenous covariates, the lagged response variable, and a

subject-specific parameter, which may be treated as a fixed or a random parameter.

Given the presence of the lagged response variable among the regressors, the dynamic

logit model may be considered as a transition model; see Molenberghs and Verbeke

(2004). This lagged variable is included to capture the state dependence (Heckman,

1981b), i.e. the direct effect that experiencing a certain situation in the present has

on the probability of experiencing the same situation in the future. This implies that

the response variables for the same subject are not independent even conditionally

on observable and unobservable covariates.

When the lagged response variable is omitted, the static logit model results. This

model was extended to the case of bivariate binary longitudinal data by Ten Have and

Morabia (1999), who relied on a bivariate logistic transform (Glonek and McCullagh,

1995) for this extension. A related model was proposed by Todem et al. (2007) for the

analysis of multivariate ordinal longitudinal data. The latter is based on an ordinal

probit link function and has a very flexible structure.

The subject-specific parameters, which are used in the dynamic logit model to

take into account the unobserved heterogeneity between subjects, are assumed to be

time-constant. This assumption is common to many other models for longitudinal

data. However, if the effect of unobservable factors on the responses of a subject is

not time-constant, there can be bias in the parameter estimates, in particular for the
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parameters of association between the response variables. In the econometric liter-

ature, this problem is usually overcome by relaxing the assumption of independence

between the error terms used in the structural equations for the response variables at

the different occasions; see Heckman (1981a) and Hyslop (1999).

In this paper, we propose a multivariate extension of the dynamic logit model in

which the problem of adequately representing the unobservable heterogeneity is ad-

dressed by including a vector of subject-specific parameters which is time-varying and

follows a first-order homogeneous Markov chain. To parameterize the conditional dis-

tribution of the vector of response variables, given the covariates, the lagged response

variables, and the subject-specific parameters, we rely on a family of multivariate link

functions formulated as in Colombi and Forcina (2001); this family has a structure

similar to that of Glonek (1996) and is strongly related to the multivariate logistic

transform of Glonek and McCullagh (1995). In fact, it is based on marginal logits

for each response variable and marginal log-odds ratios for each pair of response vari-

ables, which may be of type local, global or continuation (Bartolucci et al., 2007a).

Consequently, the proposed model may also be applied in the presence of more than

two response variables which may also have more than two categories, whereas the

models Ten Have and Morabia (1999) and Todem et al. (2007) are limited to bivariate

data. Moreover, specific types of logit may be used with ordinal variables.

The proposed model also extends the latent Markov model of Wiggins (1973) in

several directions and is related to the extension of the same model proposed by

Vermunt et al. (1999). In fact, we also assume a latent Markov process, the states

of which correspond to the different configurations of the subject-specific parameter

vectors. The main difference is that in our approach the covariates have a direct

effect on the response variables, whereas in the approach of Vermunt et al. (1999)

these covariates have a direct effect on the initial and transition probabilities of the
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latent process; see also Bartolucci and Nigro (2007). Moreover, in our approach the

response variables may be correlated even conditionally on the covariates and their

dependence structure may be modeled in a meaningful way by exploiting the flexibility

of the parametrization we adopt.

For the maximum likelihood estimation of the proposed model, we use an EM

algorithm (Dempster et al., 1977). We derive ad-hoc recursions adapted from the

hidden-Markov literature (MacDonald and Zucchini, 1997) for the efficient imple-

mentation of the E-step of this algorithm. We also deal with model selection and

testing hypotheses on the parameters, such as the hypothesis that the transition ma-

trix of the latent process is diagonal, so that the subject-specific vector of parameters

is time-constant. Finally, we deal with prediction of the vector of responses and

illustrate the Viterbi algorithm (Viterbi, 1967; Juang and Rabiner, 1991) for path

prediction, i.e. prediction of the sequence of latent states of a given subject on the

basis of his/her observable covariates and response variables. The approach based

on the proposed model is illustrated by an application to a dataset coming from the

Panel Study on Income Dynamics (PSID), which allows us to study the relation be-

tween fertility and woman participation to the labor market, a topic of great interest

in labor economics (Hyslop, 1999; Carrasco, 2001).

The paper is organized as follows. In Section 2 we briefly review the relevant

literature for our approach. In Section 3 we illustrate the proposed model for multi-

variate categorical longitudinal data. Likelihood inference for this model is outlined

in Section 4. In Section 5 we show the results of a simulation study of the perfor-

mance of the maximum likelihood estimator. The application to the PSID dataset is

illustrated in Section 6. Final conclusions are drawn in Section 7.

The approach described in this paper has been implemented in a series of Matlab

functions which are available from the JASA Supplemental Archive website.
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2 Preliminaries

Let yit denote the binary response variable for subject i at occasion t, with i =

1, . . . , n and t = 1, . . . , T , and let xit be the corresponding vector of strictly exogenous

covariates. The dynamic logit model assumes that

log
p(yit = 1|αi,xit, yi,t−1)

p(yit = 0|αi,xit, yi,t−1)
= αi + x′itβ + yi,t−1γ,

where αi is a subject-specific parameter which captures the effect of unobservable

covariates, β is a vector of regression coefficients for the observable covariates and γ

is a parameter for the state dependence. Denoting by 1{·} the indicator function, this

model is justified in the econometric literature on the basis of the structural equations

yit = 1{αi + x′itβ + yi,t−1γ + εit > 0}, i = 1, . . . , n, t = 1, . . . , T, (1)

where εit are independent error terms with standard logistic distribution.

The subject-specific parameters may be treated as fixed or random. In the second

case, the initial condition problem arises since the first available observation, yi0, is

correlated with the random parameter αi. This correlation may be typically explained

by considering that even this observation is generated from a distribution depend-

ing on observable and unobservable covariates which also affect the distribution of

yi1, . . . , yiT . For further details see Heckman (1981a) and Hsiao (2005, Sec. 7.5.2).

For the case in which we observe two binary response variables, denoted by yhit,

with h = 1, 2, i = 1, . . . , n, t = 1, . . . , T , Ten Have and Morabia (1999) proposed a

model which ignores state dependence and is based on the assumptions

log
p(yhit = 1|α1i,xit)

p(yhit = 0|αhi,xit)
= αhi + x′itβh, h = 1, 2,

log
p(y1it = 1, y2it = 1|α3i, xit)p(y1it = 0, y2it = 0|α3i,xit)

p(y1it = 1, y2it = 0|α3i, xit)p(y1it = 0, y2it = 1|α3i,xit)
= α3i + x′itβ3.
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The subject-specific parameters α1i, α2i and α3i are assumed to be independent with

standard normal distribution. This model also corresponds to a set of structural

equations similar to (1) which involve bivariate error terms following a suitable copula

of the standard logistic distribution.

The above models assume that the subject-specific parameters are time-invariant.

This assumption may be relaxed by assuming that the error terms in structural equa-

tions of type (1) are serially correlated. A different strategy is here adopted which

consists of assuming that the subject-specific parameters are time-varying and follow

a Markov chain, so as to avoid any parametric assumption on their distribution.

3 Proposed model

Let r denote the number of categorical response variables observed at each occa-

sion and denote by yhit the hth response variable for subject i at occasion t, with

h = 1, . . . , r, i = 1, . . . , n and t = 1, . . . , T . This variable has lh categories indexed

from 0 to lh − 1. Also let yit denote the vector with elements yhit, h = 1, . . . , r,

and let p(αit,xit, yi,t−1) denote the column vector for the conditional distribution

of yit given the covariates, the lagged response variables, and a vector αit of time-

varying random effects. The entries of p(αit,xit, yi,t−1) are the conditional probabil-

ities p(yit|αit,xit,yi,t−1) for all the possible configurations of yit arranged in lexico-

graphical order. For example, with two response variables having respectively two and

three categories, we have the configurations (0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2).

The model we propose assumes that yit is conditionally independent of yi0, . . . , yi,t−2,

given xit, yi,t−1 and αit, t = 2, . . . , T , and that the latent process αi1, . . . , αiT follows

a Markov chain with specific parameters. We now describe in detail the parametriza-

tions adopted for the distribution of each response vector and for the latent process.
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3.1 Distribution of the response variables

We rely on a family of multivariate link functions which allows us to directly model

marginal (with respect to the other response variables) logits and log-odds ratios of

type local, global or continuation. For the h-th variable, these logits are defined as

follows for z = 1, . . . , lh − 1:

• local: log
p(yhit = z|αit,xit,yi,t−1)

p(yhit = z − 1|αit,xit,yi,t−1)
,

• global: log
p(yhit ≥ z|αit,xit,yi,t−1)

p(yhit < z|αit, xit,yi,t−1)
,

• continuation: log
p(yhit ≥ z|αit,xit, yi,t−1)

p(yhit = z − 1|αit,xit,yi,t−1)
.

Local logits are appropriate when the categories are not ordered. Logits of type

global and continuation are suitable for ordinal variables. In particular, logits of type

global are more appropriate when the variable may be seen as a discretized version of

an underlying continuum, whereas logits of type continuation are more appropriate

when its categories correspond to levels of achievement that may be entered only if

the previous level has already been achieved.

Marginal log-odds ratios are defined as contrasts between conditional logits and

their definition depends on the type of logit chosen for each response variable. For

example, when local logits are used for variable h1 and global logits for variable h2,

the following log-odds ratios result for z1 = 1, . . . , lh1 − 1 and z2 = 1, . . . , lh2 − 1:

log
p(yh1it = z1, yh2it ≥ z2|αit,xit, yi,t−1)p(yh1it = z1 − 1, yh2it < z2|αit,xit,yi,t−1)

p(yh1it = z1 − 1, yh2it ≥ z2|αit,xit, yi,t−1)p(yh1it = z1, yh2it < z2|αit,xit,yi,t−1)
. (2)

Once the type of logit has been chosen for each response variable, these logits and

the corresponding log-odds ratios are collected in a vector which may be expressed as

η(αit,xit,yi,t−1) = C log[Mp(αit,xit,yi,t−1)], (3)
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where C and M are appropriate matrices whose construction is described in Colombi

and Forcina (2001). In order to ensure that η(αit,xit, yi,t−1) is a one-to-one function

of p(αit,xit,yi,t−1), we constrain to 0 all the three and higher-order log-linear inter-

actions of the conditional distribution of yit, given αit, xit and yi,t−1. Invertibility

of (3) then follows from Colombi and Forcina (2001) and to obtain p(αit, xit,yi,t−1)

from η(αit, xit,yi,t−1) we can exploit the iterative algorithm they describe; see also

Bartolucci et al. (2007a). Matlab functions for constructing the matrices C and M

in (3) and inverting this link function are available together with those for parameter

estimation.

In order to relate the vector of marginal effects defined above to the covariates and

the lagged response variables, we split it into the subvectors η1(αit,xit,yi,t−1) and

η2(αit,xit,yi,t−1), which contain, respectively, marginal logits and log-odds ratios.

We then assume that, for i = 1, . . . , n and t = 1, . . . , T ,

η1(αit,xit, yi,t−1) = αit + X itβ + Y itγ, (4)

η2(αit,xit, yi,t−1) = δ, (5)

where X it and Y it are suitable design matrices defined on the basis of, respectively,

xit and yi,t−1, whereas β, γ and δ are vectors of parameters.

As an example consider the case of r = 3 variables with two, three and three

levels (l1 = 1, l2 = 2, l3 = 2), which are treated with logits of type local, global and

continuation, respectively. Overall, there are five logits which are expressed according

to the above definition and eight log-odds ratios which are defined as in (2) for the

first pair of response variables and in a similar way for the other two pairs. The logits

may be parametrized as follows

log
p(y1it = 1|αit,xit,yi,t−1)

p(y1it = 0|αit,xit,yi,t−1)
= α1it + x′itβ1 + y′i,t−1γ1,
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log
p(y2it ≥ z|αit,xit,yi,t−1)

p(y2it < z|αit, xit,yi,t−1)
= αz+1,it + x′itβ2 + y′i,t−1γ2, z = 1, 2, (6)

log
p(y3it ≥ z|αit,xit, yi,t−1)

p(y3it = z − 1|αit,xit,yi,t−1)
= αz+3,it + x′itβ3 + y′i,t−1γ3, z = 1, 2, (7)

Note that, following a standard practice in marginal regression models for ordinal

variables (see McCullagh (1980)), the regression coefficients for the covariates and

those for the lagged response variables are the same for both logits in (6) and in (7).

On the other hand, the intercepts αhit are specific to each response category.

The above parametrization may be casted into (4) with

X it =




x′it 0′ 0′

0′ x′it 0′

0′ x′it 0′

0′ 0′ x′it

0′ 0′ x′it




, Y it =




y′i,t−1 0′ 0′

0′ y′i,t−1 0′

0′ y′i,t−1 0′

0′ 0′ y′i,t−1

0′ 0′ y′i,t−1




, (8)

where 0 denotes a column vector of zeros of suitable dimension, β = (β′1,β
′
2,β

′
3)
′,

γ = (γ ′1, γ
′
2,γ

′
3)
′ and αit being a vector with elements α1it, . . . , α5it. Finally, because

of assumption (5), each log-odds ratio is simply equal to a specific element of δ.

3.2 Distribution of the subject-specific parameters

For each subject i, the random parameter vectors αit, t = 1, . . . , T , are assumed to fol-

low a first-order Markov chain with states ξc, for c = 1, . . . , k, and initial probabilities

λc(yi0) = p(αi1 = ξc|yi0) collected in the column vector λ(yi0). The transition prob-

abilities are denoted by πcd = p(αit = ξd|αi,t−1 = ξc), c, d = 1, . . . , k, t = 2, . . . , T ,

and are collected in the matrix Π.

In order to take the initial condition problem into account (see Section 2), the

probabilities λc(yi0) are allowed to depend on the initial observation. In particular,
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let ψ(yi0) be the (k− 1)-dimensional column vector of the logits log[λc(yi0)/λ1(yi0)],

c = 2, . . . , k. We assume that
ψ(yi0) = Y i0φ, (9)

where Y i0 is a design matrix depending on yi0 and φ is the corresponding vector of

parameters. Typically, this matrix is equal to Ik−1 ⊗ ( 1 y′i0 ), with Iz denoting an

identity matrix of dimension z.

Note that, by assumption, the initial and transition probabilities of the latent

process are independent of the covariates. This assumption could be easily relaxed

by adopting a parametrization similar to that used by Vermunt et al. (1999). However,

we prefer to retain this assumption so that the effect of the covariates and that of the

state dependence are entirely captured by the parameters in β and γ through (4).

Finally, consider that assuming a discrete rather than a continuous latent pro-

cess avoids the need of parametric assumptions and simplifies the estimation of the

resulting model from the computational point of view. In fact, as we show in the

following section, the likelihood of the model can be exactly computed without the

need of quadrature or Monte Carlo methods, which would be required if the latent

process was assumed to be continuous. From the computational point of view it could

be objected that the number of elements of the transition matrix increases with the

square of the number of latent states. However, if necessary, the model may be made

more parsimonious by imposing a specific structure for this matrix. For instance, we

can require that all the off-diagonal elements are equal each other or that this matrix

is symmetric; see Bartolucci (2006) for examples of this type.

On the other hand, the assumption that the process representing the evolution

of a latent characteristic is discrete rather than continuous may not be realistic in

certain situations. Our hope is that in most of these situations the discrete process

adequately approximates the continuous process and then our model gives a realistic
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representation of the data generation mechanism, especially when a large number of

states is adopted and the continuous process has a Markovian dependence structure,

e.g. AR(1). This is in agreement with the practice commonly adopted in the latent

variable literature of assuming a discrete distribution for a latent trait which has a

continuous nature; see, for instance, Lindsay et al. (1991). However, with reference

to our context, theoretical results on the quality of the approximation and on the

implications on the parameter estimation are not available and then in Section 5 we

provide some results based on simulation.

4 Likelihood inference

Inference for the proposed model is based on the log-likelihood

`(θ) =
∑

i

log[p(yi1, . . . , yiT |xi1, . . . , xiT ,yi0)],

where θ is a short hand notation for all the non-redundant model parameters corre-

sponding to the vectors β, γ, δ and φ and the off-diagonal elements of the matrix

Π. The model assumptions imply that p(yi1, . . . , yiT |xi1 . . . , xiT ,yi0) is equal to

∑
αi1

· · ·∑
αiT

[
p(αi1|yi0)

∏

t>1

p(αit|αi,t−1)
∏

t

p(yit|αit,xit,yi,t−1)
]
, (10)

with the sum
∑

αit
extended to all the possible configurations of αit. An efficient rule

to compute the probability in (10) is given in Appendix.

4.1 Estimation

In order to estimate θ, we maximize `(θ) by using a version of the EM algorithm

(Dempster et al., 1977) which may be implemented along the same lines as in Bar-

tolucci (2006) and Bartolucci et al. (2007b). However, these papers deal with versions
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of the latent Markov model which are based on a much simpler parametrization of the

conditional distribution of the response variables and include categorical covariates

only.

The EM algorithm alternates the following steps until convergence:

• E-step: compute the conditional expected value of the complete data log-

likelihood given the observed data and θ̃, the current estimate of θ;

• M-step: maximize the expected value above with respect to θ.

Let witc denote a dummy variable equal to 1 if subject i is in latent state c at occasion

t (i.e. αit = ξc) and to 0 otherwise. The complete data log-likelihood, that we could

compute if we knew these dummy variables at every occasion, is:

`∗(θ) =
∑

i

∑
c

{ ∑

t

witc log[p(yit|αit = ξc,xit, yi,t−1)]+wi1c log[λc(yi0)]+
∑

d

zicd log(πcd)
}
,

where zicd =
∑

t>1 wi,t−1,cwitd is equal to the number of times subject i moves from

state c to state d. The conditional expected value of `∗(θ) at the E-step is then given

by the same expression as above in which we substitute the variables witc and zicd

with the corresponding expected values. These are equal to

w̃itc(θ̃) = p(αit = ξc|xi1, . . . , xiT ,yi0, . . . , yiT ), (11)

z̃icd(θ̃) =
∑

t>1

p(αi,t−1 = ξc, αit = ξd|xi1, . . . , xiT , yi0, . . . , yiT ), (12)

with the posterior probabilities in (11) and (12) evaluated at θ = θ̃. Efficient com-

putation of these probabilities may be carried out as described in Appendix. The

conditional expected value of `∗(θ) is denoted by ˜̀∗(θ|θ̃).

At the M-step, ˜̀∗(θ|θ̃) is maximized by separately maximizing its components:

˜̀∗
1(β, γ, δ|θ̃) =

∑

i

∑
c

∑

t

w̃itc(θ̃) log[p(yit|αit = ξc,xit, yi,t−1)],
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˜̀∗
2(φ|θ̃) =

∑

i

∑
c

w̃i1c(θ̃) log[λc(yi0)],

˜̀∗
3(Π|θ̃) =

∑

i

∑
c

∑

d

z̃icd(θ̃) log(πcd).

An explicit solution is available to maximize the last one, which consists of letting

each πcd proportional to
∑

i z̃icd(θ̃) for c, d = 1, . . . , k. To maximize ˜̀∗
2(φ|θ̃) we can

use a standard iterative algorithm of Newton-Raphson type for multinomial logit

models. A Newton-Raphson algorithm may also be used to maximize ˜̀∗
1(β,γ, δ|θ̃).

This algorithm is slightly more complex than that for maximizing ˜̀∗
2(φ|θ̃) since, at

each step, it requires inversion of (3) for every i and t and the k possible values of

αit; details on its implementation may be deduced from Colombi and Forcina (2001).

We take the value of θ at convergence of the EM algorithm as the maximum

likelihood estimate θ̂. As is typical for latent variable models, the likelihood may

be multimodal and the point at convergence depends on the starting values for the

parameters, which then need to be carefully chosen. At this regard, we follow a rule

which consists of a preliminary fitting of a model based on assumptions (4) and (5)

under the constraint αit = ξ̄, i = 1, . . . , n, t = 1, . . . , T . This is a simplified version of

our model which, being based on a common intercept ξ̄ for all subjects and occasions,

rules out unobserved heterogeneity. In this way we directly obtain the initial values

for β, γ and δ, whereas, for c = 1, . . . , k, the initial value of ξc is found by adding a

suitable constant fc to each element of the estimate of ξ̄. Finally, we use 0 as starting

value for φ and, for a suitable constant s, (1k1
′
k + sIk)/(k + s) as starting value for

Π, where 1h denotes a column vector of h ones. In our implementation, we choose

f1, . . . , fk as k equispaced points from -2.5 to 2.5 and we let s = 9. To check that the

EM algorithm converges to the global maximum of the likelihood, we also suggest to

try different starting values for the parameters which may be generated by randomly

perturbating those obtained by the deterministic rule above. For instance, a random
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number with normal distribution with zero mean may be added to the initial value

of each element of ξc, to that of β and so on.

On the basis of some experiments based on simulated data and on the PSID

dataset illustrated in Section 6, we can conclude that the chance that the likelihood

is multimodal grows as the number of latent states increases and as the sample size

decreases. Moreover, imposing a suitable constraint on the transition matrix Π con-

siderably reduces the chance that the likelihood is multimodal. In particular, for the

PSID dataset we observed that the likelihood of the unrestricted model has a few

local maxima with k ≥ 3 latent states. In any case, these local maxima may be easily

found by the random initialization mechanism for the EM algorithm outlined above

and their number dramatically reduces under the constraint that the off-diagonal el-

ements of the transition matrix are equal each other. Moreover, the best solution

usually corresponds to that found starting with the deterministic rule.

A final point concerns how to compute the information matrix. For this aim,

several methods have been proposed in the literature which exploit the results of the

EM algorithm; see McLachlan and Peel (2000, Ch. 2) and the references therein. In

our context, these methods can not be directly applied, so we prefer to obtain the

observed information matrix, denoted by J(θ), as minus the numerical derivative of

the score vector s(θ) which corresponds to the first derivative of ˜̀(θ|θ̃) with respect to

θ, evaluated at θ̃ = θ. The latter is already used at the M-step and then computation

of the observed information matrix requires a small extra code to be implemented.

The observed information matrix at the maximum likelihood estimate, J(θ̂), may be

used to check local identifiability of the model and to compute the standard errors

se(θ̂) in the usual way. The validity of this procedure to obtain standard errors for

θ̂ is assessed by simulation at the end of Section 5.
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4.2 Model selection and hypotheses testing

A fundamental problem is that of the choice of the number of latent states, denoted

by k. In the literature on latent variable models and finite mixture models, see

in particular McLachlan and Peel (2000, Ch. 6), the most used criteria are the

Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC).

According to these criteria, we choose the number of states corresponding to the

minimum of AIC = −2`(θ̂) + 2g and BIC = −2`(θ̂) + g log(n), respectively. These

two indices involve penalization terms depending on g, the number of non-redundant

parameters, which is equal to the sum of:

• the number of columns of each design matrix X it in (4) which is at most equal

to
∑

h(lh − 1) times the number of covariates, where
∑

h(lh − 1) is the number

of marginal logits;

• the number of columns of the matrix Y it in (4), at most r
∑

h(lh − 1);

• ∑
h1<r

∑
h2>h1

(lh1 − 1)(lh2 − 1) which corresponds to the number of marginal

log-odds ratio and then to the dimension of δ;

• k
∑

h(lh− 1) corresponding to the number of elements of the vectors ξ1, . . . , ξk;

• the number of columns of the design matrix Y i0 in (9), typically r(k − 1);

• k(k−1) which corresponds to the number of independent transition probabilities

collected in Π.

Given the different penalization terms involved in the two indices above, the two

criteria do not always lead to choosing the same number of latent states. Some

suggestions on their use are given in Section 5, where these are studied by simulation.

Once the number of latent states has been chosen, it may be interesting to test

hypotheses on the parameters. Under the usual regularity conditions, these hypothe-

ses may be tested by using Wald statistics based on the standard errors computed
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as mentioned above. This is convenient when the hypothesis of interest is that one

of the parameters in β, γ or δ is equal to 0. A more general method to test hy-

potheses is based on the likelihood ratio statistic D = −2[`(θ̂0) − `(θ̂)], where θ̂0 is

the maximum likelihood estimate of θ under the hypothesis of interest, which may

be computed by the same EM algorithm illustrated in Section 4.1. Under standard

regularity conditions, a p-value for this statistic can be computed on the basis of a

chi-squared distribution with the appropriate number of degrees of freedom.

A hypothesis of particular interest is that the transition matrix is diagonal. Re-

jecting this hypothesis implies that the effect of unobserved factors on the response

variables is not time-constant so that conventional models, such as the dynamic logit

model, are not suitable for the data at hand. To test this hypothesis we can use the

likelihood ratio statistic defined above, but a boundary problem occurs, since it cor-

responds to the constraint that all the off-diagonal transition probabilities are equal

to zero. Then the approximation of the likelihood ratio null distribution by a chi-

squared distribution is not valid anymore. We can instead use the result of Bartolucci

(2006), who showed that the likelihood ratio statistic for hypotheses on the transition

matrix of a latent Markov model has null asymptotic distribution of chi-bar-squared

type, i.e. a mixture of chi-squared distributions (Shapiro, 1988; Silvapulle and Sen,

2004). This implies that the p-value for an observed value d of D may be computed

as

Pr(D > d) =
k(k−1)∑

h=0

wh Pr(Ch > d),

where Ch has chi-squared distribution with h degrees of freedom and the weights wh

can be computed through a simple Monte Carlo procedure. This procedure consists

of drawing a large number of parameter vectors from the asymptotic distribution

of the unconstrained maximum likelihood estimator and computing the proportion

of vectors which violate the constraint of interest; see also Dardanoni and Forcina
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(1998).

Finally, note that a likelihood ratio test statistic may also be used to choose the

number of latent states by comparing the model with k and that with k + 1 states

for increasing values of k. However, the significance of this statistic needs to be

valuated by a bootstrap procedure; we prefer to avoid this selection criterion because

too computationally intensive.

4.3 Prediction of the response vector and path prediction

Once the model has been fitted, it is usually of interest to predict the response vector

for subject i at occasion t on the basis of the vector of covariates xit and the lagged

response vector yi,t−1. A natural way to predict this response vector, denoted by ŷit,

is by maximizing with respect to y the manifest probability

p(yit = y|xit,yi,t−1) =
∑

c

p(yit = y|αit = ξc,xit, yi,t−1)p(αit = ξc|yi0),

once it has been computed on the basis of the maximum likelihood estimate of θ.

Another problem of interest is that of predicting the state ĉit of subject i at a

given time occasion t. The estimate is the maximal-a-posteriori prediction based on

the probabilities in (11), which are obtained as a by-result of the EM algorithm.

A related problem is that of predicting the entire sequence of latent states for sub-

ject i, which corresponds to the maximum with respect to c1, . . . , cT of the posterior

probability p(αi1 = ξc1 , . . . , αiT = ξcT
|xi1, . . . , xiT ,yi0, . . . , yiT ). The predicted path

is denoted by c̃i1, . . . , c̃iT and it is not ensured to be equal to ĉi1, . . . , ĉiT , when each

ĉit is found as above on the basis of the posterior probabilities in (11). In particular,

the previous method does not take into account the joint probability of the latent

sequence, and may even produce inconsistent sequences.

To predict the entire sequence of latent states we can use the Viterbi algorithm
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(Viterbi, 1967; Juang and Rabiner, 1991). Let ρi1(c) = p(αi1 = ξc,yi1|xi1, yi0) and,

for t = 2, . . . , T , let

ρit(c) = max
c1,...,ct−1

p(αi1 = ξc1 , . . . , αi,t−1 = ξct−1
,αit = ξc, yi1, . . . , yit|xi1, . . . , xit, yi0).

The algorithm performs a forward recursion in order to compute the above quantities,

and then it finds the most likely latent sequence with a backward recursion.

More precisely, the algorithm performs the following steps:

1. for i = 1, . . . , n and c = 1, . . . , k compute ρi1(c) as λc(yi0)p(yi1|αi1 = ξc, xi1);

2. for i = 1, . . . , n, t = 2, . . . , T and d = 1, . . . , k compute ρit(d) as

p(yi,t+1|αi,t+1 = ξd,xi,t+1) max
c

[ρi,t−1(c)πcd];

3. for i = 1, . . . , n find the optimal state c̃iT as c̃iT = arg maxc ρiT (c);

4. for i = 1, . . . , n and t = T − 1, . . . , 1 find c̃it as c̃it = arg maxc ρit(c)πc,c̃i,t+1
.

All the above quantities are computed on the basis of the maximum likelihood

estimate of the parameter θ of the model of interest.

5 Simulation study

In order to assess the properties the maximum likelihood estimator described in Sec-

tion 4.1, we performed a simulation study which is described below. The same study

allows us to assess the performance of the selection criteria described in Section 4.2.

5.1 Simulation design

We considered two scenarios, the first with two response variables (both binary) and

the second with three response variables (the first with two and the others with
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three categories). Under each scenario, we considered two continuous covariates and

generated 1000 samples from the proposed model with T = 4, 8 (panel length), n =

500, 1000 (sample size) and k = 1, 2, 3 (number of latent states). For each sample

we computed the maximum likelihood estimate of the parameters under the assumed

model and the corresponding standard errors. We also predicted the optimal number

of states according to the AIC and BIC criteria. In order to verify the effect of

model misspecification, we considered a further setting in which the subject-specific

parameters follow a continuous process.

With r = 2 response variables, the design matrices in (4) are defined as X it =

12 ⊗ x′it where the two covariates in xit are independently generated from a standard

normal distribution for i = 1, . . . , n and t = 1, . . . , T . Moreover, Y it = 12 ⊗ y′i,t−1

and, for k ≥ 2, the design matrix Y i0 in (9) is defined as 1k−1 ⊗ ( 1 y′i0 ), where the

initial observations in yi0 are independently generated from a Bernoulli distribution

with parameter 0.5 for i = 1, . . . , n. The true values of the regression parameters are

chosen as β = ( 1 −1 1 −1 )′ and those of the parameters for the lagged responses

are chosen as γ = ( 1 −1 −1 1 )′; we also let δ = −1. According to the value of

k, the parameters for the latent process are chosen as follows:

• k = 1: ξ1 = ( 0 0 )′, λ1(yi0) = 1, π11 = 1 (the latent process is degenerate);

• k = 2: ξ1 = (−1 −1 )′ and ξ2 = −ξ1, with φ = 0 and transition matrix

Π =




0.9 0.1

0.1 0.9


 ; (13)

• k = 3: ξ1 = (−2.5 −2.5 )′, ξ2 = ( 0 0 )′ and ξ3 = −ξ1, with φ = 0 and

Π =




0.80 0.15 0.05

0.10 0.80 0.10

0.05 0.15 0.80




. (14)
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For r = 3 response variables we adopted the same parametrization described

in the example in Section 3.1, which is based on local logits for the first vari-

able (having two levels), global logits for the second variable (having three levels)

and continuation logits for the third (having three levels) and on the design matri-

ces defined in (8). For what concerns the parametrization of the latent process,

we let Y i0 = 1k−1 ⊗ ( 1 1′ryi0/r ) for k ≥ 2, where the initial observations in

yi0 are randomly generated from uniform discrete distributions with suitable sup-

port. We also let β = ( 1 −1 1 −1 −1 1 )′, γ = ( 1 1 −1 )′ and δ =

( 1 1 0 0 −1 −1 −1 −1 )′. Note that the first two elements of δ refer to

the log-odds ratios for the pair of response variables (y1it, y2it), the second two refer

to the log-odd ratios for (y1it, y3it), and the remaining ones refer to the log-odds ratio

for (y2it, y3it). Moreover, for what concerns the parametrization of the latent process,

with k = 1 we assumed ξ1 = ξ̄, where ξ̄ = ( 0 1 −1 1 −1 )′. With k = 2 we

assumed ξ1 = ξ̄ − 12 and ξ2 = ξ̄ + 12; we also let φ = 0, with Π defined as in (13).

Finally, with k = 3 we assumed ξ1 = ξ̄ − 2.5 · 12, ξ2 = ξ̄ and ξ3 = ξ̄ + 2.5 · 12 and

that φ = 0, with Π as in (14).

The simulation settings in which the subject specific parameters follow a contin-

uous process were formulated as above for both r = 2 and r = 3. The only difference

is that αit = εit when r = 2 and αit = ξ̄ +εit when r = 3, where, for i = 1, . . . , n and

t = 1, . . . , T , each element of εit is independently generated from an AR(1) process

with correlation coefficient 0.9 and marginal variance equal to 2.

5.2 Simulation Results

For r = 2, the simulation results in terms of bias and standard deviation of the

maximum likelihood estimator of each parameter of interest are shown in Table 1

(when k = 2) and in Table 2 (when k = 3), together with the average and the
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interquartile range of the standard errors computed for every sample. In both tables,

β̂h and γ̂h denote, respectively, the h-th element of the estimator β̂ and that of the

estimator γ̂, whereas α̂h denotes h-th element of the weighted mean of the vectors

ξ̂1, . . . ξ̂k, with weights equal to the posterior probability of each state. Each α̂h is an

estimator of the average effect of the unobservable covariates on the corresponding

marginal logit in (4).

We can observe that, with both k = 2 and k = 3, the bias of each estimator is

always moderate and decreases as n and T increase. Moreover, the standard deviation

decreases at the expected rate of
√

n with respect to n and at a faster rate with

respect to T . Obviously, the standard deviation is higher with k = 3 than with

k = 2. Finally, for each estimator, the average standard error is always very close to

the standard deviation; these standard errors have also a very low variability from

sample to sample.

In order to evaluate the performance of AIC and BIC as selection criteria for

the number of latent states, in Table 3 we report the frequency distribution of the

predicted k under each simulation setting considered with r = 2. We can observe

that AIC performs considerably well in all cases. In fact, the predicted k is only

occasionally different from the true one and, when this happens, the former is always

larger than the latter. On the other hand, BIC has an excellent behavior with the

exception of the case T = 4, n = 500 and k = 3 when it tends to predict k = 2. As

may be expected, this criterion performs better as the amount of information in the

data increases. In fact, for the cases in which T = 8, BIC always singled out the true

number of latent states.

With r = 3 response variables we obtained results similar to those commented

above for r = 2 in terms of performance of the maximum likelihood estimator and

the AIC and BIC selection criteria for the number of states. Some of these results
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T = 4, n = 500 T = 4, n = 1000
Est. Bias s.d. ave. s.e. IQR s.e. Bias s.d. ave. s.e. IQR s.e.

α̂1 0.004 - - - 0.001 - - -
β̂1 0.012 0.084 0.084 0.012 0.006 0.056 0.057 0.006
β̂2 -0.012 0.084 0.083 0.012 -0.007 0.057 0.056 0.006
γ̂1 -0.008 0.140 0.139 0.015 0.002 0.104 0.103 0.007
γ̂2 -0.002 0.149 0.148 0.013 0.001 0.102 0.101 0.006
α̂2 0.001 - - - 0.001 - -
β̂3 -0.012 0.084 0.084 0.012 -0.006 0.58 0.057 0.005
β̂4 0.008 0.084 0.082 0.012 0.002 0.057 0.058 0.006
γ̂3 0.003 0.142 0.141 0.013 0.004 0.104 0.104 0.006
γ̂4 -0.006 0.150 0.149 0.014 -0.007 0.102 0.099 0.007

δ̂ -0.043 0.270 0.266 0.045 -0.019 0.175 0.177 0.022
T = 8, n = 500 T = 8, n = 1000

Est. Bias s.d. ave. s.e. IQR s.e. Bias s.d. ave. s.e. IQR s.e.
α̂1 0.005 - - - 0.001 - - -
β̂1 0.007 0.053 0.054 0.004 0.003 0.038 0.038 0.002
β̂2 -0.006 0.055 0.054 0.004 -0.003 0.039 0.038 0.002
γ̂1 -0.006 0.099 0.099 0.005 -0.001 0.068 0.068 0.003
γ̂2 -0.005 0.102 0.101 0.005 -0.001 0.071 0.071 0.002
α̂2 0.001 - - - 0.002 - - -
β̂3 0.001 0.055 0.054 0.004 0.001 0.038 0.038 0.002
β̂4 -0.003 0.054 0.055 0.003 -0.001 0.036 0.038 0.002
γ̂3 0.004 0.102 0.101 0.005 -0.004 0.73 0.071 0.003
γ̂4 -0.003 0.095 0.095 0.005 -0.001 0.067 0.067 0.003

δ̂ -0.008 0.163 0.161 0.018 -0.011 0.112 0.112 0.009

Table 1: Bias, standard deviation (s.d.), average and interquartile range of the stan-
dard errors (ave. s.e., IQR s.e.) for the maximum likelihood estimator of the model
parameters. The results are based on 1000 simulated samples with r = 2, T = 4, 8,
n = 500, 1000 and k = 2.

are reported in Tables 4 and 5. In particular, Table 4 shows that the bias of the

estimator of each parameter is very small, often smaller than the one obtained under

the same setting with r = 2. As expected, the standard deviation of each estimator

slightly increases from k = 2 to k = 3, but it is always well estimated with the

proposed method to compute standard errors. For what concerns the performance of

the selection criteria, it may be observed that AIC tends to choose the right number

of latent states still with a satisfactory, but consistently lower, probability. On the

contrary, BIC performs much better and, in all cases, it led to the correct choice of

the number of states with very high frequency.
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T = 4, n = 500 T = 4, n = 1000
Est. Bias s.d. ave. s.e. IQR s.e. Bias s.d. ave. s.e. IQR s.e.

α̂1 0.003 - - - 0.002 - - -
β̂1 -0.010 0.104 0.105 0.025 0.003 0.078 0.078 0.010
β̂2 -0.025 0.100 0.101 0.027 -0.004 0.077 0.078 0.011
γ̂1 0.011 0.180 0.178 0.026 0.003 0.140 0.138 0.013
γ̂2 -0.038 0.208 0.210 0.024 -0.006 0.144 0.146 0.014
α̂2 0.031 - - - 0.007 - - -
β̂3 0.033 0.114 0.113 0.029 0.012 0.080 0.078 0.011
β̂4 -0.036 0.115 0.114 0.026 -0.018 0.081 0.078 0.011
γ̂3 -0.034 0.195 0.194 0.032 -0.010 0.135 0.135 0.013
γ̂4 0.014 0.195 0.195 0.028 0.003 0.148 0.148 0.013

δ̂ -0.249 0.479 0.480 0.178 -0.050 0.333 0.333 0.051
T = 8, n = 500 T = 8, n = 1000

Est. Bias s.d. ave. s.e. IQR s.e. Bias s.d. ave. s.e. IQR s.e.
α̂1 -0.005 - - - -0.001 - - -
β̂1 0.003 0.069 0.069 0.008 0.002 0.051 0.050 0.004
β̂2 -0.003 0.071 0.072 0.008 -0.001 0.054 0.050 0.004
γ̂1 -0.008 0.139 0.137 0.010 -0.005 0.093 0.091 0.005
γ̂2 0.001 0.125 0.127 0.012 0.004 0.099 0.097 0.006
α̂2 -0.003 - - - -0.001 - - -
β̂3 -0.008 0.071 0.072 0.008 -0.006 0.050 0.050 0.004
β̂4 0.006 0.071 0.073 0.008 0.004 0.052 0.050 0.004
γ̂3 -0.002 0.130 0.129 0.011 0.001 0.088 0.090 0.006
γ̂4 -0.004 0.128 0.128 0.011 -0.002 0.089 0.090 0.006

δ̂ -0.041 0.265 0.262 0.047 -0.009 0.200 0.199 0.023

Table 2: Bias, standard deviation (s.d.), average and interquartile range of the stan-
dard errors (ave. s.e., IQR s.e.) for the maximum likelihood estimator of the model
parameters. The results are based on 1000 simulated samples with r = 2, T = 4, 8,
n = 500, 1000 and k = 3.

Table 6 (for r = 2) and Table 7 (for r = 3) show the simulation results concerning

the maximum likelihood estimator when samples are generated from the model in

which the subject-specific parameters follow a continuous latent process with n = 500

and T = 8. Under this setting, the number of states k is undefined and then we

computed the maximum likelihood estimator of the parameters adopting the value

of k chosen with AIC and BIC. The distribution of the predicted k with these two

criteria is shown in Table 8.

It may be observed that both AIC and BIC-based estimators perform well, with

the former performing better in terms of bias. As may be deduced on the basis of the
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Predicted k (AIC) Predicted k (BIC)
T n k 1 2 3 ≥4 1 2 3 ≥4
4 500 1 0.900 0.091 0.009 0.000 1.000 0.000 0.000 0.000

2 0.000 0.914 0.082 0.004 0.009 0.990 0.001 0.000
3 0.000 0.000 0.898 0.101 0.000 0.851 0.149 0.000

4 1000 1 0.969 0.026 0.005 0.000 1.000 0.000 0.000 0.000
2 0.000 0.941 0.056 0.003 0.000 1.000 0.000 0.000
3 0.000 0.000 0.914 0.086 0.000 0.213 0.787 0.000

8 500 1 0.931 0.066 0.003 0.000 1.000 0.000 0.000 0.000
2 0.000 0.918 0.076 0.006 0.000 1.000 0.000 0.000
3 0.000 0.000 0.901 0.099 0.000 0.015 0.985 0.000

8 1000 1 0.988 0.012 0.000 0.000 1.000 0.000 0.000 0.000
2 0.000 0.947 0.052 0.001 0.000 1.000 0.000 0.000
3 0.000 0.000 0.958 0.042 0.000 0.000 1.000 0.000

Table 3: Predicted number of latent states with AIC and BIC for the models for r = 2
response variables.

k = 2 k = 3
Est. Bias s.d. ave. s.e. IQR s.e. Bias s.d. ave. s.e. IQR s.e.

α̂1 0.003 - - - 0.009 - - -
β̂1 0.003 0.052 0.052 0.002 0.003 0.063 0.063 0.004
β̂2 -0.003 0.053 0.052 0.002 -0.006 0.063 0.063 0.004
γ̂1 0.001 0.095 0.097 0.003 0.001 0.102 0.101 0.005
α̂2 0.001 - - - 0.019 - - -
α̂3 -0.002 - - - 0.002 - - -
β̂3 0.001 0.043 0.043 0.001 0.004 0.052 0.052 0.003
β̂4 -0.001 0.410 0.043 0.001 -0.004 0.053 0.052 0.003
γ̂2 0.001 0.081 0.081 0.003 0.001 0.089 0.088 0.004
α̂4 0.009 - - - 0.009 - - -
α̂5 0.001 - - - -0.012 - - -
β̂5 -0.001 0.039 0.040 0.001 -0.004 0.051 0.050 0.003
β̂6 -0.003 0.042 0.041 0.001 0.004 0.050 0.050 0.003
γ̂3 -0.005 0.089 0.088 0.004 -0.008 0.106 0.106 0.006

δ̂1 0.002 0.114 0.114 0.004 -0.001 0.141 0.142 0.008
δ̂2 -0.001 0.103 0.105 0.004 -0.002 0.136 0.139 0.008

δ̂3 0.001 0.121 0.121 0.007 -0.005 0.168 0.170 0.013
δ̂4 -0.002 0.159 0.160 0.006 -0.011 0.216 0.216 0.017

δ̂5 -0.006 0.129 0.129 0.004 -0.029 0.280 0.280 0.013
δ̂6 -0.011 0.238 0.240 0.009 -0.006 0.235 0.235 0.018
δ̂7 -0.007 0.165 0.161 0.002 -0.014 0.178 0.178 0.013
δ̂8 0.001 0.152 0.150 0.007 -0.007 0.409 0.407 0.014

Table 4: Bias, standard deviation (s.d.), average and interquartile range of the stan-
dard errors (ave. s.e., IQR s.e.) for the maximum likelihood estimator of the model
parameters. The results are based on 1000 simulated samples with r = 3, T = 8,
n = 500 and k = 2, 3.
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Predicted k (AIC) Predicted k (BIC)
T n k 1 2 3 ≥4 1 2 3 ≥4
4 500 1 0.880 0.116 0.004 0.000 1.000 0.000 0.000 0.000

2 0.000 0.860 0.131 0.009 0.000 1.000 0.000 0.000
3 0.000 0.000 0.836 0.164 0.000 0.079 0.921 0.000

4 1000 1 0.902 0.098 0.000 0.000 1.000 0.000 0.000 0.000
2 0.000 0.932 0.060 0.008 0.002 0.970 0.028 0.000
3 0.000 0.032 0.902 0.066 0.000 0.032 0.968 0.000

8 500 1 0.888 0.090 0.002 0.000 1.000 0.000 0.000 0.000
2 0.000 0.902 0.091 0.007 0.000 1.000 0.000 0.000
3 0.000 0.000 0.858 0.142 0.000 0.000 1.000 0.000

8 1000 1 0.953 0.047 0.000 0.000 1.000 0.000 0.000 0.000
2 0.000 0.926 0.074 0.000 0.000 1.000 0.000 0.000
3 0.000 0.010 0.950 0.040 0.000 0.000 1.000 0.000

Table 5: Predicted number of latent states with AIC and BIC for the models for r = 3
response variables.

AIC BIC
Est. Bias s.d. ave. s.e. IQR s.e. Bias s.d. ave. s.e. IQR s.e.

α̂1 -0.052 - - - -0.064 - - -
β̂1 -0.019 0.059 0.055 0.004 -0.032 0.058 0.054 0.004
β̂2 0.015 0.056 0.055 0.004 0.032 0.055 0.054 0.004
γ̂1 0.027 0.101 0.102 0.006 0.039 0.100 0.100 0.007
γ̂2 0.072 0.110 0.108 0.007 0.097 0.112 0.106 0.008
α̂2 -0.054 - - - -0.068 - - -
β̂3 -0.016 0.058 0.055 0.004 -0.024 0.058 0.054 0.004
β̂4 0.016 0.061 0.055 0.004 0.019 0.057 0.054 0.004
γ̂3 0.066 0.111 0.109 0.007 0.092 0.111 0.106 0.007
γ̂4 0.034 0.107 0.102 0.006 0.041 0.106 0.100 0.006

δ̂ 0.166 0.181 0.170 0.026 0.212 0.204 0.161 0.025

Table 6: Bias, standard deviation (s.d.), average and interquartile range of the stan-
dard errors (ave. s.e., IQR s.e.) for the maximum likelihood estimator of the model
parameters. The results are based on 1000 simulated samples with r = 2, T = 8,
n = 500 and each element of αit following an AR(1). The number of latent states is
chosen either with AIC or BIC criterion.

results in Table 8, this difference is due to the fact that AIC tends to choose a larger

number of states than BIC and, with a larger number of states, the continuous latent

process is better approximated. Nevertheless, the number of latent states selected

with this criterion is small in most cases. The results obtained with other values of

n and T are similar to those here shown and confirm that our model can adequately

approximate a model based on a continuous latent process of type AR(1), and then
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AIC BIC
Est. Bias s.d. ave. s.e. IQR s.e. Bias s.d. ave. s.e. IQR s.e.
α̂1 -0.061 - - - -0.191 - - -
β̂1 0.001 0.056 0.056 0.003 0.001 0.056 0.055 0.003
β̂2 -0.009 0.055 0.056 0.003 -0.009 0.055 0.054 0.003
γ̂1 0.071 0.113 0.107 0.007 0.071 0.112 0.101 0.004
α̂2 0.023 - - - -0.193 - - -
α̂3 -0.063 - - - -0.144 - - -
β̂3 -0.004 0.048 0.047 0.003 -0.004 0.048 0.045 0.002
β̂4 -0.005 0.050 0.046 0.003 -0.005 0.052 0.045 0.002
γ̂2 0.051 0.099 0.092 0.006 0.052 0.101 0.089 0.004
α̂4 -0.075 - - - -0.253 - - -
α̂5 -0.038 - - - -0.113 - - -
β̂5 0.003 0.048 0.045 0.003 0.003 0.048 0.049 0.002
β̂6 -0.008 0.049 0.045 0.003 -0.008 0.042 0.042 0.002
γ̂3 0.072 0.118 0.108 0.012 0.072 0.118 0.099 0.006
δ̂1 0.047 0.130 0.128 0.009 0.146 0.132 0.128 0.006
δ̂2 0.053 0.121 0.119 0.007 0.144 0.116 0.119 0.004
δ̂3 0.056 0.142 0.137 0.013 0.175 0.130 0.137 0.009
δ̂4 0.049 0.183 0.178 0.016 0.171 0.179 0.179 0.018
δ̂5 0.035 0.189 0.179 0.029 0.216 0.170 0.179 0.025
δ̂6 0.060 0.237 0.229 0.044 0.278 0.207 0.229 0.038
δ̂7 0.051 0.176 0.164 0.027 0.260 0.157 0.164 0.033
δ̂8 0.073 0.204 0.219 0.040 0.260 0.209 0.219 0.036

Table 7: Bias, standard deviation (s.d.), average and interquartile range of the stan-
dard errors (ave. s.e., IQR s.e.) for the maximum likelihood estimator of the model
parameters. The results are based on 1000 simulated samples with r = 3, T = 8,
n = 500 and each element of αit following an AR(1). The number of latent states is
chosen either with AIC or BIC criterion.

Predicted k (AIC) Predicted k (BIC)
r 1 2 3 4 ≥5 1 2 3 4 ≥5
2 0.000 0.018 0.885 0.088 0.009 0.000 0.122 0.878 0.000 0.000
3 0.000 0.000 0.027 0.804 0.170 0.000 0.000 0.955 0.045 0.000

Table 8: Predicted number of latent states for the case of r = 2 response variables
considered in Table 6 and for that of r = 3 response variables considered in Table 7.

reliable parameter estimates can be obtained. Obviously, we need to be cautious in

generalizing this conclusion to continuous latent processes of a different nature. For

instance, we expect that the approximation can be inadequate in the presence of an

AR(2) process, which has a dependence structure different from the one assumed in

our model.
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6 Analysis of the PSID dataset

We illustrate the proposed model through the analysis of a dataset which is very

similar to that used in the study of Hyslop (1999). The dataset was extracted from

the database deriving from the Pseudo Study of Income Dynamics, which is primarily

sponsored by the National Science Foundation, the National Institute of Aging, and

the National Institute of Child Health and Human Development and is conducted

by the University of Michigan. This database is freely accessible from the website

http://psidonline.isr.umich.edu, to which we refer for details.

Our dataset concerns n = 1446 women who were followed from 1987 to 1993.

There are two binary response variables: fertility (indicating whether a woman had

given birth to a child in a certain year) and employment (indicating whether she was

employed). The covariates are: race (dummy variable equal to 1 for a black woman),

age (in 1986), education (year of schooling), child 1-2 (number of children in the family

aged between 1 and 2 years, referred to the previous year), child 3-5, child 6-13, child

14-, income of the husband (in dollars, referred to the previous year).

In analyzing the dataset, the most interesting scientific question concerns the

direct effect of fertility on employment. Also of interest are the strength of the state

dependence effect for both response variables and how these variables depend on the

covariates. The proposed approach allows us to separate these effects from the effect

of the unobserved heterogeneity by modeling the latter by a latent process. In this

way, we admit that the unobserved heterogeneity effect on the response variables is

time-varying; this is not allowed either within a latent class model with covariates or

in the most common random effect models.

On these data, we fitted the proposed model with a number of latent states k

from 1 to 5. The model is formulated on the basis of assumptions (4) and (5),
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with X it = 12 ⊗ x′it and Y it = 12 ⊗ y′i,t−1, t = 1, . . . , T , and on assumption (9),

with Y i0 = 1k−1 ⊗ ( 1 y′i0 ). The vector xit includes the covariates indicated above

further to a dummy variable for each year. The results of this preliminary analysis

are reported in Table 9 in terms of maximum log-likelihood, AIC and BIC. For each

value of k we adopted both the deterministic and the random search mechanism

described at the end of Section 4.1 to initialize the EM algorithm and we report

the results corresponding to the best solution in terms of likelihood, provided that

the corresponding observed information matrix J(θ̂) is of full rank. In Table 9 we

also report the computing time needed to run, on a Sun XFire 4100 computer with

AMD dual-core Opteron and 8GB RAM, our Matlab implementation of the EM

algorithm (with the deterministic starting rule) and of the procedure for computing

the standard errors. This computing time is reasonable considering the complexity

of the dataset and the fact that we do not adopt an optimized programming code.

Further, since three is the proper number of latent states for these data, the computing

time considerably increases when fitting a model with a larger number of states. We

note, instead, that there is not much increase in computing time when passing from

four to five latent states.

k
1 2 3 4 5

log-lik. -6219.0 -6050.0 -6011.5 -6004.7 -5993.6
# par. 37 44 53 64 77
AIC 12512 12188 12129 12137 12141
BIC 12707 12420 12409 12475 12548
Time 37s 3m21s 15m59s 1h19m41s 1h40m21s

Table 9: Log-likelihood, number of parameters, AIC, BIC and computing time result-
ing from fitting the proposed latent Markov model with 1 to 5 latent states.

On the basis of these results, we conclude that k = 3 is a suitable number of latent

states for the PSID dataset; in fact, this value of k corresponds to the minimum value

of both AIC and BIC indices.
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In Table 10 we show the estimates of the parameters affecting the marginal logits

of fertility and employment and the log-odds ratio between these variables, again for

k from 1 to 5. We recall that these parameters are collected in vectors β, γ and δ.

k
Effect 1 2 3 4 5

logit fertility intercept∗ -1.807 -2.072 -2.117 -2.198 -2.101
race -0.230∗∗ -0.230∗∗ -0.235∗∗ -0.243∗∗ -0.239∗∗

age† -0.216∗∗ -0.218∗∗ -0.223∗∗ -0.226∗∗ -0.224∗∗

(age†)2/100 -1.112∗∗ -1.122∗∗ -1.135∗∗ -1.153∗∗ -1.107∗∗

education† 0.152∗∗ 0.154∗∗ 0.160∗∗ 0.162∗∗ 0.160∗∗
child 1-2 0.183∗∗ 0.187∗∗ 0.177∗∗ 0.177∗∗ 0.170∗∗
child 3-5 -0.360∗∗ -0.374∗∗ -0.389∗∗ -0.390∗∗ -0.388∗∗
child 6-13 -0.594∗∗ -0.605∗∗ -0.611∗∗ -0.613∗∗ -0.608∗∗
child 14- -0.879∗∗ -0.885∗∗ -0.893∗∗ -0.897∗∗ -0.903∗∗

income†/1000 0.002 0.002 0.002 0.002 0.002
lag fertility -1.476∗∗ -1.469∗∗ -1.482∗∗ -1.452∗∗ -1.499∗∗
lag employment -0.163 0.212 0.444∗∗ 0.443∗∗ 0.427∗∗

logit employment intercept∗ -0.688 0.523 -0.010 -0.205 0.087
race 0.099 0.125 0.134 0.163 0.192
age† 0.015∗∗ 0.028 0.068∗∗ 0.070∗∗ 0.074∗∗

(age†)2/100 -0.103 -0.093 0.045 0.109 -0.205
education† 0.102∗∗ 0.125 0.096∗∗ 0.104∗∗ 0.121∗∗
child 1-2 -0.116∗∗ -0.174 -0.089 -0.010 -0.031
child 3-5 -0.234∗∗ -0.219 -0.190∗∗ -0.1613 -0.146
child 6-13 -0.062 0.012 -0.006 0.030 0.034
child 14- -0.010 0.052 0.065 0.086 0.160
income†/1000 -0.009∗∗ -0.009 -0.013∗∗ -0.013∗∗ -0.014∗∗
lag fertility -0.478∗∗ -0.733∗∗ -0.704∗∗ -0.654∗∗ -0.747∗∗
lag employment 2.949∗∗ 1.571∗∗ 1.008∗∗ 1.079∗∗ 0.746∗∗

log-odds ratio intercept -1.213∗∗ -1.286∗∗ -1.130∗∗ -1.651∗∗ -1.173∗∗

Table 10: Maximum likelihood estimates of the model parameters affecting the
marginal logits for fertility and employment and the log-odds ratio (∗average of
the support points based on the posterior probabilities, †minus the sample average,
∗∗significant at the 5% level, in boldface the parameter estimates for the selected
model).

On the basis of the estimates of the parameters for the covariates under the se-

lected number of states k = 3, we conclude that race has significant effect on fertility.

In fact, as shown in Table 10, the estimate of the coefficient for the corresponding

dummy is equal to -0.235 with a p-value less than 0.05. On the other hand, this

covariate has not a significant effect on employment. Similarly, age seems to have
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a stronger effect on fertility than on employment. At this regard consider that the

women in the sample were aged between 18 and 47, which is a limited range of years

if we want to effectively study the effect of aging on the probability of having a job

position. Other considerations arising from Table 10 are that education has a sig-

nificant effect on both fertility and employment, whereas the number of children in

the family strongly affects only the first response variable and income of the husband

strongly affects only the second one. Very interesting are the estimates of the associ-

ation parameters, i.e. the log-odds ratio between the two response variables and the

parameters measuring the effect of the lagged responses on the marginal logits. The

log-odds ratio is negative and highly significant, meaning that the response variables

are negatively associated when referred to the same year. On the other hand, lagged

fertility has a significant negative effect on both response variables, whereas lagged

employment has a significant negative effect on the first variable and a significant

positive effect on the second variable. These estimates allow us to conclude that

fertility has a negative effect on the probability of having a job position in the same

year of the birth and the following one, whereas employment is serially positively

correlated (as consequence of the state dependence effect) and fertility is negatively

serially correlated.

For the model based on k = 3 latent states, we also show in Table 11 the estimates

of the support points (one for the marginal logit of fertility and the other for that of

employment) corresponding to each latent state, the estimates of the parameters φ

of the model on the initial probabilities of the latent states, and the estimated transi-

tion probability matrix. We recall that we assume a multinomial logit model on these

probabilities, with the first latent state taken as reference category. This model uses,

as covariates, fertility and employment at the initial year of observation; see assump-

tion (9). The corresponding initial probabilities of the three states, averaged on all
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the subjects in the samples, are equal to 0.100, 0.266 and 0.634, respectively. Further,

the average probability of each latent state at every time occasion is represented in

Figure 1.

Latent Support points Initial prob. parameters Transition
state Fertility Empl. Intercept Fertility Empl. probabilities

1 -1.349 -5.358 - - - 0.947 0.050 0.003
2 -1.858 -1.066 0.775 0.337 0.861 0.068 0.888 0.044
3 -2.505 2.205 0.370 0.015 4.253∗∗ 0.003 0.092 0.906

Table 11: Estimated support points for each latent state, estimated parameters for the
corresponding initial probabilities and estimated transition probability matrix.
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Figure 1: Estimated average probability of each latent state at every time occasion.

As may be deduced looking at the estimates for the support points in Table 11,

the three latent states correspond to different levels of propensity to give birth to

a child and to have a job position. The first latent state, with support point ξ̂1 =

(−1.349,−5.358)′, corresponds to subjects with the highest propensity to fertility

and the lowest propensity to have a job position. In fact, the first element of ξ̂1 is

higher and the second is lower than the corresponding elements of the other support

points ξ̂2 and ξ̂3. On the contrary, the third latent state corresponds to subjects with

the lowest propensity to fertility and the highest propensity to have a job position.

Finally, the second state is associated to intermediate levels of both propensities. It
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is also interesting to observe that the transition matrix has an almost symmetric

structure which implies the evolution of the probability of each state represented in

Figure 1. We can note that the probability of the first two latent states grows across

time, whereas that of the third latent state decreases, but this state always remains

the one with highest probability. The consequence is that women without children

and not having a job position in the previous year tend to become more inclined to

childbearing and less inclined to have a job position as time goes.

In order to better investigate the features of the latent process, we also tested the

hypothesis that the transition matrix is diagonal, so that a latent class model with

covariates results. The latter may be fitted by a simpler version of the EM algorithm

illustrated in Section 4.1. The likelihood ratio statistic for this hypothesis is equal

to 40.848 which, on the basis of the results of Bartolucci (2006), leads us to strongly

reject the hypothesis. In order to help the comparison between the proposed model

and its latent class version, we also report in Tables 12 and 13 a summary of the

results obtained with the latter, for a number of latent classes k between 1 and 5.

k
1 2 3 4 5

log-lik. -6219.0 -6064.3 -6031.7 -6025.1 -6022.7
# par. 37 42 47 52 57
AIC 12512 12213 12157 12154 12159
BIC 12707 12434 12405 12429 12460

Table 12: Log-likelihood, number of parameters, AIC and BIC resulting from fitting
the latent class version of the proposed model with 1 to 5 latent classes.

It is worth noting that the smallest value of the AIC index obtained with the pro-

posed model is smaller than that reachable with its latent class version. This confirms

that, realistically, the effect of unobservable characteristics of a subject on fertility

and employment is not time-constant. The implications of ignoring this aspect may

be deduced by comparing the parameter estimates in Table 13 with those in Table

10. The most evident difference is in the effect of lagged employment on the marginal
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k
Effect 1 2 3 4 5

logit fertility intercept∗ -1.807 -1.900 -1.988 -1.921 -2.881
race -0.230∗∗ -0.226 -0.241∗∗ -0.245∗∗ -0.248∗∗

age† -0.216∗∗ -0.216∗∗ -0.217∗∗ -0.218∗∗ -0.222∗∗

(age†)2/100 -1.112∗∗ -1.126∗∗ -1.127∗∗ -1.147∗∗ -1.167∗∗

education† 0.152∗∗ 0.152∗∗ 0.153∗∗ 0.151∗∗ 0.155∗∗
child 1-2 0.183∗∗ 0.187∗∗ 0.183∗∗ 0.156∗∗ 0.080
child 3-5 -0.361∗∗ -0.369∗∗ -0.379∗∗ -0.390∗∗ -0.428∗∗
child 6-13 -0.594∗∗ -0.603∗∗ -0.613∗∗ -0.616∗∗ -0.638∗∗
child 14- -0.879∗∗ -0.883∗∗ -0.889∗∗ -0.893∗∗ -0.909∗∗

income†/1000 0.002 0.002 0.002 0.002 0.003
lag fertility -1.476∗∗ -1.459∗∗ -1.462∗∗ -1.503∗∗ -1.575∗∗
lag employment -0.163 -0.018 0.118 0.034 0.005

logit employment intercept∗ -0.688 0.014 -0.143 -1.043 -0.630
race 0.099 0.082 0.160 0.181 0.180
age† 0.015∗∗ 0.016 0.021 0.021 0.021
(age†)2/100 -0.103 0.010 0.002 -0.011 -0.014
education† 0.102∗∗ 0.119∗∗ 0.116∗∗ 0.124∗∗ 0.126∗∗
child 1-2 -0.116∗∗ -0.177∗∗ -0.123 -0.182∗∗ -0.178∗∗
child 3-5 -0.234∗∗ -0.170∗∗ -0.159∗∗ -0.190∗∗ -0.186∗∗
child 6-13 -0.062 0.046 0.051 0.058 0.062
child 14- -0.010 0.048 0.050 0.064 0.068
income†/1000 -0.009∗∗ -0.009∗∗ -0.010∗∗ -0.010∗∗ -0.010∗∗
lag fertility -0.478∗∗ -0.681∗∗ -0.617∗∗ -0.677∗∗ -0.680∗∗
lag employment 2.949∗∗ 2.061∗∗ 1.791∗∗ 1.751∗∗ 1.753∗∗

log-odds ratio intercept -1.213∗∗ -1.302∗∗ -1.227∗∗ -1.300∗∗ -1.325∗∗

Table 13: Estimates of the parameters affecting the marginal logits for fertility and
employment and the log-odds ratio under the latent class version of the proposed model
(∗average of the support points based on the posterior probabilities, †minus the sample
average, ∗∗significant at the 5% level).

logit of this response variable. The estimate of this effect never goes below 1.751

under the latent class model, which is much higher than the value obtained under

the proposed model, corresponding to 1.008. Then, a model which ignores that the

effect of unobserved heterogeneity might be time-varying usually leads to an overesti-

mation of the state dependence effect with, for example, important consequences on

the evaluation of the opportunity of an employment policy.

Finally, for each woman in the sample we estimated the a posteriori most likely

sequence of latent states by using the Viterbi algorithm. As an illustration, consider a

white woman in the sample who was 27 years old in 1986, with 12 years of education
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and no children in the same year, and having a husband with income between 10,000

and 21,000 dollars in the period of interest. This woman had no children in 1987 and

1993, and had a job position in 1987 and 1988 and continuously from 1991 to 1993.

The corresponding predicted sequence of latent states is 3, 3, 2, 2, 2, 2, 2, meaning

that this woman was in the third state in 1987 and 1988 and then she moved to the

second. Consequently, her propensity to childbearing has increased across time.

Overall, it results that 78.5% of the women started and persisted in the same

latent state for the entire period, whereas for the 21.5% of the women we had one

or more transitions between states. The presence of these transitions explains the

difference between the estimates of the association parameters under the proposed

latent Markov model (see Table 10) and its latent class version (see Table 13).

7 Discussion

In this paper, we extend the dynamic logit model (Hsiao, 2005) for binary longitudi-

nal data in two directions. First, we allow modeling response variable vectors with

any number and any kind of categorical responses. Second, we allow for the presence

of subject-specific parameters which are time-varying and follow a first-order Markov

chain which is not directly observable. The resulting model may be considered as a

transition model (Molenberghs and Verbeke, 2004) for multivariate categorical longi-

tudinal data, since the responses at a certain occasion are also modeled conditional on

their values at the previous occasion. The approach is then different from approaches

in which the marginal distribution of the response variables at each occasion is directly

modeled; see, for instance, Lang and Agresti (1994) and Molenberghs and Lesaffre

(1994). However, at least in our context of application, we consider transition models

more interesting since they allow one to directly measure the state dependence effect

(Heckman, 1981b), i.e. the real effect that experiencing a certain situation in the
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present has on the probability of experiencing the same situation in the future.

Two features of the proposed approach are worth to be remarked. First, the

approach relies on a flexible family of link functions to parameterize in a meaningful

way the conditional distribution of the vector of response variables. This family

is based on marginal logits and log-odds that may be of different types so as to

suit at best the nature of the data. For instance, global or continuation logits and

log-odds ratios may be used with ordinal response variables. Second, by assuming

that the latent process is discrete we avoid parametric assumptions on it, giving in

this way more flexibility to the resulting model in the sense of Heckman and Singer

(1984) and Lindsay et al. (1991). Assuming a discrete instead of a continuous latent

process also has the advantage of permitting to exactly compute the likelihood of the

model without requiring quadrature or Monte Carlo methods. On the other hand,

some simulation results illustrated in Section 5 show that the maximum likelihood

estimator of the parameters has a reduced bias even when data are generated from a

version of the model based on a continuous latent process. However, these results have

to be cautiously taken considering that they come from a rather limited simulation

study in which the true model is based on an AR(1) process. A drawback of assuming

a discrete latent process is that the number of model parameters quickly increases

with the number of latent states. Though these simulation results confirm that a

small number of states is often required in order to have an adequate fit, the model

may be made more parsimonious by imposing suitable constraints on the transition

matrix.

Another aspect to be remarked concerns the numerical complexity of the EM al-

gorithm for computing the maximum likelihood estimate of the model parameters.

As for standard latent variable models, this algorithm may require a large number of

steps. However, in the simulation study and in our application we did not observe
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particular problems of instability or lack of convergence. Moreover, as the number

of response variables or its categories increases, the numerical complexity of the al-

gorithm grows at a reasonable rate. This is because we rely on a parametrization of

the distribution of the response variables based on effects (marginal logits and log-

odds ratios) whose number does not increase exponentially with the number of these

variables. Moreover, the EM algorithm did not show particular problems with either

a large number of states or a large number of time occasions. This is because we use

special recursions to exactly compute the likelihood and the conditional probabilities

of the latent states required within this algorithm. Moreover, we observed that the

number of iterations required to reach the convergence of the EM algorithm tends to

be small when data are generated from a model based on a limited number of well

separated latent states. On the other hand, special care has to be payed in order

to check that the point at convergence of the algorithm corresponds to the global

maximum of the likelihood. For this aim, we suggested a procedure based on a deter-

ministic and a random rule for choosing the starting values for this algorithm which

seems to work properly.

A final point concerns possible extensions of the proposed approach. A simple

extension consists in allowing the number of time occasions to vary between subjects.

Though not explicitly showed, this extension may be simply implemented in our ap-

proach by adapting to this case the recursions illustrated in Appendix. The structure

of the EM algorithm illustrated in Section 4.1 does not need any relevant adjustment.

Though some adjustments to the estimation algorithm are necessary, the model may

also be used when a different number of response variables is observed between oc-

casions. This is made possible by the adopted parametrization which gives rise to

the same interpretation for the parameters of interest regardless of the number of

response variables. In fact, it is based on marginal effects which, when referred to the
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same set of response variables, are always expressed in the same way. This feature

is not shared by parametrizations of log-linear type, which are based on conditional

logits and higher order interactions given a reference value of the other variables.

Appendix: marginal and posterior probabilities

Efficient computation of the probability in (10) may be performed by exploiting a

forward recursion available in the hidden Markov literature, and which is here ex-

pressed by using the matrix notation; see also MacDonald and Zucchini (1997) and

Bartolucci (2006).

The recursion consists of computing, for t = 1, . . . , T , the vector

qit(yi1, . . . , yit) =





diag[ui1(yi1)]λ(yi0) if t = 1,

diag[uit(yit)]Π
′qit(yi1, . . . , yi,t−1) otherwise,

where uit(yit) is a column vector with elements p(yit|αit = ξc, xit,yi,t−1), c =

1, . . . , k. We then compute p(yi1, . . . , yiT |xi1, . . . , xiT ,yi0) as the sum of the elements

of qiT (yi1, . . . , yiT ).

For what concerns the posterior probabilities in (11) and (12), let V it(yi1, . . . , yiT )

be a matrix with elements p(αi,t−1 = ξc, αit = ξd|xi1, . . . , xiT , yi0, . . . , yiT ) for c, d =

1, . . . , k. For t = 2, . . . , T , this matrix may be computed as follows

V it(yi1, . . . , yiT ) =
diag[qi,t−1(yi1, . . . , yi,t−1)]Πdiag[uit(yit)]diag[vit(yit, . . . , yiT )]

p(yi1, . . . , yiT |xi1, . . . , xiT ,yi0)
,

where the vector vit(yit, . . . , yiT ) is equal to 1k for t = T and, for t < T , is

computed as Πdiag[ui,t+1(yi,t+1)]vi,t+1(yi,t+1, . . . , yiT ). The probabilities p(αit =

ξc|xi1, . . . , xiT , yi0, . . . , yiT ) may then be computed by suitable sums of the elements

of V it(yi1, . . . , yiT ).
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