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A MULTIVARIATE FAA DI BRUNO FORMULA

WITH APPLICATIONS

G. M. CONSTANTINE AND T. H. SAVITS

Abstract. A multivariate Faa di Bruno formula for computing arbitrary par-
tial derivatives of a function composition is presented. It is shown, by way of a
general identity, how such derivatives can also be expressed in the form of an
infinite series. Applications to stochastic processes and multivariate cumulants
are then delineated.

1. Introduction and notation

The problem of finding an explicit expression for the nth derivative of a compo-
sition of functions has a long and distinguished history. According to Lukacs [7],
the need for such a formula was explicitly mentioned as early as 1810 in Lacroix’s
treatise on calculus. Although several special cases were solved earlier, the first to
obtain a general solution was C. F. Faa di Bruno [4].

The formula of Faa di Bruno is as follows. Let g(x) be defined on a neighborhood
of x0 and have derivatives up to order n at x0; let f(y) be defined on a neighborhood
of y0 = g(x0) and have derivatives up to order n at y0. Then the nth derivative of
the composition h(x) = f [g(x)] at x0 is given by the formula

hn =
n∑
k=1

fk
∑
p(n,k)

n!
n∏
i=1

gλii
(λi!)(i!)λi

.(1.1)

In the above expression, we set

hn =
dn

dxn
h(x0), fk =

dk

dyk
f(y0), gi =

di

dxi
g(x0)

and

p(n, k) = {(λ1, . . . , λn) : λi ∈ N0,
n∑
i=1

λi = k,
n∑
i=1

iλi = n}

withN0 the set of nonnegative integers. A member (λ1, . . . , λn) ∈ p(n, k) represents
a partition of a set with n elements into λ1 classes of cardinality 1, . . . , λn classes
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504 G. M. CONSTANTINE AND T. H. SAVITS

of cardinality n. The number of such partitions is denoted by Skn and is called a
Stirling number of the second kind:

Skn =
∑
p(n,k)

n!
n∏
i=1

1

(λi!)(i!)λi
.(1.2)

It plays an important role in combinatorial theory; see Constantine [2].
Several interesting and useful applications of this formula have appeared in the

literature. For example, Lukacs [9] uses it to relate the moments and cumulants
of a random variable. In that same paper, the formula of Faa di Bruno is used to
show that a population is normal if and only if the k-statistic of order p (any p > 1)
is independent of the sample mean. More recently, Chen and Savits [1] use (1.1)
to calculate arbitrary moments of a compound nonhomogeneous Poisson process.
These ideas are further extended in Constantine and Savits [3] to obtain general-
izations of Dobinski’s formula regarding Bell numbers. Hsu [6] uses Faa di Bruno’s
formula to construct certain classes of identities.

We are interested in multivariate extensions of (1.1). More specifically, let
f(y1, . . . , ym) and g(1)(x1, . . . xd), . . . , g

(m)(x1, . . . , xd) be differentiable a sufficient
number of times, and set

h(x1, . . . , xd) = f [g(1)(x1, . . . , xd), . . . , g
(m)(x1, . . . , xd)] .(1.3)

The task before us is to obtain an explicit expression for an arbitrary partial de-
rivative of h in terms of the various partial derivatives of the functions f and
g(1), . . . , g(m). The special case when d = 1 and arbitrary m appears in Most
[11], and in an even more restricted form in Hoppe [5]. To the best of our knowl-
edge, the problem for a general function composition as stated in (1.3) has not been
considered. We could not even trace the simpler case with m = 1 and arbitrary d.

The paper is organized as follows. Our multivariate Faa di Bruno formula is
derived in Section 2. Some special cases are then delineated. The focus of Section
3 is on a general identity concerning series compositions. Noteworthy special cases
of the identity are examined, leading to the definition of the multivariate Stirling
numbers. Another application offers an infinite sum representation for an arbitrary
partial derivative of a series composition. The last section describes some appli-
cations to multidimensional compound nonhomogeneous Poisson processes and to
relationships between multivariate cumulants and moments.

In order to simplify expressions, it is convenient to recall some multivariate
notation. If ν = (ν1, . . . , νd) ∈ N d

0 and z = (z1, . . . , zd) ∈ <d, then

|ν| =
d∑
i=1

νi ,

ν! =
d∏
i=1

(νi!) ,

Dνx =
∂|ν|

∂xν1
1 · · · ∂x

νd
d

, for |ν| > 0 ,

D0
x = identity operator ,

zν =
d∏
i=1

zνii ,
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A MULTIVARIATE FAA DI BRUNO FORMULA WITH APPLICATIONS 505

and

||z|| = max
1≤i≤d

|zi| .

Also, if ` = (`1, . . . , `d) ∈ N d
0 , we write ` ≤ ν provided `i ≤ νi for i = 1, . . . , d. In

such a case, we set (
ν

`

)
=

d∏
i=1

(
νi
`i

)
=

ν!

`!(ν − `)! .

A function h is said to belong to Cν(x0) if D`x h exists and is continuous in a
neighborhood of x0 for all ` ≤ ν; we also write h ∈ Cn(x0) if h ∈ C`(x0) for all
|`| ≤ n.

Finally, we introduce a linear order on N d
0 . If µ = (µ1, . . . , µd) and ν =

(ν1, . . . , νd) are in N d
0 , we write µ ≺ ν provided one of the following holds:

(i) |µ| < |ν| ;
(ii) |µ| = |ν| and µ1 < ν1; or
(iii) |µ| = |ν|, µ1 = ν1, . . . , µk = νk and µk+1 < νk+1 for some 1 ≤ k < d.

2. General statement and proof

As mentioned in Section 1, we aim to obtain an explicit expression for an arbi-
trary partial derivative of a composition of functions

h(x1, . . . , xd) = f [g(1)(x1, . . . , xd), . . . , g
(m)(x1, . . . , xd)] .

Specifically, let ν = (ν1, . . . , νd) 6= 0 = (0, . . . , 0) and x0 be given. Assume
that we have g(1), . . . , g(m) ∈ Cν(x0) and f ∈ Cn(y0), where n = |ν| and y0 =
(g(1)(x0), . . . , g(m)(x0)). Under these conditions Dνxh(x0) exists and can be explic-
itly expressed as in Theorem 2.1 below.

Setting hν = Dνxh(x0), fλ = Dλyf(y0), g
(i)
µ = Dµx g

(i)(x0), gµ = (g
(1)
µ , . . . , g

(m)
µ ),

we state our main result.

2.1. Theorem.

hν =
∑

1≤|λ|≤n
fλ

n∑
s=1

∑
ps(ν,λ)

(ν!)
s∏
j=1

[g`j ]
kj

(kj !)[`j !]|kj|
,(2.1)

where n = |ν| and

ps(ν,λ) = {(k1, . . . ,ks; `1, . . . , `s) : |ki| > 0 ,(2.2)

0 ≺ `1 ≺ · · · ≺ `s,
s∑
i=1

ki = λ and
s∑
i=1

|ki|`i = ν} .

In the above, the vectors k are m-dimensional, the vectors ` are d-dimensional
and we always set 00 = 1.
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506 G. M. CONSTANTINE AND T. H. SAVITS

2.2. Remark. (i) It is perhaps notationally less cumbersome to introduce the set

p(ν,λ) ={(k1 . . . ,kn; `1, . . . , `n) : for some 1 ≤ s ≤ n,
ki = 0 and `i = 0 for 1 ≤ i ≤ n− s; |ki| > 0 for n− s+ 1 ≤ i ≤ n;

and 0 ≺ `n−s+1 ≺ · · · ≺ `n are such that
n∑
i=1

ki = λ,
n∑
i=1

|ki|`i = ν}.

(2.3)

In partial analogy to the univariate case, one may view the `i’s as the “parts” of
ν and the |ki|’s as their respective multiplicities. Clearly p(ν,λ) can be identified
with the union of ps(ν,λ) for s = 1, . . . , n. We may then write formula (2.1) more
succinctly as

hν =
∑

1≤|λ|≤n
fλ

∑
p(ν,λ)

(ν!)
n∏
j=1

[g`j ]
kj

(kj !) [`j !]|kj |
.(2.4)

(ii) Formula (2.1), or (2.4), is of course valid in a neighborhood of x0. For clarity
of exposition, we shall sometimes distinguish this situation by writing hν(x) =

Dνxh(x), fλ(y) = Dλy f(y) and g
(i)
ν (x) = Dνx g(i)(x).

Our formula is established through a sequence of lemmas by extending the
method of proof given in Constantine [2] for the univariate Faa di Bruno’s for-
mula (1.1).

2.3. Lemma. For 0 6= ω ≤ ν,

hω(x) =
∑

1≤|λ|≤|ω|
fλ[g(x)]αω,λ(x)

where αω,λ(x) is independent of the choice of f ∈ Cn(y0) and is expressible as a

sum of terms of the form
∏|λ|
k=1 g

(ik)
µk (x) with 1 ≤ ik ≤ m and 0 6= µk ≤ ω.

Proof. Let ej be a unit vector whose jth component is 1 and the remaining entries
are 0, and suppose ej ≤ ν. Then

hej (x) =
m∑
α=1

feα [g(x)]g(α)
ej (x) .

Since hµ+ej (x) = D
ej
x hµ(x), the result easily follows by induction.

2.4. Remark. It is clear from Lemma 2.3 that in order to compute hν = hν(x0), we
only need to determine the values of αν,λ = αν,λ(x0). Since these values depend

only on the values of g
(i)
µ = g

(i)
µ (x0) for 1 ≤ i ≤ m, 0 6= µ ≤ ν, we obtain the same

values for any functions g̃(i) ∈ Cν(x0) provided g̃
(i)
µ (x0) = g

(i)
µ (x0) for 0 6= µ ≤ ν,

each 1 ≤ i ≤ m. Consequently, without loss of generality, we assume that each g(i)

is infinitely differentiable and that max1≤i≤m sup|µ|>0 |g
(i)
µ (x)| ≤ M < ∞ in a

neighborhood of x0. Specifically, we replace g(i) with the polynomial

g̃(i)(x) =
∑

0≤µ≤ν
g(i)
µ

(x− x0)µ

µ!
.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



A MULTIVARIATE FAA DI BRUNO FORMULA WITH APPLICATIONS 507

Although Theorem 2.1 concerns a specific ν, we now consider all ν ≥ 0 and
define for z ∈ <m,

Bν(z; x) =

{ ∑
1≤|λ|≤|ν| αν,λ(x) zλ if |ν| > 0,

1 if |ν| = 0 .

According to our convention, we write Bν(z) for Bν(z; x0).

2.5. Lemma. Bν(z; x) = exp{−
∑m
i=1 zi g

(i)(x)}Dνx [exp{
∑m
i=1 zi g

(i)(x)}].

Proof. If f(y) = f(y1, . . . , ym) = exp{
∑m
i=1 ziyi}, then Dλyf(y) = zλf(y) for all

λ. Hence for h(x) = f [g(1)(x), . . . , g(m)(x)] = exp{
∑m
i=1 zi g

(i)(x)}, we obtain
fλ[g(x)] = Dλyf [g(x)] = zλh(x). Thus, by Lemma 2.3, for |ν| > 0

hν(x) =
∑

1≤|λ|≤|ν|
fλ[g(x)] αν,λ(x)

= h(x)
∑

1≤|λ|≤|ν|
zλ αν,λ(x) = h(x) Bν(z; x) .

The result now follows.

2.6. Lemma. Bν+ej (z; x) =
∑m
i=1 zi[

∑
0≤`≤ν

(
ν
`

)
g

(i)
`+ej

(x) Bν−`(z; x)].

Proof. We need to recall the multivariate rendition of Leibnitz’s formula which
provides an expression for the partial derivatives of a product of two functions.
Specifically, if F,G ∈ Cν(x0), then in a neighborhood of x0,

Dνx(FG)(x) =
∑

0≤`≤ν

(
ν

`

)
D`x F (x) Dν−`x G(x) .

This formula is easily obtained by induction. Using Lemma 2.5, we can now write

Bν+ej (z; x) = exp{−
m∑
k=1

zkg
(k)(x)} Dν+ej

x [exp{
m∑
k=1

zkg
(k)(x)}]

= exp{−
m∑
k=1

zk g
(k)(x)} Dνx [(

m∑
i=1

zig
(i)
ej (x)) exp{

m∑
k=1

zkg
(k)(x)}]

= exp{−
m∑
k=1

zkg
(k)(x)}

×

 m∑
i=1

zi
∑

0≤`≤ν

(
ν

`

)
g

(i)
`+ej

(x) Dν−`x [exp{
m∑
k=1

zkg
(k)(x)}]


=

m∑
i=1

zi[
∑

0≤`≤ν

(
ν

`

)
g

(i)
`+ej

(x) Bν−`(z; x)] .

This ends the proof.

The next step involves the consideration of two power series in w ∈ <d:

ψ(w) =
∑
|µ|>0

(
m∑
i=1

zi g
(i)
µ

wµ

µ!
)(2.5)
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508 G. M. CONSTANTINE AND T. H. SAVITS

and

φ(w) =
∑
ν≥0

Bν(z)
wν

ν!
.(2.6)

Note that w and z are variables, but we have substituted x = x0. In order to justify
the remaining steps we need to show that these series converge in a neighborhood
of (w, z) = (0,0).

First consider the series (2.5). By Remark 2.4, we may assume that

max
1≤i≤m

sup
|µ|>0

|g(i)
µ | ≤M <∞.

Hence, for ||z|| ≤ R, ||w|| ≤ r,

|ψ(w)| ≤ (mMR)
∑
|µ|>0

r|µ|

µ!
≤ (mMR)erd ,

any r,R > 0.
The convergence of the series (2.6), however, is less straightforward. We need

a bound on Bν(z) =
∑

1≤|λ|≤|ν| αν,λzλ. In Lemma 2.3 it was shown that αν,λ

is expressible as a sum of terms of the form
∏|λ|
j=1 g

(ij)
µj . Hence each such term is

bounded by M |λ|. Thus we need to bound the number of terms in αν,λ. It is easier,
however, to bound the number of terms in

∑
|λ|=k αν,λ instead. We denote this

number by ξ(ν, k).

2.7. Lemma. The number of terms ξ(ν, k) depends on ν through |ν| only; we thus
write ξ(ν, k) = ξn(k) when |ν| = n. Furthermore, ξn(k) = mkSkn for 1 ≤ k ≤ n,
where Skn is a Stirling number of the second kind (see (1.2)).

Proof. Consider |ν| = 1 so that ν = ej for some 1 ≤ j ≤ d. Then

hej =
m∑
α=1

fej g
(α)
ej ,

and therefore ξ(ej , 1) = m, independent of j; i.e., ξ1(1) = m = mS1
1 . Suppose

the result holds for all µ and k with 1 ≤ k ≤ |µ| ≤ n. Let |ν| = n + 1, so that
ν = µ+ ej for some 1 ≤ j ≤ d and µ with |µ| = n. We then write

hν = D
ej
x hµ(x0) = D

ej
x [

∑
1≤|λ|≤n

fλ[g(x)]αµ,λ(x)]

∣∣∣∣
x=x0

=
n∑
k=1

∑
|λ|=k

D
ej
x [fλ[g(x)] αµ,λ(x)]

∣∣∣∣
x=x0

=
n∑
k=1

∑
|λ|=k

{αµ,λ (
m∑
α=1

fλ+eα g
(α)
ej ) + fλ [D

ej
x αµ,λ](x0)} .

But according to Lemma 2.3, each term of αµ,λ(x) for |λ| = k is a product of k

factors of the form
∏k
`=1 g

(i`)
µ` (x) and thus D

ej
x applied to this product contributes

k terms, namely,

D
ej
x [

k∏
`=1

g(i`)
µ`

(x)]

∣∣∣∣
x=x0

=
k∑
`=1

g
(i`)
µ`+ej

∏
r 6=`

g(ir)
µr

.
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Hence it follows that ξ(ν, k) only depends on ν through |ν| = n + 1. If we set
ξn(k) = mksn(k), we obtain the following recursion formula :

sn+1(k) = sn(k − 1) + k sn(k), 1 < k ≤ n ,
sn+1(1) = sn(1),

sn+1(n+ 1) = sn(n) ,

with the initial condition s1(1) = 1. The solution to this system of equations is
given by sn(k) = Skn (see, e.g., Constantine [2], page 9). Hence ξn(k) = mkSkn.

Lemma 2.7 now allows us to bound the series (2.6). Specifically, if ||z|| ≤ R,
then for |ν| = n,

|Bν(z)| ≤
n∑
k=1

(RM)kξn(k) =
n∑
k=1

(mRM)k Skn .

Consequently, for ||z|| ≤ R, ||w|| ≤ r, and using the identity (see Constantine [2],
page 41),

n∑
k=1

tk Skn = e−t
∞∑
`=1

`n
t`

`!
,

we obtain the bound

|φ(w)| ≤ 1 +
∞∑
n=1

∑
|ν|=n

rn

ν!
e−mRM

∞∑
`=1

`n
(mMR)`

`!

= 1 + e−mRM
∞∑
`=1

(mMR)`

`!

∞∑
n=1

∑
|ν|=n

(r`)n

ν!

≤ 1 + e−mRM
∞∑
`=0

(mRM)`

`!
erd`

= 1 + exp{mMR(erd − 1)} .

2.8. Lemma. With the notation of (2.5) and (2.6), ψ(w) = lnφ(w) for w in a
neighborhood of zero.

Proof. Since φ(0) = 1, by continuity we can find r > 0 such that ||w|| ≤ r implies
φ(w) ≥ 1

2 . It then suffices to show that they have the same gradient there since
ψ(0) = lnφ(0) = 0.

Now if 1 ≤ j ≤ d,

D
ej
w [lnφ(w)] =

1

φ(w)

∑
ν≥0

νj>0

Bν(z)
wν−ej

(ν − ej)!

=
1

φ(w)

∑
ν≥0

Bν+ej (z)
wν

ν!
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510 G. M. CONSTANTINE AND T. H. SAVITS

and

D
ej
w ψ(w) =

∑
|µ|>0

µj>0

(
m∑
i=1

zi g
(i)
µ )

wµ−ej

(µ− ej)!

=
∑
µ≥0

(
m∑
i=1

zi g
(i)
µ+ej )

wµ

µ!
.

But according to Lemma 2.6,

∑
ν≥0

Bν+ej (z)
wν

ν!
=
∑
ν≥0

(
m∑
i=1

zi[
∑

0≤`≤ν

(
ν

`

)
g

(i)
`+ej

Bν−` (z)])
wν

ν!

=
∑
ν≥0

 ∑
0≤`≤ν

(
ν

`

)
(
m∑
i=1

zi g
(i)
`+ej

) Bν−`(z)

 wν

ν!

= [
∑
ν≥0

Bν (z)
wν

ν!
] [
∑
µ≥0

(
m∑
i=1

zi g
(i)
µ+ej )

wµ

µ!
]

= φ(w) D
ej
w ψ(w) .

Consequently, D
ej
w [lnφ(w)] = D

ej
w ψ(w) and we are done.

We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. Since lnφ(w) = ψ(w) in a neighborhood of w = 0, the
result remains valid if we exponentiate both sides. Hence

∑
ν≥0

Bν(z)
wν

ν!
= exp{

∑
|µ|>0

(
m∑
i=1

zi g
(i)
µ )

wµ

µ!
}

=
∏
|µ|>0

exp{(
m∑
i=1

zi g
(i)
µ )

wµ

µ!
}

=
∏
|µ|>0

{
∑
k≥0

zk[gµ]k w|k|µ

k!(µ!)|k|
}

=
∑
ν≥0

(
∑
p(ν)

q∏
i=1

zki [g`i ]
ki

ki!(`i!)|ki|
) wν ,

where q = q(ν),0 ≺ `1 ≺ · · · ≺ `q is a complete ordered listing of all nonzero
vectors ` ≤ ν and

p(ν) = {(k1, . . . ,kq) : ki ≥ 0 and

q∑
i=1

|ki|`i = ν} .

The above can be justified by first considering the finite product
∏

0<|µ|≤n and

then passing to a limit as n→∞.
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Since both power series converge in a neighborhood of w = 0, we can equate
coefficients to obtain

Bν(z) = ν!
∑
p(ν)

q∏
i=1

zki [g`i ]
ki

ki! (`i!)|ki|

= ν!
∑
p(ν)

zk1+···+kq (

q∏
i=1

[g`i ]
ki

ki!(`i!)|ki|
) .

But if (k1, . . . ,kq) ∈ p(ν), then setting λ = k1 + · · ·+ kq and n = |ν| we see that

n = |ν| =
q∑
i=1

|ki||`i| ≥
q∑
i=1

|ki| = |λ| .

Consequently, |λ| ≤ n and there are at most n nonzero ki. Also, since not all ki
are zero, |λ| ≥ 1. Thus it is easy to see that we can rewrite the above as

∑
1≤|λ|≤n

αν,λ zλ = Bν(z) = ν!
∑

1≤|λ|≤n
zλ (

n∑
s=1

∑
ps(ν,λ)

s∏
i=1

[g`i ]
ki

(ki!)[`i!]|ki|
) .

(2.7)

Since this is valid in a neighborhood of z = 0, we can equate coefficients and
combine with Lemma 2.3 to conclude the proof of Theorem 2.1.

2.9. Corollary. If 1 ≤ k ≤ n = |ν| , then

ν!
∑
|λ|=k

∑
p(ν,λ)

n∏
j=1

1

(kj !)[`j !]|kj|
= mkSkn .(2.8)

Proof. Define g(i)(x1, . . . , xd) = exp{
∑d
j=1 xj} for i = 1, . . . ,m and set x0 = 0.

Then from (2.7) it follows that

Bν(te) = ν!
n∑
k=1

tk (
∑
|λ|=k

∑
p(ν,λ)

n∏
j=1

1

(kj !) [`j !]|kj |
) ,

for t ∈ < and e = (1, 1, . . . , 1).
On the other hand, according to Lemma 2.5,

Bν(z; 0) = exp{−
m∑
i=1

zi} Dνx [exp{
m∑
i=1

zi g
(i)(x)}]

∣∣∣∣
x=0

.

But

exp{
m∑
i=1

zig
(i)(x)} = h(x1 + · · ·+ xd),

where we set h(u) = exp{(z1 + · · ·+ zm)eu}. Clearly,

Dνx [exp{
m∑
i=1

zi g
(i)(x)}]

∣∣∣∣
x=0

= Dn
u h(0) ,
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512 G. M. CONSTANTINE AND T. H. SAVITS

and, since we can write h(u) = f [g(u)] with f(v) = exp{(z1 + · · · + zm)v} and
g(u) = eu, Faa di Bruno’s formula (1.1) gives

Dn
uh(0) =

n∑
k=1

(z1 + · · ·+ zm)k
∑
p(n,k)

n!
n∏
i=1

1

(λi!)(i!)λi

=
n∑
k=1

(z1 + · · ·+ zm)k Skn .

Hence

Bν(te) =
n∑
k=1

mk tk Skn .

Equating like powers of t gives the desired conclusion.

We close this section with two special cases of Theorem 2.1: the case whenm = 1,
arbitrary d, and the case when d = 1, arbitrary m. The latter case appeared in
Most [11].

2.10. Corollary. Let |ν| = n ≥ 1 and h(x1, . . . , xd) = f [g(x1, . . . , xd)] with g ∈
Cν(x0) and f ∈ Cn(y0), where y0 = g(x0). Then

hν =
n∑
r=1

fr
∑
p(ν,r)

(ν!)
n∏
j=1

[g`j ]
kj

(kj !) (`j !)kj
,(2.9)

where

p(ν, r) ={(k1, . . . , kn; `1, . . . , `n) : for some 1 ≤ s ≤ n,
ki = 0 and `i = 0 for 1 ≤ i ≤ n− s; ki > 0 for n− s+ 1 ≤ i ≤ n;

and 0 ≺ `n−s+1 ≺ · · · ≺ `n are such that
n∑
i=1

ki = r,
n∑
i=1

ki`i = ν}.

2.11. Corollary. Let n ≥ 1, h(x) = f [g(1)(x), . . . , g(m)(x)] with g(i) ∈ Cn(x0) and
f ∈ Cn(y0), where y0 = (g(1)(x0), . . . , g(m)(x0)). Then

hn =
∑

1≤|λ|≤n
fλ

∑
p(n,λ)

(ν!)
n∏
j=1

[gj]
kj

(kj !)[j!]|kj |
,(2.10)

where

p(n,λ) = {(k1, . . . ,kn) : kj ≥ 0,
n∑
j=1

kj = λ,
n∑
j=1

j|kj | = n} .

Note that since we can take `j = j, there is no need to include any `’s in the
above expression for p(n,λ).

3. Series composition and a general identity

In this section we prove a general multivariate identity based on a series com-
position. As a consequence of this identity we obtain another general formula for
calculating the derivative of a series composition in any number of variables. Unlike
the general Faa di Bruno formula (2.4), proved in the previous section, the formula
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which we offer presents itself in the form of an infinite sum. Certain special cases
of the general identity lead to a multivariate extension of the Stirling numbers.

We first introduce some further notation. Let 0 ≤ ν = (ν1, . . . , νd) and 0 6= λ =
(λ1, . . . , λm). Define

s(ν,λ) = {(µ(1)
1 , . . . ,µ

(1)
λ1

; . . . ;µ
(m)
1 , . . . ,µ

(m)
λm

) : µ
(i)
j ∈ N d

0 and
m∑
i=1

λi∑
j=1

µ
(i)
j = ν}

(3.1)

and

s+(ν,λ) = {(µ(1)
1 , . . . ,µ

(1)
λ1

; . . . ;µ
(m)
1 , . . . ,µ

(m)
λm

) ∈ s(ν,λ) : µ
(i)
j 6= 0} .

(3.2)

Our main identity concerns series compositions. Let

f(y1, . . . , ym) = f(y) =
∑
0≤λ

aλ yλ

and, for i = 1, . . . ,m, let

g(i)(x1, . . . , xd) = g(i)(x) =
∑
0≤µ

b(i)µ
xµ

µ!

be power series. For technical simplicity, we shall assume that the series are every-
where convergent, i.e., that f and g(i) are entire functions.

3.1. Theorem. For |ν| > 0,

∑
1≤|λ|

aλ
∑
s(ν,λ)

m∏
i=1

λi∏
j=1

b
(i)

µ
(i)
j

µ
(i)
j !

=
∑

1≤|λ|≤|ν|
fλ (b0)

∑
p(ν,λ)

|ν|∏
j=1

[b`j ]
kj

(kj !)[`j !]|kj |
,

(3.3)

where

bµ = (b(1)
µ , . . . , b(m)

µ ) .

Proof. Consider the series expansion of the series composition h(x) =
f [g(1)(x), . . . , g(m) (x)]. We have

h(x) = f [g(1)(x), . . . , g(m)(x)]

=
∑
0≤λ

aλ

 ∑
0≤µ(1)

b
(1)

µ(1)

xµ
(1)

µ(1)!

λ1

· · ·

 ∑
0≤µ(m)

b
(m)

µ(m)

xµ
(m)

µ(m)!

λm

= a0 +
∑

1≤|λ|
aλ
∑
0≤ν

xν

 ∑
s(ν,λ)

m∏
i=1

λi∏
j=1

b
(i)

µ
(i)
j

µ
(i)
j !


= a0 +

∑
0≤ν

xν

∑
1≤|λ|

aλ
∑
s(ν,λ)

m∏
i=1

λi∏
j=1

b
(i)

µ
(i)
j

µ
(i)
j !

 .

(3.4)
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On the other hand, computing the derivatives of h in accordance with Theorem 2.1,
and evaluating at zero yields

h(x) =
∑
0≤ν

hν(0)
xν

ν!

= f(b0) +
∑

1≤|ν|
xν

∑
1≤|λ|≤|ν|

fλ(b0)
∑
p(ν,λ)

|ν|∏
j=1

[b`j ]
kj

(kj !)[`j !]|kj |
.

(3.5)

Equating the coefficients of xν in (3.4) and (3.5) leads to the conclusion of the
theorem.

Many special cases of Theorem 3.1, with m = 1, d = 1 and f(y) = ey, appear
in Constantine and Savits [3]. The best known special case, Dobinski’s identity, is
obtained by further selecting g(x) = ex. In this case (3.3) yields

e−1
∞∑
k=1

kn

k!
=

n∑
r=1

∑
p(n,r)

n!∏n
j=1(j!)kj (kj !)

= Bn ,(3.6)

the familiar Dobinski series expansion of the Bell number Bn which counts the
number of partitions of a set with n elements. The merit of this expression lies in
the fact that the infinite series on the left of (3.6) is fast converging, and one can
thus assess the magnitude or asymptotic behavior of the Bell numbers; see Lovász
[8].

A noteworthy special case of Theorem 3.1 takes place when b
(i)
0 = g(i)(0) = 0

for all i = 1, . . . ,m. In this case we only need require that f and g(i) be analytic
in a neighborhood of 0. The infinite sum in (3.3) now reduces to a finite sum.

Indeed, for |λ| > |ν|, the relation
∑m
i=1

∑λi
j=1 µ

(i)
j = ν requires that at least one

µ
(i)
j = 0. Hence the corresponding product vanishes. Moreover, the assumption

b0 = 0 implies that fλ(b0) = (λ!) aλ. With these adjustments, the identity (3.3)
becomes

∑
1≤|λ|≤|ν|

aλ
∑

s+(ν,λ)

m∏
i=1

λi∏
j=1

b
(i)

µ
(i)
j

µ
(i)
j !

=
∑

1≤|λ|≤|ν|
aλ (λ!)

∑
p(ν,λ)

|ν|∏
j=1

[b`j ]
kj

(kj !)[`j !]|kj |
.

(3.7)

3.2. Remark. Suppose that f(y) in Theorem 3.1 is an exponential function, that
is, f(y) = exp{

∑m
i=1 ciyi}, where (c1, . . . , cm) = c. Observe that in this case

h(x) = f [(g(x)] can also be written as

h(x) = f [g(0)] f [g(x) − g(0)] .
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We can therefore combine Theorem 3.1 with (3.7) to obtain

∑
1≤|λ|

(
cλ

λ!

) ∑
s(ν,λ)

m∏
i=1

λi∏
j=1

b
(i)

µ
(i)
j

µ
(i)
j !

= f(b0)
∑

1≤|λ|≤|ν|
cλ

∑
p(ν,λ)

|ν|∏
j=1

[b`j ]
kj

(kj !)[`j !]|kj |

= f(b0)
∑

1≤|λ|≤|ν|

(
cλ

λ!

) ∑
s+(ν,λ)

m∏
i=1

λi∏
j=1

b
(i)

µ
(i)
j

µ
(i)
j !

,

where f(b0) = exp{
∑m
i=1 ci b

(i)
0 }. These equations offer an interesting relationship

between summations over s, s+, and p, by way of the exponential series.

3.3. Corollary. Let real numbers b
(i)
µ be given for 0 6= µ ≤ ν, 1 ≤ i ≤ m. Then

∑
s+(ν,λ)

m∏
i=1

λi∏
j=1

b
(i)

µ
(i)
j

µ
(i)
j !

= (λ!)
∑
p(ν,λ)

|ν|∏
j=1

[b`j ]
kj

(kj !)[`j !]|kj |
.(3.8)

Proof. For arbitrary aλ (0 ≤ |λ| ≤ |ν|) define

f(y) =
∑

0≤|λ|≤|ν|
aλ yλ .

Also set, for i = 1, . . . ,m,

g(i)(x) =
∑

0 6=µ≤ν
b(i)µ

xµ

µ!
.

Since (3.7) holds for arbitrary aλ, we obtain (3.8) by equating coefficients of aλ.

Some special cases prove interesting. For example, by taking b
(i)
` = `! for all i,

we obtain

|s+(ν,λ)| = λ!
∑
p(ν,λ)

|ν|∏
j=1

1

(kj !)
.

In the above, |A| denotes the cardinality of the set A. In particular, for the uni-
variate case, i.e., m = d = 1,ν = n and λ = r, we conclude that

r!
∑
p(n,r)

n∏
j=1

1

kj !
= |s+(n, r)| =

(
n− 1

r − 1

)
,

a well-known identity. A more interesting case results by selecting b
(i)
` = 1 for all

` and i. In the univariate case, Corollary 3.3 (upon multiplying both sides by n!)
yields the identity ∑

s+(n,r)

(
n

k1 · · · kr

)
= (r!) Srn ,

expressing the Stirling number of the second kind Srn as a sum of multinomial
coefficients. It is easy to interpret this identity by way of a constructive bijection:
to a partition of a set with n elements into r classes, associate a nondecreasing
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path of n steps in the r-dimensional lattice of nonnegative integers by moving a
step along coordinate i whenever an element falls within class i. The corresponding
multidimensional identity is

∑
s+(ν,λ)

(ν!)
m∏
i=1

λi∏
j=1

1

µ
(i)
j !

= (λ!)
∑
p(ν,λ)

(ν!)

|ν|∏
j=1

1

(kj !)[`j !]|kj|
.

In anology with the univariate case, we call the numbers

Sλν =
∑
p(ν,λ)

(ν!)

|ν|∏
j=1

1

(kj !)[`j !]|kj|
(3.9)

multivariate Stirling numbers. Their properties will be studied in a future paper.
We close this section with another theorem. Since the right-hand side of the

identity (3.3) is in essence Faa di Bruno’s formula, we can develop an infinite series
expansion for the derivative hν of a series composition.

3.4. Theorem. Let f(y) = f(y1, . . . , ym) be an entire function and g(i) ∈
Cν(t0) for i = 1, . . . ,m. Then in a neighborhood of t0, the composition h(t) =
f [g(1)(t), . . . , g(m)(t)] has νth derivative given by

hν = ν!
∑

1≤|λ|

fλ(0)

λ!

∑
s(ν,λ)

m∏
i=1

λi∏
j=1

g
(i)

µ
(i)
j

µ
(i)
j !

.(3.10)

Proof. In Theorem 3.1, replace g(i) with

G(i) (x; t) =
∑

0≤µ≤ν
g(i)
µ (t)

xµ

µ!

and consider the composition H(x; t) = f [G(1)(x; t), . . . , G(m)(x; t)]. Noting that
G(i)(0; t) = g(i)(t) and H(0; t) = h(t), we fix t and apply Theorem 3.1. The
right-hand side of (3.3) becomes

∑
1≤|λ|≤|ν|

fλ [g(t)]
∑
p(ν,λ)

|ν|∏
j=1

[g`j (t)]kj

(kj !)[`j !]|kj|
=

1

ν!
hν(t)

by equation (2.4). The left-hand side of (3.3), except for the (ν!) factor, coincides
with what appears on the right-hand side of (3.10), since aλ = fλ(0)/λ!. This ends
the proof.

The expression for hν written in Theorem 3.4 is generally not the most efficient
way to explicitly calculate the derivatives of a function composition and in fact im-
poses stronger requirements on the function f than are necessary for existence. Its
usefulness lies primarily in establishing bounds or rates of growth for such deriva-
tives in much the same way that Dobinski’s formula (3.6) allows for the estimation
of the Bell numbers Bn.
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4. Applications

A. Compound nonhomogeneous Poisson processes. Many physical situa-
tions can be modeled by a compound nonhomogeneous Poisson process. In par-
ticular, in maintenance theory, a minimal repair process is modeled by a nonho-
mogeneous Poisson process N = {N(t), t ≥ 0} with a continuous mean function
Λ(t) = E[N(t)]. The repair times correspond to the arrival times S1, S2, . . . of the
process N . If we associate costs Y1, Y2, . . . to each repair time, then

X(t) =

N(t)∑
i=1

Yi(4.1)

is a compound nonhomogeneous Poisson process. We assume that the costs are
conditionally independent given the repair times, i.e.,

P{Y1 ∈ B1, . . . , Yn ∈ Bn|S1, . . . , Sn} =
n∏
i=1

L(Si;Bi)

where L(s;B) is a stochastic kernel on [0,∞) × B(<1). A detailed study of this
process was initiated in Chen and Savits [1]. They showed that X is characterized
as an independent increment process with characteristic function

E[eiuX(t)] = exp {
∫ t

0

∫
<

(eiuy − 1) L(s; dy) dΛ(s)} .(4.2)

Thus it is easy to calculate moments from Faa di Bruno formula (1.1).
If we now replace the cost Yk by a random vector Yk = (Yk1, . . . , Ykd) of costs,

the corresponding process (4.1) is d-dimensional, i.e., X(t) = (X1(t), . . . , Xd(t)).
Analogously, its characteristic function for u = (u1, . . . , ud) is given by the expres-
sion

E[ei(u,X(t))] = exp{
∫ t

0

∫
<d

(ei(u,y) − 1) L(s; dy) dΛ(s)} .(4.3)

Hence, to calculate mixed moments, we can use our generalized Faa di Bruno for-
mula (2.9).

4.1. Theorem. Let t ≥ 0 and ν = (ν1, . . . , νd) be given. Suppose that∫ t

0

∫
<d

d∏
i=1

|yνii | L(s; dy)dΛ(s) <∞ .

Then E[Xν(t)] = E[
∏d
i=1 Xνi

i (t)] exists and is given by

E[Xν(t)] = ν!

|ν|∑
r=1

∑
p(ν,r)

|ν|∏
j=1

µ
kj
`j

(t)

(kj !)(`j !)kj
(4.4)

where

µ`(t) =

∫ t

0

∫
<d

y` L(s; dy)dΛ(s) .(4.5)

Proof. The existence can be shown in a manner analogous to the one-dimensional
case (d = 1) which appears in Chen and Savits [3]. We now apply Corollary 2.10
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with f(y) = ey, g(u) =
∫ t

0

∫
<d {e

i(u,y) − 1} L(s; dy)dΛ(s) and h(u) = f [g(u)],
noting that

E[Xν(t)] =
1

(i)|ν|
hν(0) .(4.6)

B. Filtered nonhomogeneous Poisson processes. Keeping the same notation
as in Section 4A, we call X = {X(t), t ≥ 0} a filtered nonhomogeneous Poisson
process if it can be represented as

X(t) =

N(t)∑
k=1

w(t, Sk, Yk)(4.7)

where w(t, s, y) is a Borel measurable function. One could also allow Yk and w to
be vector-valued, but we shall be content to only consider the scalar version here.

Since X no longer has independent increments, one might be interested in ob-

taining moments of the form E[
∏d
j=1 Xνj (tj)] for 0 ≤ t1 < · · · < td. To han-

dle this situation, we first obtain the characteristic function. Therefore, given
0 ≤ t1 < t2 < · · · < td = τ , we define for 1 ≤ j ≤ d,

wj(s, y) = w(tj , s, y) I[0,tj ](s) .

If u = (u1, . . . , ud), consider

d∑
j=1

uj X(tj) =
d∑
j=1

uj

N(tj)∑
`=1

w(tj , S`, Y`) =
d∑
j=1

uj

N(τ)∑
`=1

wj(S`, Y`)

=

N(τ)∑
`=1

f(S`, Y`)

where f(s, y) =
∑d
j=1 ujwj(s, y). Thus if we define

Xf (t) =

N(t)∑
`=1

f(S`, Y`) ,

then

E[
d∏
j=1

eiujX(tj)] = E[eivXf (t)]

∣∣∣∣
v=1,t=τ

.

But Xf = {Xf(t), t ≥ 0} is an ordinary compound nonhomogeneous Poisson pro-
cess (cf. Chen and Savits [1], Remark 3.2. (ii)) with characteristic function

E[eivXf (t)] = exp{
∫ t

0

∫
<

[eivf(s,y) − 1] L(s; dy) dΛ(s)} .

Consequently,

E[
d∏
j=1

eiujX(tj)] = exp{
∫ τ

0

∫
<

(
d∏
j=1

eiujwj(s,y) − 1) L(s; dy) dΛ(s)} .

(4.8)

We can now obtain the moments by using Faa di Bruno’s formula (2.9).
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4.2. Theorem. Let ν = (ν1, . . . , νd) and t1, . . . , td ≥ 0. Set τ = max(t1, . . . , td).
Assuming that ∫ τ

0

∫
<

d∏
j=1

|wνjj (s, y)| L(s; dy) dΛ(s) <∞ ,

then E[
∏d
j=1 Xνj (tj)] exists and is given by

E[
d∏
j=1

Xνj (tj)] = ν!

|ν|∑
r=1

∑
p(ν,r)

|ν|∏
j=1

µ
kj
`j

(kj !)[`j !]kj
.(4.9)

Here, for ` = (`1, . . . , `d),

µ` =

∫ τ

0

∫
<

[
d∏
j=1

w
`j
j (s, y)] L(s; dy) dΛ(s) .(4.10)

4.3. Remark. Since wj(s, y) = 0 for s > tj , we can rewrite (4.10) as

µ` =

∫ τ(`)

0

∫
<

[
∏

j∈σ(`)

w`j (tj , s, y)] L(s; dy) dΛ(s) ,

where

σ(`) = {`j : `j 6= 0}
and

τ(`) = min{tj : jε σ(`)} .

4.4. Corollary. Assuming the appropriate integrals exist, we have

E[X(t)] =

∫ t

0

∫
<
w(t, s, y) L(s; dy) dΛ(s) ,

Var[X(t)] =

∫ t

0

∫
<
w2(t, s, y) L(s; dy) dΛ(s) , and

Cov[X(t1), X(t2)] =

∫ min(t1,t2)

0

∫
<
w(t1, s, y) w(t2, s, y) L(s; dy) dΛ(s) .

We may view Theorem 4.2 as a generalization of Cambell’s Theorem (e.g., see
Parzen [12], page 149). Cambell’s Theorem usually only refers to expressions for
the mean, variance and covariance, as in the above Corollary 4.4.

C. Multivariate moments and cumulants. Let X = (X1, . . . , Xd) be a d-
dimensional random vector. The characteristic function φ(u) = φ(u1, . . . , ud) is
defined by

φ(u) = E[ei(u,X)] = E[
d∏
j=1

eiujXj ] .

Assuming that the mixed moment E[Xν ] = E[
∏d
j=1 Xνi

j ] exists, it is then given
by

αν = E[Xν ] =
1

(i)|ν|
Dνu φ(0) .(4.11)
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The corresponding ν-th cumulant κν is

κν =
1

(i)|ν|
Dνu ψ(0) ,(4.12)

where ψ(u) = lnφ(u). This is well-defined in a neighborhood of u = 0.
Since ψ(u) = lnφ(u) and φ(u) = exp{ψ(u)}, we can use Faa di Bruno’s formula

(2.9) to relate these quantities.

4.5. Theorem. Assume that E[|Xν |] <∞. Then

κν = ν!

|ν|∑
r=1

(−1)r−1(r − 1)!
∑
p(ν,r)

|ν|∏
j=1

α
kj
`j

(kj !)[`j !]kj
(4.13)

and

αν = ν!

|ν|∑
r=1

∑
p(ν,r)

|ν|∏
j=1

κ
kj
`j

(kj !)[`j !]kj
.(4.14)

Lukacs [9] uses Faa di Bruno’s formula (1.1) to obtain these results in the one-
dimensional (d = 1) case. The multivariate generalizations were considered in
McCullagh [10]. His expressions and method of proof are different from ours.
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