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A Multivariate Generalized Autoregressive 
Conditional Heteroscedasticity Model With 

Time-Varying Correlations 
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Albert K. C. Tsui 
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In this article we propose a new multivariate generalized autoregressive conditional heteroscedasticity 
(MGARCH) model with time-varying correlations. We adopt the vech representation based on the con- 
ditional variances and the conditional correlations. Whereas each conditional-variance term is assumed 
to follow a univariate GARCH formulation, the conditional-correlation matrix is postulated to follow 
an autoregressive moving average type of analog. Our new model retains the intuition and interpreta- 
tion of the univariate GARCH model and yet satisfies the positive-definite condition as found in the 
constant-correlation and Baba-Engle-Kraft-Kroner models. We report some Monte Carlo results on the 

finite-sample distributions of the maximum likelihood estimate of the varying-correlation MGARCH 
model. The new model is applied to some real data sets. 

KEY WORDS: BEKK model; Constant correlation; Maximum likelihood estimate; Monte Carlo 
method; Multivariate GARCH model; Varying correlation. 

1. INTRODUCTION 

After the success of the autoregressive conditional het- 

eroscedasticity (ARCH) model and the generalized ARCH 

(GARCH) model in describing the time-varying variances of 
economic data in the univariate case, many researchers have 
extended these models to multivariate dimension. Applications 
of the multivariate GARCH (MGARCH) models to finan- 
cial data have been numerous. For example, Bollerslev (1990) 
studied the changing variance structure of the exchange rate 

regime in the European Monetary System, assuming the cor- 
relations to be time invariant. Kroner and Claessens (1991) 
applied the models to calculate the optimal debt portfolio 
in multiple currencies. Lien and Luo (1994) evaluated the 

multiperiod hedge ratios of currency futures in a MGARCH 
framework. Karolyi (1995) examined the international trans- 
mission of stock returns and volatility, using different versions 
of MGARCH models. Baillie and Myers (1991) estimated the 

optimal hedge ratios of commodity futures and argued that 
these ratios are nonstationary. Gourieroux (1997, chap. 6) pre- 
sented a survey of several versions of MGARCH models. See 
also Bollerslev et al. (1992) and Bera and Higgins (1993) for 

surveys on the methodology and applications of GARCH and 
MGARCH models. 

Bollerslev et al. (1988) provided the basic framework for a 
MGARCH model. They extended the GARCH representation 
in the univariate case to the vectorized conditional-variance 
matrix. Their specification follows the traditional autoregres- 
sive moving average time series analog. This vech representa- 
tion is very general, and it involves a large number of param- 
eters. Empirical applications require further restrictions and 
simplifications. A useful member of the vech-representation 
family is the diagonal form. Under the diagonal form, each 
variance-covariance term is postulated to follow a GARCH- 
type equation with the lagged variance-covariance term and 

the product of the corresponding lagged residuals as the right- 
side variables in the conditional-(co)variance equation. 

It is often difficult to verify the condition that the 
conditional-variance matrix of an estimated MGARCH model 
is positive definite. Engle et al. (1984) presented the neces- 
sary conditions for the conditional-variance matrix to be posi- 
tive definite for a bivariate ARCH model. Extensions of these 
results to more general models are, however, intractable. Fur- 
thermore, such conditions are often very difficult to impose 
during the optimization of the log-likelihood function. Boller- 
slev (1990) suggested a constant-correlation MGARCH (CC- 
MGARCH) model that can overcome these difficulties. He 
pointed out that under the assumption of constant correlations, 
the maximum likelihood estimate (MLE) of the correlation 
matrix is equal to the sample correlation matrix. As the sample 
correlation matrix is always positive definite, the optimization 
will not fail as long as the conditional variances are positive. 
In addition, when the correlation matrix is concentrated out of 
the log-likelihood function further simplification is achieved 
in the optimization. 

Because of its computational simplicity, the CC-MGARCH 
model is widely used in empirical research. However, although 
the constant-correlation assumption provides a convenient 
MGARCH model for estimation, many studies find that this 
assumption is not supported by some financial data. Thus, 
there is a need to extend the MGARCH models to incor- 
porate time-varying correlations and yet retain the appealing 
feature of satisfying the positive-definite condition during the 
optimization. 
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Engle and Kroner (1995) proposed a class of MGARCH 
model called the BEKK (named after Baba, Engle, Kraft, 
and Kroner) model. The motivation is to ensure the condi- 
tion of a positive-definite conditional-variance matrix in the 
process of optimization. Engle and Kroner provided some 
theoretical analysis of the BEKK model and related it to 
the vech-representation form. Another approach examines the 
conditional variance as a factor model. The works by Diebold 
and Nerlove (1989), Engel and Rodrigues (1989), and Engle 
et al. (1990) are along this line. One disadvantage of the 
BEKK and factor models is that the parameters cannot be eas- 
ily interpreted, and their net effects on the future variances and 
covariances are not readily seen. Bera et al. (1997) reported 
that the BEKK model does not perform well in the estima- 
tion of the optimal hedge ratios. Lien et al. (2001) reported 
difficulties in getting convergence when they used the BEKK 
model to estimate the conditional-variance structure of spot 
and futures prices. 

In this article we propose a new MGARCH model with 
time-varying correlations. Basically we adopt the vech rep- 
resentation. The variables of interest are, however, the con- 
ditional variances and conditional correlations. We assume 
a vech-diagonal structure in which each conditional-variance 
term follows a univariate GARCH formulation. The remain- 
ing task is to specify the conditional-correlation structure. We 
apply an autoregressive moving average type of analog to 
the conditional-correlation matrix. By imposing some suitable 
restrictions on the conditional-correlation-matrix equation, 
we construct a MGARCH model in which the conditional- 
correlation matrix is guaranteed to be positive definite during 
the optimization. Thus, our new model retains the intuition and 
interpretation of the univariate GARCH model and yet satis- 
fies the positive-definite condition as found in the constant- 
correlation and BEKK models. 

The plan of the rest of the article is as follows. In Section 2 we 
describe the construction of the varying-correlation MGARCH 
model. As in other MGARCH models, the new model can 
be estimated by use of the MLE method. Some Monte 
Carlo results on the finite-sample distributions of the MLE 
of the varying-correlation MGARCH model are reported in 
Section 3. Section 4 describes some illustrative examples of 
the new model that use some real data sets. These are the 
exchange rate data, national stock market price data, and sec- 
toral stock price data. The new model is compared against 
the CC-MGARCH model and the BEKK model. It is found 
that the new model compares favorably against the BEKK 
model. Extending the constant-correlation model to allow for 
time-varying correlations provides some interesting empirical 
results. The estimated conditional-correlation path provides a 
time history that would be lost in a constant-correlation model. 
Finally, we give some concluding remarks in Section 5. 

2. A VARYING-CORRELATION MGARCH MODEL 

Consider a multivariate time series of observations {yt }, t = 
1,..., T, with K elements each, so that yt = (ylt .... YKt)'. 
We assume that the observations are of zero (or known) mean. 
This assumption simplifies the discussions without straining 

the notations. Additional parameters would be required to rep- 
resent the conditional-mean equation in the complete model if 
the mean were unknown. Under certain conditions, the MLE 
of the parameters in the conditional-mean equation is asymp- 
totically uncorrelated with the MLE of the parameters of the 
conditional-variance equation. Under such circumstances, we 
may treat y, as pre-filtered observations [see Bera and Hig- 
gins (1993) for further discussions]. Otherwise, the parameter 
vector has to be augmented to take account of the parameters 
in the unknown conditional mean. 

The conditional variance of y, is assumed to follow the 
time-varying structure given by 

Var(yt f1_) = ••, (1) 

where (t is the information set at time t. We denote the vari- 
ance elements of f, by it, for i = 1 .... K, and the covari- 
ance elements by oit, where 1 < i < j < K. Denoting D, as 
the K x K diagonal matrix where the ith diagonal element is 

it,, we let Et = Dt'lt. Thus, Et is the standardized residual 
and is assumed to be serially independently distributed with 
mean zero and variance matrix Ft = {Pijt}. Of course, Ft is 
also the correlation matrix of y,. Furthermore, ft = DtFtDt. 

To specify the conditional variance of y, we adopt the 
vech-diagonal formulation initiated by Bollerslev et al. (1988). 
Thus, each conditional-variance term follows a univariate 
GARCH (p, q) model given by the equation 

P q 

"`i2t - i 
ih 

2i, 
t-h 

+E ihi, 
t-h9 i= 1 ..... K, (2) h=1 h=1 

where coi, aih, and fih are nonnegative, and EP a +ih + 

Eh=I fih  1, for i = 1 .. K. Note that we may allow 
(p, q) to vary with i so that (p, q) should be regarded as the 
generic order of the univariate GARCH process. Researchers 
adopting the vech-diagonal form typically assume that the 
above equation also applies to the conditional-covariance 
terms in which o-i2 is replaced by o'ijt and y2 replaced by 

YitYjt for 1 < i < j < K. We shall deviate from this approach, 
however. Specifically, we shall focus on the conditional- 
correlation matrix and adopt an autoregressive moving aver- 
age analog on this matrix. Thus, we assume that the time- 
varying conditional-correlation matrix Ft is generated from the 
recursion 

Ft = (1 - 0, - -02) -? -or,_l-- t, (3) 

where r = {pqi} is a (time-invariant) K x K positive definite 
parameter matrix with unit diagonal elements and Pt is a 
K x K matrix whose elements are functions of the lagged 
observations of y,. The functional form of P-_, will be spec- 
ified below. The parameters 01 and 02 are assumed to be 
non-negative with the additional constraint that ,01 + 02 < 1. 
Thus, F, is a weighted average of F, Ft_1, and 4,t-. Hence, 
if -_, and F0 are well-defined correlation matrices (i.e., pos- 
itive definite with unit diagonal elements), F, will also be a 
well-defined correlation matrix. 

It can be observed that P-_, is analogous to yi, _, in the 
univariate GARCH(1, 1) model. However, as F, is a standard- 
ized measure, we also require P>-1 to depend on the (lagged) 
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standardized residuals t,. Denoting Pt = { tij}, we propose to 
consider the following specification for _t-1: 

m f 
Sh= Ei, 

t-hj,t- 
1<i<j K. (4) 

Thus, t,_- is the sample correlation matrix of {et_,l..., 
t-_M}. We define E,_1 as the K x M matrix given by E,_1 = 

(e,_1 .... EtM,_). If Bt_1 is the K x K diagonal matrix where 
the ith diagonal element is ( _ ,t-h)1/2 for i = 1...K, 
we have 

,_ = B-' E,_I E,_, B-_'. (5) 

Note that when M = 1, T,1 is identically equal to the matrix 
of unity. Updating the conditional-correlation matrix with 

respect to the matrix of unity is of course not meaningful. 
Thus, taking first-order lag for the formulation of t_,1 is not 
sufficient. Indeed, M > K is a necessary condition for t_, 
to be positive definite. When positive-definiteness is satisfied, 
1t_ is a well-defined correlation matrix. Thus, the condition 
M > K will be imposed subsequently. In particular, in all of 
the computations reported in this article we assume M = K. 

Equation (3) is analogous to the univariate GARCH 
equation, with the additional restriction that the sum of 
the coefficients is equal to 1. Indeed, Ft involves updat- 
ing the conditional-correlation matrix with respect to the lat- 
est conditional-correlation matrix Ft-1 and a sample esti- 
mate of the conditional-correlation matrix based on the recent 
M standardized residuals. We shall call the model specified 
by (2), (3), and (5) the varying-correlation MGARCH (VC- 
MGARCH) model. 

Assuming normality, yt It,_ - N(O, DtFtD), so that (ignor- 
ing the constant term) the conditional log-likelihood e, of the 
observation yt is given by 

1 1 
-, =- lnIDFtD, - yID ,-Ft-1Dlyt (6) 2 2t 

1 ln 1- 1 = - n _ F-- In au 2 ,- -D-1 F1D- Y,, (7) 2 2 l 2ytttt 

from which we can obtain the log-likelihood function of the 
sample as f = •E=T1 e, Here the log-likelihood function is 
conditional on F0, %o, and yo being fixed. These assumptions 
have no effects on the asymptotic distribution of the MLE. 

Denoting 0 = (w0, all,, ... a, 3p ...1.q' )2l, ) ....P )rKq', 
P12 .... PK-1K, K 1,02) as the parameter vector of the model, 
the MLE of 0 is obtained by maximizing e with respect to 0. 
We shall denote this value by 0. 

For parameter parsimony, (p, q) is usual y taken to be of 
low order. For p = q = 1, the total number oT parameters in the 
VC-MGARCH model is 3K + K(K + 1)/2+ 2. In compari- 
son, an unrestricted BEKK(1, 1) model has K(K + 1)/2+2K2 
parameters. For example, for K = 2, 3, and 4, the num- 
ber of parameters in the VC-MGARCH model is 9, 14, 
and 20, respectively, whereas that for the BEKK model is 
11, 24, and 42, respectively. The number of parameters in the 
VC-MGARCH model always exceeds that of the constant- 
correlation model by 2, because of the parameters 01 and 02. 
Indeed the CC-MGARCH model is nested within the VC- 
MGARCH model under the restrictions ,01 = 02 = 0. 

The conditions 0 <01, 02 < 1, and 01 + 02 < 1 pose some 

problems in the optimization. One way to get around this dif- 

ficulty is through transformation. For example, we may define 

0i = A2/(1 + A2 + A2) for i= 1, 2, where A1 and A2 are unre- 
stricted parameters. The log-likelihood function may be ini- 

tially optimized with respect to A1, A2, and other parameters 
of interest. The optimization is then shifted to the original 
vector 0 when convergence with respect to A,, A2, and other 
parameters has been achieved. This technique is used in the 
computations reported in this article. 

3. SOME MONTE CARLO RESULTS 

Research on the asymptotic theory of conditional het- 
eroscedasticity models has been lagging behind their empir- 
ical applications. Weiss (1986), Pantula (1989), Bollerslev 
and Wooldridge (1992), Lee and Hansen (1994), Lumsdaine 
(1996), and Ling and Li (1997b) investigated the asymp- 
totic distribution of the quasi-MLE (QMLE) of the univariate 
ARCH/GARCH models. Sufficient conditions for consistency 
and asymptotic normality have been established. Recently, 
Ling and McAleer (2000) examined the asymptotic distri- 
bution of a class of vector ARMA-GARCH models. They 
established conditions for strict stationarity and ergodicity and 
proved the consistency and asymptotic normality of the QMLE 
under some mild moment conditions. Although the models 
considered by Ling and McAleer are quite general, the CC- 
GARCH framework is adopted, and time-varying conditional 
correlation is not allowed. An extension of the results by Ling 
and McAleer to the VC-MGARCH model will be interesting. 
This, however, is beyond the scope of this article. 

An interesting issue for empirical applications concerns the 
properties of the MLE of the conditional heteroscedasticity 
models in small and moderate samples. In the univariate case, 
Engle et al. (1985) and Lumsdaine (1995) examined the small- 
sample properties of the MLE of the ARCH and GARCH 
models. In this section we report some results on the small- 
sample properties of the MLE of the VC-MGARCH model 
based on a small-scale Monte Carlo experiment. It is not our 
intention to provide a comprehensive Monte Carlo study of 
the MLE. We shall focus our interest on the small-sample bias 
and mean squared error only. The reliability of the inference 
concerning the model parameters will not be examined. Our 
results, however, will provide some preliminary evidence with 
respect to the small-sample properties of the MLE of the VC- 
MGARCH model. 

We consider bivariate VC-MGARCH models in which the 
conditional-variance equations are given by 

"2 Oi0" + ra. i-rpyi,, i=1, 2, (8) 
it -• O') i"", t-l ii,t-1' 

with 

Pt = (1 - 1 - 02)P -O1t_ -2 t_1, (9) 

where 1't,_-1 is specified as 

2 
- 

h=l E1, t-hE2, t-h , (10) 

\( h=Z 1 t-h)(-h=,1 2,( . th 

with Eit = Yitl/it for i = 1,2. 
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Table 1. Estimated Bias and MSE of the MLE of Bivariate VC-MGARCH(1, 1) Models 

Experiment: El Experiment: E2 

Parameters True value Sample size Bias MSE True value Sample size Bias MSE 

w, .4 500 .0907 .0687 .4 500 .1166 .0993 
1,000 .0363 .0194 1,000 .0487 .0273 
1,500 .0266 .0116 1,500 .0328 .0157 

"a1 .8 500 -.0135 .0033 .8 500 -.0183 .0043 
1,000 -.0056 .0012 1,000 -.0070 .0016 
1,500 -.0046 .0008 1,500 -.0050 .0010 

P1 .15 500 -.0007 .0013 .15 500 .0005 .0017 
1,000 -.0005 .0006 1,000 -.0010 .0008 
1,500 .0005 .0004 1,500 -.0004 .0005 

(2 .2 500 .0313 .0095 .2 500 .0364 .0118 
1,000 .0132 .0031 1,000 .0123 .0040 
1,500 .0076 .0017 1,500 .0089 .0024 

a2 .7 500 -.0170 .0062 .7 500 -.0230 .0079 
1,000 -.0094 .0023 1,000 -.0075 .0031 
1,500 -.0043 .0015 1,500 -.0047 .0018 

P2 .2 500 -.0018 .0023 .2 500 .0011 .0030 
1,000 .0013 .0010 1,000 -.0003 .0013 
1,500 -.0005 .0008 1,500 -.0005 .0009 

p .7 500 -.0011 .0028 .2 500 -.0008 .0077 
1,000 -.0027 .0084 1,000 -.0012 .0034 
1,500 .0010 .0009 1,500 .0001 .0022 

01 .8 500 -.0018 .0014 .8 500 -.0358 .0181 
1,000 -.0090 .0023 1,000 -.0194 .0065 
1,500 .0011 .0004 1,500 -.0111 .0029 

02 .1 500 -.0006 .0008 .1 500 .0043 .0016 
1,000 -.0064 .0014 1,000 .0023 .0008 
1,500 .0005 .0003 1,500 .0011 .0004 

NOTE: See Equations (8), (9), and (10) for the data-generating processes. 

We consider four experimental setups. The true parameter 
values of the data-generating processes of these experiments, 
labelled El through E4, are given in Tables 1 and 2. Obser- 
vations {y,} are generated from these models assuming the 
errors are normally distributed. We consider T = 500, 1,000, 
and 1,500. The MLEs are calculated for each generated sam- 
ple. Using Monte Carlo samples of 1,000 runs, we estimate 
the bias and mean squared error (MSE) of the MLE. All cal- 
culations reported in this section and the next are coded in 
GAUSS. 

El and E2 represent models with higher volatility persis- 
tence (as measured by ai + 0i), and E3 and E4 represent mod- 
els with lower volatility persistence. The selected values of 
p in the experiments are .2 and .7. It can be seen from the 
Monte Carlo results that the biases of the MLE are generally 
quite small. The bias decreases with the sample size, although 
in some cases not steadily. Likewise, the same is true for the 
MSE. Overall, for the sample sizes and models considered, 
the bias and MSE appear to be small. 

In the next section, we illustrate the application of the VC- 
MGARCH model with some real data sets. 

4. SOME ILLUSTRATIVE EXAMPLES 

We examine three sets of financial data, denoted by DS1, 
DS2, and DS3. DS1 consists of two exchange rate (versus 
U.S. dollar) series, namely, the deutsche mark (D) and the 
Japanese yen (J). These series represent 2,131 daily obser- 
vations from January 1990 through June 1998. DS2 covers 

the stock market indices of the Hong Kong and the Singa- 
pore markets. We use the Hang Seng Index (H) for the Hong 
Kong market and the SES Index (S) for the Singapore market. 
There are 1,942 daily (closing) prices for each series, covering 
the period from January 1990 through March 1998. DS3 con- 
sists of three sectoral price indices of the Hong Kong stock 
market. These are the Finance (F), Properties (P), and Utili- 
ties (U) sectors. Each series includes 2,440 daily observations 

covering the period from October 1990 through August 2000. 
DS 1 was downloaded from the website of the Federal Reserve 
Bank of New York. DS2 was compiled from various issues of 
the Stock Exchange of Singapore Journal. Some adjustments 
were made to account for the differences in the holidays of 
the two exchanges. DS3 was downloaded from Datastream. 

Figures 1 through 3 present the plots of the seven series in 
the three data sets. In Figure 1 the Japanese yen (Y) series 
have been rescaled for easy presentation. This is similarly 
done for the Hang Seng Index (H) series in Figure 2. We 
can see that the exchange rates of the deutsche mark and 
the Japanese yen generally moved in tandem against the U.S. 
dollar during the sample period. As expected, the three sec- 
toral indices in the Hong Kong stock market moved quite 
closely together. This is especially true for the Finance and 

Properties Indices. In contrast, the Utilites Index was quite 
sluggish in the mid-1990s, whereas the Finance and Proper- 
ties Indices underwent a bull run during this period. It is quite 
clear from Figure 2 that the national stock markets of Hong 
Kong and Singapore experienced different phases of bulls and 
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Table 2. Estimated Bias and MSE of the MLE of Bivariate VC-MGARCH(1, 1) Models 

Experiment: E3 Experiment: E4 

Parameters True value Sample size Bias MSE True value Sample size Bias MSE 

W1 .4 500 .0293 .0148 .4 500 .0315 .0188 
1,000 .0137 .0062 1,000 .0114 .0088 
1,500 .0090 .0037 1,500 .0051 .0052 

a, .5 500 -.0131 .0092 .5 500 -.0181 .0109 
1,000 -.0077 .0036 1,000 -.0067 .0051 
1,500 -.0053 .0022 1,500 -.0025 .0031 

P1 .3 500 -.0050 .0037 .3 500 -.0032 .0042 
1,000 -.0007 .0017 1,000 -.0019 .0021 
1,500 .0003 .0011 1,500 -.0022 .0015 

t02 .2 500 .0197 .0067 .2 500 .0219 .0081 
1,000 .0089 .0026 1,000 .0109 .0032 
1,500 .0054 .0016 1,500 .0089 .0024 

a2 .5 500 -.0291 .0216 .5 500 -.0352 .0268 
1,000 -.0125 .0090 1,000 -.0188 .0110 
1,500 -.0083 .0054 1,500 -.0089 .0074 

132 .2 500 -.0028 .0030 .2 500 -.0008 .0034 
1,000 -.0017 .0014 1,000 .0016 .0017 
1,500 .0001 .0009 1,500 .0021 .0013 

p .7 500 .0011 .0064 .2 500 .0002 .0139 
1,000 .0014 .0025 1,000 .0007 .0068 
1,500 -.0003 .0015 1,500 .0001 .0041 

61 .6 500 -.0026 .0034 .6 500 -.0137 .0055 
1,000 -.0015 .0014 1,000 -.0035 .0023 
1,500 -.0011 .0010 1,500 -.0058 .0016 

02 .3 500 -.0048 .0019 .3 500 .0035 .0023 
1,000 -.0019 .0009 1,000 -.0009 .0010 
1,500 -.0006 .0006 1,500 .0019 .0007 

NOTE: See Equations (8), (9), and (10) for the data-generating processes. 

bears. The general impression is that Hong Kong has a more 
volatile market compared with Singapore. 

Table 3 provides a summary of the descriptive statistics 
of the data. The summary statistics refer to those of the 
differences of the logarithmic series (expressed as a percent- 
age). It can be seen that all differenced logarithmic series 
exhibit excess kurtosis (compared with the normal distribu- 

tion) in the unconditional distribution. Whereas the exchange 

rate data (DS 1) demonstrate no evidence of serial correlation, 
the stock return data (DS2 and DS3) show significant serial 
correlation, as suggested by the Q1 statistics. The Q2 statistics 
show that there is serial correlation in the conditional variance 
for all data sets, and GARCH-type modeling may be required. 
In the subsequent analysis, we apply MGARCH models to the 
data sets. Autoregressive filters are used for the conditional- 
mean equations. Thus, the following conditional-mean equa- 
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Figure 1. Exchange Rates of Deutsche Mark and Japanese Yen. 
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Figure 3. Hang Seng Sectoral Indices. 

tions are considered: 

Yjt = • 4 jiyj, t-i + ejt, j = 19 ... . K, (11) 
i=1 

where EtItD -I N(O, ,7t). The types of MGARCH model 
we consider are the CC-MGARCH(1, 1) model, the VC- 
MGARCH(1, 1) model, and the BEKK(1, 1) model. The 
parameters of the conditional-mean and conditional-variance 
equations are estimated simultaneously with the use of MLE 
assuming normality. 

We fit the CC-MGARCH(1, 1) model to the data sets, using 
Bollerslev's (1990) algorithm. The results are summarized in 
Table 4. The standard errors reported are calculated using the 
robust QMLE covariance matrix of the parameters. It can be 
seen that the estimates of a, P, and p are statistically sig- 
nificant at the 5% level for all data sets. In comparison, the 
exchange rate data have the highest intensity of persistence 
in volatility as measured by c + 3. With respect to the cor- 
relation coefficients, the returns of the national stock markets 
of Hong Kong and Singapore have the lowest correlation. In 
contrast, the correlations between the various sectoral indices 
of the Hong Kong stock market are the highest. 

Table 5 summarizes the estimation results of the VC- 
MGARCH(1, 1) models for the three data sets. Again, it can 

be seen that the estimates of a, /3, and p are statistically sig- 
nificant at the 5% level for all data sets. In addition, all esti- 
mates of 01 and 02 are statistically significant at the 5% level, 
indicating that the correlations are significantly time varying. 
We note that the intensity of the volatility persistence remains 
approximately unchanged compared with the CC-MGARCH 
models. Indeed, incorporating time-varying correlations does 
not have much effect on the estimates of a and p. The esti- 
mates of p in the varying-correlation models are all larger than 
the corresponding estimates of p in the constant-correlation 
models. This, however, does not imply that the correlations are 
on average higher in the varying-correlation model. It should 
be noted that the time-invariant component of the conditional- 
correlation coefficient in the VC-MGARCH(1, 1) model is 

(1 - 01- 02)p. A comparison of the correlations in the two 
models will be provided below. 

We also estimate the BEKK(1, 1) model defined by the 
conditional-variance equation 

C 
C1 C12 C11 C12 g-11 g9 12\ _ • 1 g12 
0 C22 0 C221) g21 g22 2 g12 g22 

1 a2 11 12 (12) a21 22 t-l 21 a22 12) 

This equation is for the bivariate case. The trivariate model 
is similarly defined. Tables 6 and 7 summarize the estima- 
tion results. It is found that all off-diagonal elements of 
the GARCH (i.e., gij) and ARCH (i.e., aij) terms of the 
conditional-variance equations are insignificant. Thus, Table 7 
represents the diagonal BEKK(1, 1) models. 

As the CC-MGARCH(1, 1) model is nested within the VC- 
MGARCH(1, 1) model, ignoring the extension would induce 
model misspecification. We now proceed to examine the 
model diagnostics of the estimated models. Table 8 summa- 
rizes the maximized log-likelihood value (LF) and a battery of 
diagnostic tests for the fitted models. The constant-correlation 
assumption is tested using a Lagrange multiplier test (LMC) 
based on the estimates of the CC-MGARCH(1, 1) model and 
the likelihood ratio (LR) test based on the estimates of the 
VC-MGARCH(1, 1) model. LMC is the Lagrange multiplier 

Table 3. Summary Statistics of the Differenced Logarithmic Series of Various Data Sets 

Variable (Code) Mean Std. dev. Minimum Maximum Std. skewness Std. kurtosis Q, (20) Q2(20) No. of obs. 

A: Forex market data (DS1), 90/1-98/6 
Deutsche mark (D) .0025 .6746 -2.8963 3.1030 .3715 16.6655 21.9957 464.2324 2121 
Japanese yen (J) -.0023 .6750 -4.5228 3.2269 -9.5384 33.4012 27.6373 112.5759 2131 

B: Stock market data (DS2), 90/1-98/3 
Hong Kong (H) .0721 1.7093 -14.7347 17.2471 -.0533 120.2852 36.6618 759.7676 1942 
Singapore (S) -.0010 1.0768 -7.7236 8.7867 -1.6643 95.7543 116.8250 846.2872 1942 

C: Hang Seng sectoral indices data (DS3), 90/10-00/8 
Finance (F) .1055 1.8196 -17.6894 18.0011 -2.7550 109.8381 57.6920 986.0076 2440 
Properties (P) .0561 2.1585 -14.2739 20.6846 5.5556 88.3062 93.1470 986.3667 2440 
Utilities (U) .0667 1.6940 -14.4889 16.6176 6.6282 92.1913 42.5415 609.1001 2440 

NOTE: Q1(20) is the Box-Pierce portmanteau statistic of the differenced logarithmic series based on the autocorrelation coefficients up to order 20. Similarly, Q2(20) is the portmanteau 
statistic of the squared differenced logarithmic series. 
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Table 4. Estimation Results of the Constant-Correlation Models: CC-MGARCH(1, 1) 

Variable I 41 42 43 404 W a 3 Correlations 

A: Forex market data (DS1) 
D .0004 .0470 .0070 .9353 .0485 PDJ =.5241 

(.0128) (.0208) (.0034) (.0151) (.0097) (.0170) 
J -.0055 .0474 .0103 .9308 .0484 

(.0136) (.0220) (.0074) (.0320) (.0192) 
B: National Stock Market data (DS2) 

H .1202 .0851 .2123 .7730 .1385 PHS =.3129 
(.0302) (.0261) (.0850) (.0577) (.0328) (.0254) 

S .0256 .1720 .0915 .7249 .1891 
(.0195) (.0255) (.0299) (.0652) (.0492) 

C: Hang Seng sectoral indices data (DS3) 
F .1043 .0843 .0471 .1683 .8324 .1078 PFP =.7658 

(.0288) (.0173) (.0155) (.0615) (.0441) (.0280) (.0114) 
P .0560 .1437 .0324 -.0283 -.0226 .1304 .8731 .0904 PFU =.6807 

(.0319) (.0169) (.0146) (.0142) (.0109) (.0374) (.0231) (.0157) (.0148) 
U .0305 .0834 -.0343 .2070 .7880 .1277 PPu =.7138 

(.0269) (.0181) (.0160) (.0454) (.0312) (.0205) (.0151) 

NOTE: The parameter estimates are the MLE assuming normality. The figure in parentheses are the standard errors. They are calculated using the robustified QMLE covariance 
matrix of the parameters. 

test suggested by Tse (2000) for the assumption of (joint) con- 
stant correlation in a MGARCH model. It is asymptotically 
distributed as X4, where R = K(K - 1)/2, under the null. From 
part A of Table 8 we can see that the constant-correlation 
assumption is rejected for all data sets at the 5% level of sig- 
nificance. In part B of Table 8 we present the likelihood ratio 
statistic LR, which tests for the restriction Ho: 01 = 02 = 0. It 
can be seen that the constant-correlation assumption is rejected 
for all data sets at any conventional level of significance. 

To further test for misspecification in the MGARCH mod- 
els we adopt the regression-based diagnostics suggested by 
Wooldridge (1990, 1991). The methodology developed by 
Wooldridge applies to a wide class of possible misspecifica- 
tion. Here we focus on the problem of misspecification in 

the conditional heteroscedasticity. As shown by Wooldridge, 
the suggested tests are robust to departure from distributional 
assumptions that are not being tested. Since our main con- 
cern is misspecification in the conditional variance, we use the 
squared standardized residuals and the cross-products of the 
squared standardized residuals as the indicators. 

We first consider tests based on the squared standardized 
residuals. We denote iit as the estimate of the standardized 
residual eit and "^& as the estimated conditional variance of 
y,. We define At =( t-2•* i t-Q)' as the vector 
of indicator variables and V6o2 as the gradient vector of o2• 
with respect to 0 evaluated at 0. Denoting (Vo62,)/^2 as 
V it2, we regress each element of it on V 6~i2t to obtain 
the Q-element residuals rit. Finally, we regress unity on the 

Table 5. Estimation Results of the Varying-Correlation Models: VC-MGARCH(1, 1) 

Variable 
t 0 1 02 03 P4 W a /3 

01 02 Correlations 

A: Forex market data (DS1) 
D .0013 .0513 .0055 .9376 .0504 .9705 .0158 PDJ =.6292 

(.0136) (.0198) (.0030) (.0141) (.0098) (.0081) (.0046) (.0457) 
J -.0011 .0494 .0103 .9314 .0473 

(.0155) (.0219) (.0070) (.0303) (.0180) 
B: National Stock Market data (DS2) 

H .1342 .0629 .1715 .8035 .1246 .9570 .0312 PHs =.4829 
(.0282) (.0241) (.0723) (.0513) (.0301) (.0138) (.0099) (.0772) 

S .0312 .1641 .0874 .7273 .1872 
(.0168) (.0261) (.0267) (.0605) (.0471) 

C: Hang Seng sectoral indices data (DS3) 
F .1401 .0744 .0552 .1128 .8617 .0993 .9743 .0132 PFP =.8256 

(.0321) (.0164) (.0156) (.0388) (.0300) (.0215) (.0069) (.0033) (.0236) 
P .0885 .1338 .0407 -.0275 -.0202 .0982 .8822 .0908 PFU =.7453 

(.0336) (.0165) (.0147) (.0137) (.0122) (.0306) (.0209) (.0155) (.0283) 
U .0617 .0732 -.0394 .1508 .8209 .1204 

PPu =.7884 
(.0290) (.0171) (.0150) (.0393) (.0284) (.0198) (.0258) 

NOTE: The parameter estimates are the MLE assuming normality. The figures in parentheses are the standard errors. They are calculated using the robust QMLE covariance matrix of the parameters. 
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Table 6. Estimation Results of the Conditional-Mean Equations of the 
BEKK(1, 1) Models 

Variable 0 1 02 03 04 

A: Forex market data (DS1) 
D -.0017 .0472 

(.0128) (.0207) 
J -.0052 .0524 

(.0134) (.0215) 
B: National Stock Market data (DS2) 

H .1188 .0574 
(.0299) (.0269) 

S .0270 .1574 
(.0186) (.0262) 

C: Hang Seng sectoral indices data (DS3) 
F .1354 .0720 .0507 

(.0305) (.0184) (.0159) 
P .0804 .1305 .0402 -.0279 -.0214 

(.0325) (.0169) (.0151) (.0137) (.0133) 
U .0701 .0723 -.0483 

(.0322) (.0263) (.0172) 

NOTE: The parameter estimates are the MLE assuming normality. The figures in parentheses 
are the standard errors. They are calculated using the robust QMLE covariance matrix of the 
parameters. 

vector of Q regressors ,it, where i,t = E^t- 1. We calculate 

Wii(Q) = T - SSR, where SSR is the sum of squares of the 
residuals of the last regression. If there is no model misspeci- 
fication, Wii(Q) is asymptotically distributed as X2 

The preceding diagnostic statistic can be calculated for the 
cross-products of the standardized residuals from different 
equations as tests for pairwise correlations. Specifically, we 
define Aijt = 

(i,t-1 -,t-l i, t-2'j, t-2 .... i, t-Qj t-Q)' and 

Vo ij, as the gradient vector of Oijt = Eitejt- Piljtwith respect 
to 0 evaluated at 0. We regress each element of Aijt on Voijt 
to obtain the Q-element residuals Fijt and then regress unity on 
the Q regressors •r ij,, where ijt = pitit- ij. We define 
the test statistic as Wij(Q) = T - SSR for 1 < i < j < K, which 
is asymptotically distributed as X2 when there is no misspec- 
ification. 

We apply the W statistics to the MGARCH models with 
Q = 4. From the results in Table 8 we can see that both the 
CC-MGARCH and the VC-MGARCH models pass the diag- 

Table 8. Diagnostic Checks for Various Models 

National Hang Seng 
Forex market stock markets sectoral indices 

Tests DS1: D-J DS2: H-S DS3: F-P-U 

A: CC-MGARCH(1, 1) model 
LF -1878.23 -4128.73 -7374.26 
LMC 4.9138* 10.3442* 8.3589* 
W 1(4) 4.7921 3.9518 6.4373 
W22(4) 3.8319 1.0694 4.9579 
W33(4) 5.8914 
W1 2(4) 7.6383 5.2031 5.0129 
W13(4) 7.5183 
W23(4) 7.6974 

B: VC-MGARCH(1, 1) model 
LF -1855.80 -4088.90 -7293.40 
LR 44.8504* 79.6608* 161.7632* 
W1 1(4) 4.7263 3.8607 7.0386 
W22(4) 3.8157 1.0672 5.0164 
W33(4) 5.9008 
W12(4) 6.9215 2.0592 5.2156 
W13(4) 7.7455 
W23(4) 6.9466 

C: BEKK(1, 1) model 
LF -1851.15 -4104.45 -7324.24 
W 1(4) 4.4679 4.0134 12.2758* 
W22(4) 3.8566 .7477 6.6085 
W33(4) 7.8584 
W12(4) 7.1350 5.5407 .5775 
W13(4) 1.2633 
W23(4) 1.2316 

NOTE: Wij(4) is Wooldridge's (1991) regression-based diagnostic statistic computed from 
the standardized residuals of variables i and / based on indicator variables up to lag 4. The 
indices are according to the order of the coded variables. Thus, W13(4) in the system (F-P- 
U) is WFU(4). LF is the maximized log-likelihood value. LMC is the Lagrange multiplier test 
statistic for constant correlation due to Tse (2000). It is approximately distributed as X2 for a 
bivariate system and X32 for the trivariate system when the correlations are time-invariant. LR 
is the likelihood ratio statistic for Ho: 01 = 02 = 0 in the VC-MGARCH(1, 1) model. 
*Significance at the 5% level. 

nostic checks of the W statistics. Indeed, the W statistics of 
the two models are quite similar. As the constant-correlation 
assumption is not supported by the LMC and the LR statis- 
tics, one might expect the W statistics of the CC-MGARCH 
model to be significant. The fact that this is not the case may 
be an indication of loss in power when the test has no spe- 
cific alternative. As for the BEKK model, most diagnostics 
are insignificant,with the exception of W,, in DS3. It is noted' 

Table 7. Estimation Results of the Conditional-Variance Equations of the BEKK(1,1) Models 

cl, c12 O13 22 C23 C33 g911 922 933 a11 a22 a33 

A: Forex market data (DS1) 
.0618 .0403 .0863 .9715 .9728 .2103 .1973 

(.0138) (.0094) (.0228) (.0053) (.0093) (.0178) (.0307) 

B: National Stock market data (DS2) 
.3488 .0988 .2589 .9195 .8789 .3215 .4093 

(.0699) (.0286) (.0428) (.0187) (.0303) (.0338) (.0531) 

C: Hang seng sectoral indices data (DS3) 
.1316 -.0938 -.1467 -.1741 -.1812 -.2528 .9654 .9552 .9548 .2309 .2709 .2561 

(.0250) (.0313) (.0458) (.0358) (.0486) (.1525) (.0060) (.0109) (.0382) (.0183) (.0297) (.0876) 

NOTE: The parameter estimates are the MLE assuming normality. The figures in parentheses are the standard errors. They are calculated using the robust QMLE covariance matrix of 
the parameters. 
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Table 9. Summary Statistics of the Standardized Residuals of Various Models 

Variable (Code) Mean Std. dev. Minimum Maximum Std. skewness Std. kurtosis Q, (20) Q2(20) No. of obs. 

A: CC-MGARCH(1, 1) model 
Forex market data (DS1) 

Deutsche mark (D) -.0001 .9995 -4.9758 4.1334 -1.3760 10.3514 16.8359 14.7136 2131 
Japanese yen (J) .0004 .9984 -5.8404 4.1482 -11.0287 27.8389 19.1773 11.6364 2131 

National Stock Market data (DS2) 
Hong Kong (H) -.0397 .9991 -8.2506 4.8277 -9.1688 44.4917 22.9629 7.0862 1942 
Singapore (S) -.0343 1.0000 -6.3858 5.6050 -.4392 33.4205 31.5455 11.1104 1942 

Hang Seng sectoral indices data (DS3) 
Finance (F) -.0047 .9993 -6.2435 4.3125 -2.2710 20.4027 18.5158 21.3844 2440 
Properties (P) -.0026 .9992 -6.8961 4.2048 -3.4370 22.2583 36.4885 18.2433 2440 
Utilities (U) .0054 .9995 -7.2480 4.4854 -3.9386 27.8046 25.4859 10.8179 2440 

B: VC-MGARCH(1, 1) model 
Forex market data (DS1) 

Deutsche mark (D) -.0019 .9976 -5.1997 4.0989 -1.5961 10.6562 16.8138 13.6033 2131 
Japanese yen (J) -.0063 1.0015 -5.8539 4.1495 -11.0059 27.8081 19.1706 11.6673 2131 

National Stock Market data (DS2) 
Hong Kong (H) -.0482 1.0019 -8.4556 4.5876 -9.7967 46.5185 25.6588 7.3562 1942 
Singapore (S) -.0410 1.0086 -6.4275 5.6201 -.3672 33.1772 32.0569 11.1440 1942 

Hang Seng sectoral indices data (DS3) 
Finance (F) -.0271 1.0012 -6.4599 4.3445 -2.1722 20.8953 17.6054 25.0739 2440 
Properties (P) -.0207 1.0034 -7.2261 4.0554 -3.6343 23.2231 36.6489 13.4232 2440 
Utilities (U) .0155 .9975 -7.5899 4.3811 -4.2861 29.6450 25.2002 9.0371 2440 

C: BEKK(1, 1) model 
Forex market data (DS1) 

Deutsche mark (D) .0030 .9932 -5.0577 4.0577 -1.5112 10.5148 16.6838 15.1533 2131 
Japanese yen (J) -.0007 .9954 -5.9277 4.1335 -11.5370 28.4453 19.5022 12.5101 2131 

National Stock Market data (DS2) 
Hong Kong (H) -.0359 .9874 -8.4438 4.3589 -10.3784 48.5443 26.2642 9.8984 1942 
Singapore (S) -.0357 .9996 -6.5838 5.5635 -.8210 33.5270 33.7262 10.5492 1942 

Hang Seng sectoral indices data (DS3) 
Finance (F) -.0224 .9822 -6.6095 4.0304 -3.2424 25.1857 20.2667 64.4039 2440 
Properties (P) -.0143 .9849 -7.2597 4.0862 -3.9564 24.4061 36.8795 16.9989 2440 
Utilities (U) -.0159 .9792 -7.6392 4.5386 -3.5271 33.4623 25.2280 25.3953 2440 

that the CC-MGARCH model has the lowest log-likelihood 
for all models. The VC-MGARCH model has the highest 
log-likelihood for DS2 and DS3, and the BEKK model has 
the highest log-likelihood for DS 1. Based on penalized likeli- 
hood criteria such as the AIC, VC-MGARCH is the preferred 
model for DS2 and DS3, and BEKK is the preferred model 
for DS1. 

In Table 9 we present the summary statistics of the stan- 
dardized residuals of the fitted models. It can be seen that the 
standardized kurtosis and the Q2 statistics have dropped sig- 
nificantly compared with those of the raw data in Table 3. We 
note that the Q1 and Q2 statistics are presented here for com- 
pleteness. As pointed out by Li and Mak (1994) and Ling and 
Li (1997a), these statistics are not distributed as X2 under the 
null of no misspecification. Although some of the Q, statistics 
appear to be large, we report that none of the lagged auto- 
correlation coefficients are larger than .08 in absolute value. 
Although most Q statistics seem to be low, there is an excep- 
tion for Q2 in the F series of DS3. This result agrees with 
the fact that W,1 in part C of Table 8 is also found to be 
significant. 

To obtain a clearer picture of the time history of the con- 
ditional correlations, we plot the time paths of the condi- 

tional correlations based on the VC-MGARCH and BEKK 
models. The plots are presented in Figures 4-8. It can be 
seen from the graphs that the conditional correlations esti- 
mated from the VC-MGARCH and BEKK models follow 
each other quite closely. However, the paths based on the 
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BEKK model have much larger variability than those esti- 
mated by the VC-MGARCH model. In what follows we 
describe the conditional-correlation paths as provided by the 
VC-MGARCH model in some detail. 

Figure 4 presents the correlations between the deutsche 
mark and the Japanese yen. Largely, there are two subperiods 
when the conditional correlations of these two currencies were 

mostly above the average (constant) level, namely, October 
1991 to June 1993 and March 1994 to October 1996. From 
October 1996 to June 1998, the conditional correlations were 

mostly below the average level. 

Figure 5 presents an interesting case in which we can see 
that the conditional correlations between the Hong Kong and 
the Singapore stock markets experienced an upward shift. 
From 1994 onward, the conditional correlations were mostly 
above the average level, whereas the reverse was true before 
1994. This finding has important implications for the interna- 
tional diversification of equity portfolios. The increasing con- 
ditional correlation means that the two national markets were 

becoming more closely integrated and implies that there are 

diminishing benefits from international diversification. Using 
moving windows of unconditional correlations, Longin and 
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Solnik (1995) showed that there was evidence of increasing 
correlation between international stock markets in 1960-1990. 
Further results were updated by Longin and Solnik (2001). 
Our similar finding for the Hong Kong and the Singapore mar- 
kets is commensurate with the increasing importance of intra- 
Asian business in the 1990s. Indeed, in the second half of the 
1990s, many companies with business activities in Hong Kong 
were listed on the Singapore exchange. 

Figures 6-8 show that the pairwise correlations between 
the three sectors in the Hong Kong stock market are quite 
similar. Broadly speaking, the conditional correlations were 
above average in the subperiods of 1993-1994 and mid-1997 
to mid-1999. These two subperiods coincide with the time 
when the Hong Kong stock market was experiencing a down- 
turn. In contrast, during the subperiods of the bull runs from 
1995 to mid-1997 and post-mid-1999, the conditional corre- 
lations were below average. At the risk of oversimplification, 
this casual observation agrees with the hypothesis that conta- 

gion is stronger for negative returns than for positive returns. 
In a recent study, Bae et al. (2000) examined the financial con- 

tagion among Asian and Latin American economies with the 
use of a multinomial logit model. They reported that the evi- 
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dence of contagion being stronger for negative returns than for 
positive returns is mixed. Finally, we note that for the BEKK 
model the conditional correlations are quite unstable in some 
periods. 

We shall end this section by stating that it is not our 
intention to claim that the VC-MGARCH models as pre- 
sented here represent the best MGARCH models for the data. 
Other MGARCH models could also provide the conditional- 
correlation structure. The VC-MGARCH model, however, 
does provide a viable alternative that is relatively easy to esti- 
mate. As the examples have illustrated, modeling correlations 
as a time-varying structure provides some interesting results 
that are not obtainable from constant-correlation models. 

5. CONCLUSIONS 

In this article we propose a new MGARCH model with 
time-varying correlations. We assume a vech-diagonal struc- 
ture in which each conditional-variance term follows a uni- 
variate GARCH formulation. The remaining task is to specify 
the conditional-correlation structure. We apply an autore- 
gressive moving average type of analog to the conditional- 
correlation matrix. By imposing some suitable restrictions 
on the conditional-correlation-matrix equation, we construct a 
MGARCH model in which the conditional-correlation matrix 
is guaranteed to be positive definite during the optimization. 

We report some Monte Carlo results on the finite-sample 
distributions of the MLE of the varying-correlation MGARCH 
model. It is found that the bias and MSE of the MLE are 
small for sample sizes of 500 or above. The new model is 
applied to three data sets, namely, the exchange rate data, the 
national stock market data, and the sectoral price data. The 
new model is found to pass the model diagnostics satisfacto- 
rily and compare favorably against the BEKK model, whereas 
the constant-correlation MGARCH model is found to be inad- 
equate. Extending the constant-correlation model to allow for 
time-varying correlations provides some interesting empirical 
results. In particular, the estimated conditional-correlation path 
provides an interesting time history that would not be avail- 
able in a constant-correlation model. 
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