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Abstract

The paper studies a factor GARCH model and develops test procedures which can be
used to test the number of factors needed to model the conditional heteroskedasticity in
the considered time series vector. Assuming normally distributed errors the parameters of
the model can be straightforwardly estimated by the method of maximum likelihood.
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initial values to maximize the likelihood function. Maximum likelihood estimation with
nonnormal errors is also straightforward. Motivated by the empirical application of the
paper a mixture of normal distributions is considered. An interesting feature of the implied
factor GARCH model is that some parameters of the conditional covariance matrix which
are not identifiable in the case of normal errors become identifiable when the mixture
distribution is used. As an empirical example we consider a system of four exchange rate
return series.
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1 Introduction

Even though the literature on volatility models is huge, only a relatively small frac-

tion of it is devoted to developing and applying multivariate GARCH models. This

is not due to the lack of interest or importance because understanding the comove-

ments of financial returns is at the heart of empirical finance and models capable of

describing the joint behavior of asset prices are in great demand in areas such as asset

allocation and risk management. It is rather the practical problems inherent in most

multivariate GARCH models that have retarded their widespread use. The problems

with estimation are mainly caused by the typically quite rapid increase in the number

of parameters with the dimension of the system and the restrictions required by the

positive definiteness of the conditional covariance matrix. As one solution to these

problems, several factor and orthogonal models have been introduced in the literature.

Factor models assume the data to be generated by a set of uncorrelated compo-

nents and in orthogonal models these components are also (a subset of) the principal

components of the data. According to the taxonomy of Bauwens et al. (2003), in

orthogonal models the matrix by which the data are obtained from the components

must be orthogonal, while in generalized orthogonal models its invertibility suffices.

The notion of a factor model typically encompasses the idea that there are a relatively

small number of common underlying variables, whereas (generalized) orthogonal mod-

els (e.g. van der Weide, 2002, Vrontos et al., 2003) commonly do not have a reduced

number of principal components. Thus, (generalized) orthogonal models are rather

restrictive for financial data in that they allow for no idiosyncratic shocks.1

In this paper we introduce a new kind of generalized orthogonal GARCH model

that allows for a reduced number of conditionally heteroskedastic factors and, hence,

idiosyncratic shocks. Therefore we call our model a generalized orthogonal factor

1Orthogonal models with fewer principal components than time series have also been presented

(see e.g. Alexander, 2001), but they are hampered by the fact that the conditional covariance matrix

has a reduced rank.
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GARCH model. Our model is related to the factor GARCH model of Engle et al.

(1990), but it is more parsimonious and easier to estimate. Gaussian maximum likeli-

hood (ML) estimates can be straightforwardly obtained and likelihood functions based

on other distributions, such as the (multivariate) t distribution, can also be readily

formulated. This is illustrated by the empirical application of the paper where, in-

stead of the commonly used t distribution, a mixture of normal distributions is more

appropriate and, therefore, applied. Interestingly, some parameters of the conditional

covariance matrix, which are not identifiable in the Gaussian model, become identifi-

able in a model based on a mixture of normal distributions. In practice the first step

of applying any factor GARCH model consists of selecting the unknown number of

conditionally heteroskedastic common factors. In order to facilitate this selection two

tests are developed in the paper.

The remainder of the paper is organized as follows. The model is introduced in

Section 2. Parameter estimation and statistical inference are discussed in Section 3

assuming first a Gaussian likelihood and providing thereafter an extension to the case

of a mixture of normal distributions. Section 4 develops tests for checking the number

of conditionally heteroskedastic common factors. Section 5 presents an application to

a data set of exchange rate return series. Finally, Section 6 concludes.

2 Model

Consider an n-dimensional time series yt (t = 1, 2, ...) generated by

yt = WH
1/2
t εt, (1)

where W (n× n) is a nonsingular parameter matrix, Ht (n× n) is a stochastic (a.s.)

positive definite diagonal matrix measurable with respect to the information set

Ft−1 = {yt−j , j ≥ 1} , and εt (n× 1) is a sequence of independent and identically

distributed random vectors with zero mean and identity covariance matrix or, briefly,

εt ∼ i.i.d.(0, In) . It is also assumed that the distribution of εt has a (Lebesgue) den-
sity and that εt is independent of Ft−1 for all t ≥ 1. Thus, {yt, Ft} is a martingale
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difference sequence and, given Ft−1, the conditional covariance matrix of yt is

Covt−1 (yt) = WHtW
0 def= Σt. (2)

Equations (1) and (2) specify a general model for conditional heteroskedasticity of the

time series vector yt. To make this general model feasible in practice, the dependence

of the diagonal elements of the matrix Ht on past values of yt has to be specified.

A model similar to that defined by equations (1) and (2) has recently been con-

sidered by van der Weide (2002) and Vrontos et al. (2003) (see also Klaassen (2000)

and Alexander (2001)). These authors do not explicitly discuss the case where some

of the diagonal elements of the matrix Ht are constant, that is, independent of t.

Because we feel that it is of interest to allow for this possibility we shall assume that

Ht = diag [Vt : In−r] , (3)

where Vt = diag[v1t · · · vrt] and 0 ≤ r ≤ n. Thus, we have to specify the dependence

of vit (i = 1, ..., r) on past values of yt. Unless otherwise stated, it will henceforth be

assumed that r > 0 so that the quantities v1t, ..., vrt are all stochastic, and hence,

time varying. In order to motivate the employed specification, write W = [W1 : W2]

and W−1 = B0 = [B1 : B2]
0 where the matrices W1 and W2 are of orders n × r and

n×(n− r) , respectively, and the matrixB0 is partitioned conformably. From equation

(1) one then obtains

B0
1yt = V

1/2
t ε1t (4)

and

B0
2yt = ε2t, (5)

where εt = [ε
0
1t ε

0
2t]
0 is partitioned in an obvious way. Thus, the components of B0

1yt

are uncorrelated univariate conditionally heteroskedastic processes whereas B0
2yt ∼

i.i.d.(0, In−r) . As in van der Weide (2002) and Vrontos et al. (2003) we specify the

diagonal elements of Vt as standard GARCH processes driven by squared lagged values

of the components of B0
1yt. For ease of exposition, we assume the GARCH(1,1) models

vit = (1− αi − βi) + βivi,t−1 + αi (b
0
1iyt−1)

2
, i = 1, ..., r, (6)
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where b01i signifies the ith row of the matrix B0
1 and the other parameters satisfy

αi > 0, βi ≥ 0 and βi + αi < 1 for all i = 1, ..., r. The inequality αi > 0 is due the

assumption that vit does not reduce to constant.

The imposed parameter restrictions imply that, under mild conditions about the

density of εt, the vector process yt defined by equations (1), (3) and (6) is strictly

stationary and ergodic and also second order stationary (see Engle and Kroner (1995)

and Comte and Lieberman (2003)). Note also that the intercept terms in (6) are nor-

malized in such a way that the components of B0
1yt have unit unconditional variance.

These normalizations will be convenient in our subsequent developments. Combined

with the assumption that the variances of the components of ε1t are normalized to

unity they ensure that the parameters in equations (4) and (6) are unique up to

multiplying the columns of B1 by minus one.

Because equation (5) can be premultiplied by any orthogonal (n− r) × (n− r)

matrix without changing the second order properties of the model the parameter

matrix B2 is not identifiable without further assumptions. The special case n− r = 1

is an exception in that identifiability obtains up to multiplying (the vector) B2 by

minus one. Similar conclusions, of course, hold for the parameter matrix W2. In this

section we shall only rely on second order properties of the series yt and, therefore,

identifiability of the parameter matrices B2 and W2 is not achieved. This means, in

particular, that part of the subsequent discussion is only relevant when the error term

εt is normally distributed or, more generally, has a spherically symmetric distribution

such as a t distribution.2 However, it will be seen later that with other distributions

even the parameter matrices B2 and W2 may become identifiable (up to multiplying

the columns by minus one).

As in van der Weide (2002), we factorize the parameter matrix W but, instead of

2The distribution of a random vector x is spherically symmetric if x and Ox have the same

distribution for any conformable orthogonal matrix O.
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the singular value decomposition used in that paper, we use the polar decomposition

W = CR, (7)

where C (n× n) is a (symmetric) positive definite matrix and R (n× n) is an orthog-

onal matrix. The nonsingularity of the matrix W ensures the positive definiteness of

the matrix C and uniqueness of the decomposition (see Horn and Johnson (1985), p.

413). The normalizations used in (6) imply that E(Vt) = In−r. Thus, it follows from

equations (2) and (3) that the covariance matrix of yt satisfies

Cov (yt)
def
= Ω = WW 0 = CC 0. (8)

Let Ω = PΛP 0 be the spectral decomposition of the covariance matrix Ω so that

Λ is a diagonal matrix containing the eigenvalues of Ω on the diagonal and P is an

orthogonal matrix of corresponding eigenvectors. Thus, the matrix C is the unique

(positive definite) square root of the covariance matrix Ω, that is, C = PΛ1/2P 0 =

Ω1/2, whereas R = Ω−1/2W. Because the theoretical covariance matrix Ω can be

consistently estimated by the sample covariance matrix the continuity of the mapping

Ω → Ω1/2 implies that the matrix C can be consistently estimated by using the

spectral decomposition of the sample covariance matrix. Part of the parameter matrix

W can therefore be consistently estimated in a very simple way.

The polar decomposition assumed in (7) is not the only possibility one could

entertain. As already mentioned, van der Weide (2002) used the singular value de-

composition and defined the matrix C as C = PΛ1/2 with P and Λ as above. Unlike

the polar decomposition, this factorization is unique only when the eigenvalues of Ω

are distinct. Uniqueness is a useful property if the components of the factorization

are estimated simultaneously. Instead of the polar decomposition, uniqueness can be

achieved by an appropriate version of the QR decomposition (see Horn and Johnson

(1985), p. 112-114). In what follows, the QR decomposition can be used instead of

the polar decomposition. Then C is a lower triangular matrix which can be obtained

from the Cholesky decomposition of the covariance matrix Ω.
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In the model of Vrontos et al. (2003) the parameter matrix W is assumed to

be lower triangular. This is a simplifying assumption which is not without loss of

generality because, in general, the orthogonal matrix R cannot be dropped from (7)

and because the application of the Cholesky decomposition to the conditional covari-

ance matrix Σt does generally not imply a factorization of the form (2) with W lower

triangular.3 In addition to being restrictive, the lower triangularity assumption of the

matrix W involves the difficulty that a certain order is assumed for the components

of the vector yt.

By the above discussion we can write equation (1) as

yt = W1V
1/2
t ε1t +W2ε2t. (9)

This means that the model can be interpreted as a factor GARCH model in which

the conditional heteroskedasticity is due to r common factors, the components of

the vector V
1/2
t ε1t. Alternatively, the model implies the existence of n − r linearly

independent homoskedastic linear combinations of the process yt given by equation

(5). Now, partition R = [R1 : R2] conformably with the partition of W so that

W1 = CR1 and W2 = CR2. Using equation (8) and the fact that R1R
0
1 + R2R

0
2 = In

it is easy to check that the conditional covariance matrix (2) can be written as

Σt = Ω+ CR1 (Vt − Ir)R
0
1C

0 (10)

or, alternatively, as

Σt = Ω
∗ +

rX

i=1

vitw1iw
0
1i, (11)

where Ω∗ = W2W
0

2 and w1i signifies the ith column of the matrix W1.

Equation (11) shows that in our model the conditional covariance matrix is similar

to that in the factor GARCH model of Engle et al. (1990). A major difference

between the conditional covariance matrices arising from these two models lies in their

3A multivariate GARCH model based on the Cholesky decomposition of the conditional covari-

ance matrix has recently been considered by Kawakatsu (2003).
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constant terms. In our model the constant term is closely related to the unconditional

covariance matrix Ω whereas in the model of Engle et al. (1990) the constant term

has no particular role. Note also that in the representation (11) the constant term

Ω∗ is singular and its rank is directly related to the number of common factors. In

the model of Engle et al. (1990) the corresponding constant term is assumed to be

positive semidefinite and it has typically been treated as a positive definite matrix.

This implies that our model is generally more parsimonious than the model of Engle

et al. (1990). Another difference between the two models concerns the correlation

of the common factors. As typical in factor models, our model assumes uncorrelated

common factors whereas in the model of Engle et al. (1990) the common factors

are generally correlated although their conditional covariance is constant. These

differences have important implications on the estimation of the parameters of the

model. Above we already discussed the (preliminary) estimation of the covariance

matrix Ω by using its sample analog and in the next section it will be seen that

convenient (preliminary) estimators can also be obtained for other parameters of our

model. Finally, note that Engle et al. (1990) list some attractive properties of the

conditional covariance structure implied by their model. These properties, which

include the positive (semi)definiteness of the conditional covariance matrix, are also

shared by the conditional covariance matrix arising from our model.

As with the factor GARCH model of Engle et al. (1990), our model can also be

viewed as a special case of the BEKK model of Engle and Kroner (1995). Specifically,

note that from equations (2) and (3) it follows that vit = b01iΣtb1i which in conjunction

with equations (6) and (11) yields

Σt = Ω
∗∗ +

rX

i=1

(βib
0
1iΣt−1b1i + αib

0
1iyt−1yt−1b1i)w1iw

0
1i,

where Ω∗∗ = Ω∗ +
Pr

i=1 (1− αi − βi)w1iw
0
1i. This shows the aforementioned connec-

tion with the BEKK model. An implication of this is that the asymptotic estimation

results obtained by Comte and Lieberman (2003) for Gaussian ML estimators in the

BEKK model can be applied to our model.
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3 Parameter Estimation

3.1 Gaussian ML Estimation

The parameters of the model introduced in the previous section can be estimated by

Gaussian ML. Thus, assume that, conditional on Ft−1, the distribution of yt is normal

with zero mean and covariance matrix Σt. The related conditional density is

ft−1 (yt) = (2π)
−n/2 det (Σt)

−1/2 exp

½
−1
2
y0tΣ

−1
t yt

¾
.

From equations (2), (3) and (8) it follows that det (Σt) = det (Ω) v1t · · · vrt and

y0tΣ
−1
t yt = y0tBH−1

t B0yt = y0tB1V
−1
t B0

1yt + y0tB2B
0
2yt where Bi = C−10Ri (i = 1, 2)

by equation (7). Thus, because R1R
0
1 + R2R

0
2 = In and Ω = CC 0, we can write

y0tΣ
−1
t yt = y0tC

−10R1(V
−1
t − Ir)R

0
1C

−1yt + y0tΩ
−1yt and, furthermore,

ft−1 (yt) = (2π)−n/2 det (Ω)−1/2 exp

½
−1
2
y0tΩ

−1yt

¾
(12)

×
rY

i=1

v−1/2it exp

½
−1
2
y0tC

−10R1(V
−1
t − Ir)R

0
1C

−1yt

¾
.

Equation (6) shows that, in addition to the GARCH parameters αi and βi (i = 1, ..., r) ,

the diagonal matrix Vt depends on the parameter matrix B1 or on C−10R1. Thus,

since Ω = CC 0, the Gaussian likelihood depends on the parameters C, R1, αi and βi

(i = 1, ..., r) . Instead of C it appears to be convenient to use its inverse on which the

likelihood function only depends.

Assume that we have an observed data set y0, ..., yT . The first observation y0 is

used as an initial value in the GARCH models (6) and the subsequent analysis will

be conditional on it and also on vi0 (i = 1, ..., r) . Let ρ1i signify the ith column of the

matrix R1 and set Φ = C−1 and δ = [δ01 · · · δ
0
r]
0
where δi = [αi βi]

0 (i = 1, ..., r) . From

the expression of the conditional density function (12) and the subsequent discussion

it follows that the Gaussian log-likelihood function (without an additive constant)

8



can be written as

lT (Φ, R1, δ) = T log det (Φ)− 1
2

TX

t=1

y0tΦ
0Φyt (13)

−
rX

i=1

Ã
1

2

TX

t=1

log vit +
1

2

TX

t=1

(v−1it − 1)(ρ01iΦyt)2
!

def
= l0T (Φ) +

rX

i=1

liT (Φ, ρ1i, δi) .

Here we have also made use of the fact that, in addition to the parameter δi, the

conditional variance vit only depends on the parameters ρ1i and Φ (see equation (6)

and note that b01iyt−1 = ρ01iΦyt−1). We need to maximize lT (Φ, R1, δ) subject to the

constraints

ρ01iρ1j =




1, i = j

0, i 6= j
. (14)

The required maximization is obviously a highly nonlinear problem. Good initial

values are therefore desirable for successful numerical optimization of the likelihood

function.

As discussed in the previous section, a consistent estimator of Ω can be obtained

from the (uncentered) sample covariance matrix

eΩ = T−1
TX

t=1

yty
0
t.

A consistent estimator of the matrix Φ, denoted by eΦ, can be obtained from eΩ.
The estimator eΦ can be either the (unique) square root of eΩ−1 or its Cholesky factor
depending on which one of the two alternative specifications is adopted. Note that the

estimator eΦ can be obtained by maximizing the first component of the log-likelihood
function, that is, l0T (Φ). Although consistent, the estimator eΦ is therefore inefficient
because it ignores the second component of the log-likelihood function which is due

to conditional heteroskedasticity (cf. van der Weide (2002)).

Obtaining initial estimates for the parameters R1 and δ is more complicated.

However, a simplifying fact is that the estimation of the parameters ρ1i and δi can be

9



carried out separately for i = 1, ..., r. Define the set ∆1 = {(ρ11, δ1) : ρ
0
11ρ11 = 1} and,

for i = 2, ..., r, ∆i =
©
(ρ1i, δi) : ρ

0
1iρ1i = 1, ρ01iρ1j = 0, 1 ≤ j ≤ i− 1

ª
. Then consider

estimators defined by

(eρ11,eδ1) = arg max
(ρ
11
,δ1)∈∆1

l1T (eΦ, ρ11, δ1)

(15)

(eρ1i,eδi) = arg max
(ρ
1i,δi)∈∆̃i

liT (eΦ, ρ1i, δi), i = 2, ..., r,

where ∆̃i is defined by replacing ρ1j in the definition of ∆i by eρ1j. It is straightforward
to see that solving these r separate maximization problems is equivalent to maximizing

the function lT (eΦ, R1, δ) subject to the constraints (14). Thus, because the estimator
eΦ is consistent the consistency of the estimators eR and eδ formed from eρ1i and eδi
(i = 1, ..., r) is expected to hold under appropriate regularity conditions.

Once the initial estimators eΦ, eR and eδ are available one can use numerical op-
timization methods to maximize the likelihood function lT (Φ, R1, δ) subject to the

constraints (14). This optimization yields Gaussian ML estimates for the parameters

Φ, R1 and δ denoted by bΦ, bR1 and bδ, respectively. Gaussian ML estimates of other
parameters can be formed from these estimates by transformations. For instance, the

Gaussian ML estimate of Ω is bΩ = bΦ−1bΦ−10 and, since W1 = Φ
−1R1 and B1 = Φ

0R1,

the Gaussian ML estimates of W1 and B1 are cW1 = bΦ−1 bR1 and bB1 = bΦ0 bR1, respec-
tively. One can also estimate the parameters W2 and B2 but first an estimate for R2

has to be obtained. For any k × l matrix A of full column rank let A⊥ be its orthog-

onal complement, that is, any k × (l − k) matrix of full column rank and such that

A0A⊥ = 0. Then a Gaussian ML estimate of R2 is given by bR2 = bR1⊥( bR01⊥ bR1⊥)−1/2

and Gaussian ML estimates of W2 and B2 are cW2 = bΦ−1 bR2 and bB2 = bΦ0 bR2, respec-
tively. These estimates are not unique (and hence not consistent) but they can be

used to provide unique (and consistent) estimates for some derived parameters. For

instance, bΩ∗ = cW2
cW 0
2 is the unique Gaussian ML estimate of the parameter Ω

∗ in

equation (11).
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3.2 Limiting Distributions of Gaussian ML Estimators

Because our model is a special of the BEKK model asymptotic properties of the

Gaussian ML estimators bΦ, bR1 and bδ can be inferred from the results of Comte and

Lieberman (2003). Under regularity conditions these results hold even if the true

likelihood is not Gaussian.

Denote θ =
£
vec (R1)

0 vech (Φ)0 δ01 · · · δ
0
r

¤0
and let bθ signify the corresponding

vector of Gaussian ML estimators. Here vec and vech signify the usual vectorization

and half vectorization operators, respectively (see Chapter 7 in Lütkepohl (1996)).

The parameter vector θ satisfies the identifying constraints (14) which can be ex-

pressed in matrix form as

g (θ)
def
= Lrvec (R

0
1R1)− vech (Ir) = 0.

Here Lr is the
1
2
r (r + 1)× r2 elimination matrix defined by the equation vech(A) =

Lrvec(A) where A is an r × r matrix. We also introduce the r2 × r2 commutation

matrix Krr defined by Krrvec(A) = vec(A
0) with A as above. Then,

∂g (θ) /∂vec (R1)
0 = [Lr (Ir2 +Krr) (Ir ⊗R01) : 0]

def
= G,

where ⊗ denotes the Kronecker product (cf. result 10.5.1(2a) in Lütkepohl (1996)).
The limiting distribution of the estimator bθ can be obtained by using Theorem 4

of Comte and Lieberman (2003) and well known results of constrained (quasi) ML

estimation based on the use of Lagrange multipliers. Note, however, that the usual

procedure described in Aitchison and Silvey (1958) and Davidson (2000, p. 289-290)

needs to be modified because the (Gaussian) information matrix is singular. This

feature can be dealt with by using the modification described in Silvey (1959). To

this end, let l̄t (θ) signify the Gaussian log-likelihood of the tth observation, that is,

l̄t (θ) = log ft−1 (yt) with ft−1 (yt) defined in (12) and interpreted as a function of

the parameter vector θ. The idea is to replace the information matrix of a single

observation, that is, −E(∂2l̄t (θ) /∂θ∂θ0) by J
def
= G0G−E(∂2l̄t (θ) /∂θ∂θ0). Thus, pro-

ceeding as in the aforementioned references we can conclude that, even when the true

11



likelihood is not Gaussian but appropriate regularity conditions hold,

T 1/2(bθ − θ)
d→ N (0, Q1Q0Q1) , (16)

where Q0 = E
¡
(∂l̄t (θ) /∂θ)(∂l̄t (θ) /∂θ

0)
¢
and Q1 = J−1 − J−1G0 (GJ−1G0)

−1
GJ−1.

In the case of Gaussian likelihood the limiting distribution simplifies because then

Q0 = J − G0G and, consequently, Q1Q0Q1 = Q1. A consistent estimator of the

matrix Q0 is given by bQ0 = T−1
PT

t=1(∂l̄t(
bθ)/∂θ)(∂l̄t(bθ)/∂θ0) and a consistent esti-

mator of the matrix Q1 is obtained by replacing the matrices J and G in the de-

finition of Q1 by consistent estimators. A consistent estimator of the matrix J is

bJ = bG0 bG− T−1
PT

t=1Et−1(∂2l̄t(θ)/∂θ∂θ
0)|θ=bθ where

bG = [Lr (Ir2 +Krr) (Ir ⊗ bR01) : 0]
is a consistent estimator of G. Here Et−1(∂2 l̄t(θ)/∂θ∂θ

0)|θ=bθ could be replaced by

∂2l̄t(bθ)/∂θ∂θ0 but, according to Hafner and Herwartz (2003), the given form is prefer-
able. As advocated by these authors, we use analytical derivatives instead of numerical

ones to estimate the limiting covariance matrix in (16). Approximate standard errors

for the components of the estimator vector bθ can be obtained by taking square roots
of the diagonal elements of the matrix bQ1

bQ0
bQ1.

From (16) it is straightforward to derive limiting distributions for other estimators

of which cW1 and bB1 are of special interest. Suppose the parameter matrix Φ is

symmetric. Then, it is straightforward to check that cW1 −W1 = Φ−1( bR1 − R1) −
Φ−1(bΦ−Φ)Φ−1R1+op

¡
T−1/2

¢
and, upon vectorizing and using the fact Φ−1R1 = W1,

one obtains

vec(cW1)− vec (W1) =
¡
Ir ⊗ Φ−1

¢ ³
vec( bR1)− vec (R1)

´

−
¡
W 0
1 ⊗Φ−1

¢
Dn

³
vech(bΦ)− vech (Φ)

´
+ op

¡
T−1/2

¢
,

where Dn is the n2×n (n+ 1) /2 duplication matrix defined by vec(A) = Dnvech(A)

for any symmetric n× n matrix A. From this and (16) one obtains

T 1/2
³
vec(cW1)− vec (W1)

´
d→ N (0, G2Q1Q0Q1G

0
2) , (17)

where G2 = [(Ir ⊗ Φ−1) : − (W 0
1 ⊗Φ−1)Dn : 0]. The covariance matrix of the limit-

ing distribution can be consistently estimated by bG2
bQ1
bQ0
bQ1
bG0
2 with bG2 defined by

12



replacing the parameter matrices Φ and W1 in the definition of G2 by bΦ and cW1,

respectively. Here we assumed a symmetric specification for the parameter matrix Φ

and used the relation vec(Φ) = Dnvech(Φ) . If Φ is assumed lower triangular one can

use a similar reasoning with the identity vec(Φ) = L0nvech(Φ) (see result 9.6.3(1)(b) in

Lütkepohl (1996)). Thus, in (17) and the subsequent discussion the matrix G2 should

be redefined by replacing the duplication matrix Dn by the transposed elimination

matrix L0n.

As for the estimator bB1, we have bB1−B1 = Φ
0( bR1−R1)+(bΦ0−Φ0)R1+op

¡
T−1/2

¢

from which it follows that

vec( bB1)− vec (B1) = (Ir ⊗Φ0)
³
vec( bR1)− vec (R1)

´

+(R01 ⊗ In)
³
vec(bΦ0)− vec (Φ0)

´
+ op

¡
T−1/2

¢
.

Assume again first that the parameter matrix Φ is symmetric and note that then

vec(Φ0) = KnnDnvech(Φ) and KnnDn = Dn (see results 7.2.3(a) and 9.2.3(2) in

Lütkepohl (1996)). Hence, from the preceding equation and (16) we find that

T 1/2
³
vec( bB1)− vec (B1)

´
d→ N (0, G3Q1Q0Q1G

0
3) , (18)

where G3 = [(Ir ⊗ Φ0) : (R01 ⊗ In)Dn : 0] and a consistent estimator of the covariance

matrix of the limiting distribution is bG3
bQ1
bQ0
bQ1
bG0
3 with bG3 defined in an obvious

way. If the parameter matrix Φ is assumed lower triangular we have vec(Φ0) =

KnnL
0
nvech(Φ) . Thus, (18) and the subsequent discussion apply with the duplication

matrixDn replaced byKnnL
0
n. Note that here, as well as in the corresponding previous

cases, the product bQ1
bQ0
bQ1 can be replaced by bQ1 if Gaussian likelihood is assumed.

In addition to approximate standard errors, the asymptotic results given in (16),

(17) and (18) can also be used to construct Wald tests for smooth constraints on the

involved parameters. It should be noted, however, that the limiting distributions in

(16), (17) and (18) are singular and therefore care is needed to make sure that the

conventional limit theory applies. For instance, in the case of the linear hypothesis

Avec(B1) = 0 it is not sufficient to assume that the matrix A is of full row rank. In
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addition to this, the matrix A should be such that the matrix AG3Q1Q0Q1G
0
3A

0 is

positive definite.

The preceding estimation and testing results were based on Gaussian likelihood.

In the application of GARCH models it is frequently found that the normal distrib-

ution is not optimal and a more leptokurtic distribution, such as the t distribution,

should be used. It is not difficult to set up the likelihood function based on the t

distribution or any other spherical distribution and maximize it by numerical meth-

ods. For nonnormal distributions no factorization similar to that in (12) is possible,

however, and no formal proof of the asymptotic properties of the obtained estimators

and test statistics seems to be available.

Instead of distributions discussed above we shall consider a certain mixture of

normal distributions. This is motivated by our empirical applications where the t

distribution turned out to be inappropriate whereas a mixture distribution appeared

more reasonable.

3.3 ML Estimation Based on a Mixture of Normal Distributions

First suppose that the error term εt is a mixture of two components e1t and e2t such

that e1t ∼ N (0, In) with probability p and e2t ∼ N (0,Ψ) with probability 1 − p

(0 < p < 1) . Here Ψ = diag[ψ1 · · · ψn] is assumed to be a nonzero diagonal matrix

with positive diagonal elements. This assumption is made for ease of exposition and

could be relaxed by modifying the subsequent arguments in a way similar to that used

to obtain the Gaussian likelihood function. Thus, the distribution of the error term is a

mixture of the N(0, In) distribution and the N(0,Ψ) distribution, and characterized by

the density p (2π)−n/2 exp
©
−1
2
ε0tεt
ª
+ (1− p) (2π)−n/2 det (Ψ)−1/2 exp

©
−1
2
ε0tΨ

−1εt
ª
.

The implied covariance matrix of the error term is pIn + (1− p)Ψ and, since we

wish to have an error term with identity covariance matrix, we make the required

standardization εt → (pIn + (1− p)Ψ)−1/2 εt. Thus, we assume the error term to
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have the density

φε (εt) = p (2π)−n/2 det (Ψ1 (p))
1/2 exp

½
−1
2
ε0tΨ1 (p) εt

¾

+(1− p) (2π)−n/2 det (Ψ2 (p))
1/2 exp

½
−1
2
ε0tΨ2 (p) εt

¾

where Ψ1 (p) = pIn + (1− p)Ψ and Ψ2 (p) = Ψ1 (p)Ψ
−1 = pΨ−1 + (1− p) In.

From the preceding discussion and (1) it follows that the conditional distribution

of yt has density

ft−1 (yt) = p (2π)−n/2 det (Σ1t)
−1/2 exp

½
−1
2
y0tΣ

−1
1t yt

¾

+(1− p) (2π)−n/2 det (Σ2t)
−1/2 exp

½
−1
2
y0tΣ

−1
2t yt

¾
,

where Σit = WHtΨi (p)
−1W 0 (i = 1, 2) . Clearly, Covt−1(yt) = pΣ1t + (1− p) Σ2t.

An interesting feature in this model is that, if the last n− r diagonal elements of the

matrixΨ are distinct, even the parameter matrixW2, and hence also B2, is identifiable

(up to multiplying columns by minus one). This can be readily seen from the form

of the density ft−1 (yt) and the definitions of the conditional covariance matrices Σ1t

and Σ2t. In what follows, we shall assume this condition and only briefly discuss the

case where the last n− r diagonal elements of the matrix Ψ are not distinct.

The unknown parameters of the model are collected in the parameter vector ϑ =

[b0 δ0 ψ0 p]
0
where b = vec(B) . From the definitions it follows that det (Σit)

−1/2 =

det (B) det (Ht)
−1/2 det (Ψi (p))

1/2 . Thus, the log-likelihood function can be written

as

lT (ϑ) = T log det (B)− 1
2

rX

i=1

TX

t=1

log vit +
TX

t=1

logLt (ϑ) ,

where Lt (ϑ) = pL1t (ϑ) + (1− p)L2t (ϑ) with

Lit (ϑ) = det (Ψi (p))
1/2 exp

½
−1
2
y0tBH−1

t Ψi (p)B
0yt

¾
.

Because now all the parameters are identifiable the log-likelihood function can be

maximized directly without any constraints used in the Gaussian case. Initial values
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for the parameters that also enter the Gaussian likelihood can be obtained in the same

way as in the Gaussian case or, if Gaussian ML estimates are available, they can be

used as initial values. Limiting distributions of the ML estimators can be derived

in the usual way although no formal proof on this seems to be available. Thus, if bϑ
signifies the ML estimator of ϑ and a correct model specification is assumed we have

T 1/2(bϑ− ϑ)
d→ N

³
0,
¡
−E(∂2 l̄t (ϑ) /∂ϑ∂ϑ0

¢−1´
. (19)

A consistent estimator of the informationmatrix is−T−1PT
t=1Et−1(∂2l̄t(ϑ)/∂ϑ∂ϑ

0)|ϑ=bϑ

where Et−1(∂2l̄t(ϑ)/∂ϑ∂ϑ
0)|ϑ=bϑ can again be replaced by ∂2 l̄t

³
bϑ
´
/∂ϑ∂ϑ0. Another

possibility, used in the empirical application of the paper, is given by the outer prod-

uct form T−1
PT

t=1(∂l̄t(
bϑ)∂ϑ)(∂l̄t(bϑ)/∂ϑ0).

It is also of interest to consider the limiting distribution of cW = bB0−1 where we

have used the same notation as in the Gaussian case. It is straightforward to check

that cW −W = −W ( bB0−B0)W + op
¡
T−1/2

¢
and, by arguments similar to those used

to obtain (18),

T 1/2
³
vec(cW )− vec (W )

´
= − (W 0 ⊗W )KnnT

1/2
³
vec( bB)− vec (B)

´
+ op (1) .

Combining this with (19) it is straightforward to obtain the desired limiting distrib-

ution and a consistent estimator of its covariance matrix.

The above results can be used to construct conventional likelihood based tests

for smooth constraints on the involved parameters. Because all the parameters are

assumed to be identifiable no problems with potentially singular limiting distributions

arise. However, this issue becomes relevant if at least two of the last n− r diagonal

elements of the matrix Ψ are identical. Without going into details we note that

then the likelihood function should be modified in a way similar to that used in the

Gaussian case.

Finally, note that above we assumed that the employed mixture distribution is

correct. If that is not assumed one can proceed in the same way as in the case of

Gaussian likelihood and modify the limiting distribution in (19). Because now the
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information matrix is nonsingular this can be done in the conventional way described,

for example, in Davidson (2000, p. 219-220).

4 Testing the Order of Conditional Heteroskedasticity

In practice the integer r, which we refer to as the order of conditional heteroskedas-

ticity, is usually unknown. Therefore it is of interest to have test procedures which

can help to specify an appropriate value for this parameter.

Suppose that a chosen value r represents the truth. From equations (4) and (5)

it then follows that the r linear combinations of yt given by B0
1yt are conditionally

heteroskedastic whereas the n− r linear combinations B0
2yt are homoskedastic or, in

fact, B0
2yt ∼ i.i.d.(0, In−r). Therefore, a natural way to test the correctness of the

specified order of conditional heteroskedasticity is to test whether the linear combi-

nations B0
2yt really are free of conditional heteroskedasticity. The test procedures to

be developed below are based on this idea.

A difficulty with the testing problem discussed above is that some parameters of

the model may be identified under the alternative only. To see this, consider the

Gaussian likelihood and the null hypothesis which states that αr = βr = 0 in (6).

Under this null hypothesis, the order of conditional heteroskedasticity is r − 1 and
vrt = 1 for all t. From equation (10) it can be seen that the last column of the

matrix R1 is then not identified because it can take any value without any effect

on the conditional covariance matrix of the observed series. This nonidentifiability

makes the likelihood ratio test intractable. Instead of the likelihood ratio test we

shall therefore consider Lagrange multiplier type tests which are convenient because

unrestricted estimation of the model is not required.

We shall explicitly only discuss the cases where no column of the parameter matrix

B2 is identifiable and where the parameter matrix B2 is fully identifiable. The other

cases can be handled by a straightforward combination of the arguments used in

these two cases. Unless otherwise stated, the subsequent discussion assumes the null
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hypothesis that the order of conditional heteroskedasticity equals r.

Our first test procedure is based on the approach of Ling and Li (1997). The

idea is to test whether a sample analog of the univariate process y0tB2B
0
2yt is serially

uncorrelated. This sample analog is formed from an estimator of B2 denoted by

eB2. When no column of the parameter matrix B2 is identifiable the estimator eB2 is
supposed to be of the form eB2 = eC−10 eR2 where eC is any estimator of C consistent of

order Op

¡
T−1/2

¢
and eR2 = eR1⊥( eR01⊥ eR1⊥)−1/2 can similarly be based on any estimator

of R1 consistent of order Op

¡
T−1/2

¢
. Note that the use of efficient estimators is not

necessary. If the parameter matrix B2 is fully identifiable it can be estimated directly

in which case we simply assume that the estimator eB2 is available and consistent of
order Op

¡
T−1/2

¢
.

Following Ling and Li (1997) we form the series y0t eB2 eB0
2yt and its centered version

eξ2t = y0t eB2 eB0
2yt−T−1

PT
t=1 y

0
t
eB2 eB0

2yt.With this notation, the sample serial covariances

of y0t eB2 eB0
2yt can be defined as

eγ22 (k) = T−1
TX

t=k

eξ2teξ2,t−k, 0 ≤ k < T,

and eγ22 (k) = eγ22 (−k) for T < k < 0. Now we can introduce the test statistic

T1 (K) = T
KX

k=1

[eγ22 (k) /eγ22 (0)]2
d→ χ2 (K) ,

where the limiting distribution is derived in the appendix. In addition to the as-

sumptions already stated, its derivation assumes that the innovation process εt, and

hence yt, has finite fourth moments. Otherwise the distribution of εt may be ar-

bitrary. In practice one may also investigate the validity of the null hypothesis by

using the individual autocorrelation estimators eγ22 (k) /eγ22 (0) which can be treated
as approximately normally distributed with mean zero and variance 1/T.

The above test is based on serial correlations of the univariate series y0t eB2 eB0
2yt

where eB2 is as above. We shall now consider another test which is based on the anal-
ogous matrix valued series eB0

2yty
0
t
eB2. By symmetry, some elements of this matrix are
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redundant so that it is reasonable to use its half vectorized form vech( eB0
2yty

0
t
eB2)

and, upon centering, consider the (n− r) (n− r + 1) /2 dimensional series eζ2t =
vech( eB0

2yty
0
t
eB2)− T−1

PT
t=1vech(

eB0
2yty

0
t
eB2). The related matrices of sample serial co-

variances are

eΓ (k) = T−1
TX

t=k

eζ2teζ
0

2,t−k, 0 ≤ k < T,

and eΓ (k) = eΓ (−k)0 for T < k < 0. These are used to define the test statistic

T2 (K) = T
KX

k=1

treΓ (k)0 eΓ (0)−1 eΓ (k) eΓ (0)−1 d→ χ2
¡
K (n− r)2 (n− r + 1)2 /4

¢
,

where tr signifies the trace of a square matrix. The stated limiting distribution is

again derived in the appendix under the same conditions as assumed for T1 (K).

It is interesting and useful that the limiting distributions of the above test statistics

apply without any particular additional assumptions about the distribution of the

observations. In particular, the obtained limiting distributions apply even when the

errors εt are not normally distributed. This is in contrast with some previous tests on

conditional heteroskedasticity in which such assumptions are required or modifications

of test statistics are needed to guarantee the applicability of the conventional chi-

square criterion (see e.g. Ling and Li (1996) and the references therein).

If no prior information about an appropriate value of r is available one may wish

to apply the above tests sequentially by starting with r = 1 (assuming that r = 0 can

be ruled a priori). If r = 1 is rejected one can next try r = 2 and so on until the first

nonrejection is obtained. Note that it is reasonable to start testing from small values

of r because, if the value of r is chosen too large, an unidentified model is estimated.

5 Empirical Application

As an empirical example we consider an application to a four-dimensional system

consisting of four weekly foreign exchange rate return series. The data set comprises

the exchange rates of the French Franc (FRF), Dutch Guilder (NLG), German Mark

(DEM) and Swiss Franc (CHF) against the U.S. Dollar (USD) from the beginning of
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1984 until the end of 1997 (782 observations). As Figure 1 shows, the series exhibit

conditional heteroskedasticity, and against the dollar the rates appear to be relatively

stable. However, the currencies belonging to the European Monetary System (the

French franc, German mark and Dutch guilder) underwent some major realignments

and the foreign exchange markets experienced a number of spells of turmoil during

the sample period. These are clearly visible as spikes and excessive volatility in the

implied cross rate returns in Figure 2, whereas the implied cross rates against the

Swiss franc remained quite stable as exemplified by the implied CHF/DEM return

series. It is also obvious from Figure 2 that the NLG/DEM rate fluctuates in a much

narrower range than the rest.

Let us first consider models under normality. We start the analysis by selecting the

order of conditional heteroskedasticity, r. A sequential application of test statistics T1

and T2 as described at the end of the previous section alongside plots of the allegedly

conditionally homoskedastic and heteroskedastic linear combinations of the returns

are employed in the selection process. According to the test results in the upper panel

of Table 1 we cannot reject the null hypothesis of two conditionally heteroskedastic

factors driving the system at the 5% level using either test. In contrast, the hypothesis

of only one factor is easily rejected.

Estimation results for the system with two conditionally heteroskedastic factors

under normality are presented in Table 2. The standard errors and test results to

be reported below are based on the robust covariance matrix estimator, so they are

asymptotically valid even if the assumed normal distribution is not correct. Interest-

ingly, both of the conditionally heteroskedastic factors turn out to be implied exchange

rate returns between European currencies. In the first column of the estimated B1

matrix only the second and third elements are significant at the 5% level. They are

approximately equal in absolute value but of opposite sign, suggesting that the first

conditionally heteroskedastic linear combination could be the (scaled) difference be-

tween the NLG/USD and DEM/USD returns, i.e., the implied NLG/DEM return.

The Wald test does not reject this hypothesis (p-value equals 0.13). In the second
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column of the estimate of B1 only the first and third elements are significant, and

the null hypothesis of the second conditionally heteroskedastic linear combination

being the implied (scaled) FRF/DEM return cannot be rejected by a Wald test (p-

value equals 0.79). However, the coefficients of the first factor in the W matrix are

very inaccurately estimated while those of the second factor are clearly significant,

suggesting that the one-factor specification might be adequate.

The first conditionally heteroskedastic factor exhibits rather low persistence while

the second factor is highly persistent (the estimates of the α and β parameters sum

to 0.639 and 0.997, respectively). The heteroskedastic and homoskedastic linear com-

binations of the observed series are depicted in Figure 3. According to these plots

the normality assunption seems to be inadequate for this data set. In particular, the

numerous spikes in these plots indicate excessive kurtosis. This together with the

fact that the coefficients in the estimated W matrix corresponding to the first factor

have very large standard errors suggests that a model with one factor and nonnormal

error distribution might be a more appropriate specification. It is also noteworthy

that the estimated β parameter of the first factor is insignificant and the estimated α

parameter of the second factor is clearly greater than the estimate of the β parameter.

These findings suggest that the factors may primarily be driven by ”overreaction” to

exceptionally big news and, in turn, lend additional support to the conjecture that

the model may not be appropriate, but a separate regime for these events may be

called for.

Instead of normality a leptokurtic error distribution seems to be needed. One

commonly employed alternative for return series is the t distribution but it turned

out to be inappropriate here. In the model under normality the estimated second

factor primarily seems to capture the rather few outlying observations as attested by

its graph in Figure 3 and the fact that it is dominated by the ARCH term. These

observations lend support to a model in which the errors are generated by two different

distributions of which one generates rather infrequent but large errors. The model

based on the mixture of normal distributions introduced in Section 3.1 is designed
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with this idea in mind. Test results for the order of conditional heteroskedasticity

based on this error distribution are presented in the lower panel of Table 1. In this

case the test results are ambiguous at the 5% significance level. Neither test rejects

the null hypothesis of two factors (p-values of the T1 and T2 tests equal 0.12 and 0.09,

respectively), while the T1 test rejects and the T2 test does not reject the hypothesis of

one factor (p-values equal 0.03 and 0.08, respectively). However, based on the results

of the normal specification above, we are inclined to favor the model with one factor.4

The estimation results of the one-factor model are presented in Table 3, including

the conditionally homoskedastic linear combinations (B2) and corresponding elements

in the W matrix (W2) that are identifiable in this specification. The standard errors

are based on the outer product of the (analytical) score estimator. Because these

standard errors can be badly behaved in finite samples, as recently pointed out by

Mencía and Sentana (2004), we use their method of computing the gradient from a

simulated realization of 100,000 observations. The estimates of the elements of Ψ are

rather small (in particular less than unity) and the probability or mixing proportion

p is estimated as small as 0.129. This is in accordance with the prior expectation

that rather a small error variance prevails most of the time. The conditionally het-

eroskedastic factor exhibits rather moderate persistence (the sum of the estimated α

and β parameters equals 0.935) and the GARCH term clearly dominates, suggesting

that the introduction of the mixture distribution has successfully captured the aber-

rant observations. The factor in the first column of the estimated B matrix turns out

to be the (scaled) difference between the German mark and Dutch guilder returns,

i.e., the implied DEM/NLG return. This hypothesis cannot be rejected by aWald test

4The T1 and T2 tests are essentially tests for conditional homoskedasticity and similar tests have

been shown to overreject in the presence of aberrant observations. As pointed out by Franses et

al. (2004), the problem is especially severe when there are patches of outliers as seems to be the

case here. Moreover, we also attempted to estimate a two-factor model. The estimation algorithm

converged very slowly and, according to Wald tests, only the first column of the B1 matrix turned

out to be statistically significant. These findings provide additional support for a model with one

factor.
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(p-value equals 0.10). In other words, changes in the DEM/NLG rate tend to increase

conditional volatility of the factor. As pointed out above, the range of variation of

the NLG/DEM rate is much narrower than that of the other rates, and it experienced

no realignments during the sample period. Thus, a possible interpretation of the out-

come might be that this particular exchange rate was the most sensitive such that

even its small movements were seen as indicative of changes in market conditions,

giving rise to higher volatility.5 According to Wald tests the equation for the French

franc return is the only one where the conditionally heteroskedastic factor does not

enter (at the 5% significance level). This would imply the rather unexpected finding

that there is no dynamics in the conditional variance of the French franc return. As

an additional check for this, we applied a likelihood ratio test. According to this test,

the null hypothesis that the French franc return is not affected by the conditionally

heteroskedastic factor was rejected at any reasonable significance level.

Because all the exchange rates in the system are expressed in terms of the U.S.

dollar, a shock of the same size to all the returns (i.e., to all the elements of εt) can

be interpreted as a shocks to the U.S. economy. The coefficients in the first column

of W give the effects of the shock on the returns, and as all the estimates except the

one for the DEM/USD return are negative, following a positive shock, the French

franc, Dutch guilder and Swiss franc tend to appreciate vis-à-vis the dollar, while

the German mark tends to depreciate. Also, the coefficients of the NLG/USD and

CHF/USD returns are almost equal while that of the FRF/USD return is clearly

smaller, suggesting substantial appreciation of the Dutch guilder and Swiss franc and

moderate appreciation of the French franc vis-à-vis the German mark. If the shock

is negative the effects are reversed. Moreover, the higher the conditional volatility in

the system, the greater is the impact of such a shock on all the returns.

5We also tested for asymmetry by testing whether positive and negative values of the factor have

equal effect on the conditional variance. A likelihood ratio test cannot reject the null hypothesis of

symmetry (p-value equals 0.32).
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6 Conclusion

In this paper we extend previous multivariate generalized orthogonal GARCH mod-

els to allow for a reduced number of conditionally heteroskedastic factors. Unlike in

previous similar models we also develop test procedures which can be used to spec-

ify an appropriate number of factors needed to adequately describe the conditional

heteroskedasticity in the data. In addition to Gaussian likelihood, estimation based

on a mixture of normal distributions is also considered. The latter, motivated by

the empirical application of the paper, appears useful when one needs to allow for

aberrant observations, which in our case are due to realignments of the considered

exchange rates.

It is shown that the Gaussian likelihood can be expressed in a convenient form and

its numerical maximization can be facilitated by using simple preliminary estimates.

In large systems such preliminary estimates may also be useful in their own right.

Because in high-dimensional GARCH models full maximum likelihood estimation is,

in general, difficult, our model may thus offer a feasible alternative.

Appendix 1

In this appendix the limiting distributions of test statistics T1 (K) and T2 (K)

are derived. Unless otherwise stated, all the assumptions stated in the paper will

be assumed, including the correctness of the null hypothesis that the order of condi-

tional heteroskedasticity equals r.We shall explicitly only consider the case where no

column of the parameter matrix B2 is identifiable. The employed arguments can be

straightforwardly modified to other relevant cases.

Derivation of the limiting distribution of T1 (K) . Let γ
∗
22 (k) be the coun-

terpart of eγ22 (k) defined by using y0tB2B
0
2yt = ε02tε2t in place of y

0
t
eB2 eB0

2yt. We start

by showing that, for any fixed k,

eγ22 (k)− γ∗22 (k) =





op
¡
T−1/2

¢
, k > 0

op (1) , k = 0.
(20)
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Suppose first that k > 0 and define ξ2t by replacing the estimator eB2 in the definition
of eξ2t by B2. Then we can write

eγ22 (k)− γ∗22 (k) = T−1
TX

t=k

ξ2,t−k(eξ2t − ξ2t) + T−1
TX

t=k

ξ2t(eξ2,t−k − ξ2,t−k) (21)

+T−1
TX

t=k

(eξ2t − ξ2t)(eξ2,t−k − ξ2,t−k).

Using the definitions and assumptions it is straightforward to check that the first

term on the right hand side can be expressed as

T−1
TX

t=k

ξ2,t−k(eξ2t − ξ2t) = T−1
TX

t=k

ξ2,t−ky
0
t( eB2 eB0

2 −B2B
0
2)yt + op

¡
T−1/2

¢
.

Now define the n×n matricesM = B2R
0
2 and fM = eB2 eR02. Because fM = eC−10 eR2 eR02 =

eC−10(In − eR1 eR01) and because the estimators eC and eR1 are assumed to be consistent
of order Op

¡
T−1/2

¢
, we have fM = M + Op

¡
T−1/2

¢
. Thus, y0t( eB2 eB0

2 − B2B
0
2)yt =

y0t(fMfM 0 −MM 0)yt = 2y
0
tM(fM −M)0yt + y0t(fM −M)(fM −M)0yt and

T−1
TX

t=k

ξ2,t−k(eξ2t − ξ2t) = 2tr(fM −M)0T−1
TX

t=k

ξ2,t−kyty
0
tM (22)

+tr(fM −M)(fM −M)0T−1
TX

t=k

ξ2,t−kyty
0
t + op

¡
T−1/2

¢
.

In the second term on the right hand side we can use the definition of ξ2,t−k to

obtain

T−1
TX

t=k

ξ2,t−kyty
0
t = T−1

TX

t=k

kε2,t−kk
2 yty

0
t − T−1

TX

t=1

kε2tk
2 T−1

TX

t=k

yty
0
t = Op (1) .

Here the latter equality follows from a law of large numbers because the process
¡
kε2tk

2 , yty
0
t

¢
is stationary and ergodic with finite second moments. This, in conjunc-

tion with the fact fM −M = Op

¡
T−1/2

¢
, shows that the second term on the right

hand side of (22) is of order op
¡
T−1/2

¢
. To see that the same is true for the first term,

conclude from the definitions that y0tM = ε0tH
1/2
t W 0B2R

0
2 = ε02tR

0
2. Thus, from the
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definition of ξ2,t−k and equation (9) it follows that

T−1
TX

t=k

ξ2,t−kyty
0
tM = T−1

TX

t=k

Ã
kε2,t−kk

2 − T−1
TX

t=1

kε2tk
2

!
W1V

1/2
t ε1tε

0
2tR

0
2(23)

+T−1
TX

t=k

Ã
kε2,t−kk

2 − T−1
TX

t=1

kε2tk
2

!
W2ε2tε

0
2tR

0
2.

It is easy to check that on the right hand side the replacement of the sample mean

T−1
PT

t=1 kε2tk
2 by its expected value n− r causes an error of order op (1) and, after

this replacement, the resulting summands are in both cases realizations from zero

mean stationary and ergodic processes. Thus, both terms on the right hand side of

(23) are of order op (1) and, since fM −M = Op

¡
T−1/2

¢
, the first term on the right

hand side of (22) is of order op
¡
T−1/2

¢
.

Altogether we have shown that the first term on the right hand side of (21) is of

order op
¡
T−1/2

¢
. By similar arguments it can be seen that the same is true for the

second and third terms. For the second term this essentially amounts to considering

(22) with k < 0 whereas the third term is clearly of a lower order of magnitude. Hence,

we have established (20) when k > 0. The case k = 0 can be handled similarly.

Now recall that γ∗22 (k) is the kth sample serial covariance obtained from kε2tk
2 ,

(t = 1, ..., T ) . Thus, well-known results about stationary time series show that the

corresponding sample serial correlations γ∗22 (k) /γ
∗
22 (0) are asymptotically indepen-

dent and normally distributed with mean zero and variance 1/T . From (20) it readily

follows that the same is true for the corresponding observed quantities eγ22 (k) /eγ22 (0) .
The limiting distribution of test statistic T1 (K) follows from this.

Derivation of the limiting distribution of T2 (K) . We consider analogues

of the sample serial covariance matrices eΓ (k) defined by replacing the half vector-
ization operator vech by the ordinary vectorization operator vec. Thus, set eζ

2t
=

vec( eB0
2yty

0
t
eB2)− T−1

PT
t=1vec(

eB0
2yty

0
t
eB2), and define

eΓ (k) = T−1
TX

t=k

eζ
2t
eζ 0
2,t−k, 0 < k < T,
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and eΓ (k) = eΓ (−k)0 for T < k < 0. The unobserved counterparts of eζ
2t
and eΓ (k)

obtained by replacing the estimator eB2 by B2 are denoted by ζ∗
2t
and Γ∗ (k) , respec-

tively. In order to simplify notation we denote wt = wt − T−1
PT

t=1wt for any time

series vector wt (t = 1, ..., T ) and A(2) = A ⊗ A for any matrix A. Various results of

the Kronecker product and the vectorization operator to be used below can be found

in Sections 2.4 and 7.2 of Lütkepohl (1996).

Analogously to (20) we first show that, for any fixed k,

eR(2)2 eΓ (k) eR(2)02 −R
(2)
2 Γ

∗ (k)R(2)02 =





op
¡
T−1/2

¢
, k > 0

op (1) , k = 0.
(24)

By properties of the vec operator, vec( eB0
2yty

0
t
eB2) = eB(2)0

2 y
(2)
t . Hence, eζ

2t
= eB(2)0

2 y
(2)
t

and eΓ (k) = eB(2)0
2
eΓ(2)y (k) eB(2)

2 where eΓ(2)y (k) = T−1
PT

t=k y
(2)
t y

(2)0
t−k. In the same way it

can be seen that Γ∗ (k) = B
(2)0
2
eΓ(2)y (k)B

(2)
2 .

Consider first the case k > 0. Using the matricesM and fM defined in the previous

proof we can write

eR(2)2 eΓ (k) eR(2)02 −R(2)2 Γ
∗ (k)R(2)02 = fM (2)0eΓ(2)y (k)fM (2) −M (2)0eΓ(2)y (k)M (2) (25)

= (fM (2) −M (2))0eΓ(2)y (k)M (2)

+M (2)0eΓ(2)y (k) (fM (2) −M (2))

+(fM (2) −M (2))0eΓ(2)y (k) (fM (2) −M (2)).

Because the process yt is stationary and ergodic with finite fourth moments, a law

of large numbers implies that eΓ(2)y (k) = Op (1) . This, in conjunction with the result

fM −M = Op

¡
T−1/2

¢
, shows that the last term in the last expression of (25) is of

order op
¡
T−1/2

¢
. We show that the this is also the case for the first term.

From the identity

fM (2) −M (2) =M ⊗ (fM −M) + (fM −M)⊗M + (fM −M)⊗ (fM −M)
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it follows that

(fM (2) −M (2))0eΓ(2)y (k)M (2) = (M 0 ⊗ (fM −M)0)eΓ(2)y (k)M (2)

+((fM −M)0 ⊗M 0)eΓ(2)y (k)M (2)

+(fM −M)(2)0eΓ(2)y (k)M (2).

As noticed above, eΓ(2)y (k) = Op (1) which in conjunction with the result fM −M =

Op

¡
T−1/2

¢
implies that the last term on the right hand side of the preceding equation

is of order op
¡
T−1/2

¢
. Thus, we need to show that the same is true for the first and

second terms. It suffices to consider the former which can be expressed as

(M 0 ⊗ (fM −M)0)eΓ(2)y M (2) = (M 0 ⊗ (fM −M)0)T−1
TX

t=k

y
(2)
t y

(2)0
t−kM

(2)

= (In ⊗ (fM −M)0)T−1
TX

t=k

¡
M 0yt ⊗ yt

¢ ¡
M 0yt−k ⊗M 0yt−k

¢0

= (In ⊗ (fM −M)0)T−1
TX

t=k

¡
R2ε2t ⊗ yt

¢ ¡
R2ε2,t−k ⊗R2ε2,t−k

¢0
.

Here the last equality is based on the fact M 0yt = R2ε2t already used in the previous

proof. Because the process R2ε2t⊗yt is stationary and ergodic with finite expectation

it obeys a law of large numbers. Using this fact in conjunction with fM − M =

Op

¡
T−1/2

¢
it is not difficult to check that the replacement of the sample mean in

the last expression above by the corresponding expectation causes an error of order

op
¡
T−1/2

¢
. Thus,

(M 0 ⊗ (fM −M)0)eΓ(2)y (k)M (2)

= (In ⊗ (fM −M)0)T−1
TX

t=k

(R2ε2t ⊗ yt − E (R2ε2t ⊗ yt))

× (R2ε2,t−k ⊗R2ε2,t−k − E (R2ε2,t−k ⊗R2ε2,t−k))
0 + op

¡
T−1/2

¢
.

Now recall from equation (9) the representation yt = W1V
1/2
t ε1t +W2ε2t and insert

it in the first term of the last expression which becomes a sum of two terms. It

is straightforward to check that, for k > 0, the summands in all these two terms
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are stationary and ergodic martingale differences and, hence, of order op (1) . Thus,

because fM−M = Op

¡
T−1/2

¢
it follows thatM 0⊗(fM−M)0eΓ(2)y (k)M (2) = op

¡
T−1/2

¢
.

We have thus shown that the first term in the last expression of (25) is of order

op
¡
T−1/2

¢
. A similar proof shows that this is also the case for the second term. The

proof is essentially based on arguments used above with k < 0. Altogether we have

shown that, for k > 0, all the three terms in the last expression of (25) are of order

op
¡
T−1/2

¢
. This proves (24) in the case k > 0. The case k = 0 can be obtained from

(25) by using the facts eΓ(2)y (k) = Op (1) and fM −M = Op

¡
T−1/2

¢
.

We shall next obtain an alternative expression for test statistic T2 (K) . To this

end, let A+ signify the Moore-Penrose inverse of the matrix A. Then, we can write

T2 (K) = T
KX

k=1

tr
³
eR(2)2 eΓ (k) eR(2)02

´0 ³ eR(2)2 eΓ (0) eR(2)02

´+
(26)

×
³
eR(2)2 eΓ (k) eR(2)02

´³
eR(2)
2
eΓ (0) eR(2)02

´+
.

In order to justify this, conclude from the definitions of the vectors eζ2t and eζ2t that
eζ
2t
= Dn−reζ2t and eζ2t = D+

n−reζ2t where D
+
n−r =

¡
D0

n−rDn−r
¢−1

D0
n−r. Thus, eΓ (k) =

Dn−reΓ (k)D0
n−r and eΓ (k) = D+

n−reΓ (k)D+0
n−r. From these facts and the definition of

the Moore-Penrose inverse it can be straightforwardly shown that
³
eR(2)2 eΓ (0) eR(2)02

´+
=

eR(2)2 D+0
n−reΓ (0)−1D+

n−r eR(2)02 . Using this identity and the fact eR(2)02
eR(2)2 = In−r on the

right hand side of (26) it can then be seen that the stated equation holds.

Next note that from the definitions it follows that Γ∗ (k) is the sample serial co-

variance matrix of the random vector ε2t ⊗ ε2t at lag k. Thus, by standard results,

R
(2)
2 Γ

∗ (0)R(2)02 converges in probability to R
(2)
2 Cov(ε2t ⊗ ε2t)R

(2)0
2 and, by (24), the

same is true for eR(2)2 eΓ (0) eR(2)0
2 . The rank of the covariance matrix Cov(ε2t ⊗ ε2t) is not

full but (n− r) (n− r + 1) /2 or the rank of the covariance matrix Cov
¡
D+

n−r(ε2t ⊗ ε2t)
¢

(cf. the relations eζ2t = D+
n−reζ2t and eΓ (k) = D+

n−reΓ (k)D+0
n−r discussed above). Be-

cause the matrix R(2)2 satisfies R(2)0
2 R(2)2 = In−r the rank of R

(2)
2 Cov(ε2t ⊗ ε2t)R

(2)0
2

is also (n− r) (n− r + 1) /2 and because eR(2)2 eΓ (0) eR(2)02 = R
(2)
2 Cov(ε2t ⊗ ε2t)R

(2)0
2 +

op (1) we must have rk
³
eR(2)2 eΓ (0) eR(2)02

´
≥ (n− r) (n− r + 1) /2 with probability
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approaching one (cf. the proof of Lemma 1 in Andrews (1987)). On the other

hand, because the structure of the matrix eR(2)2 eΓ (0) eR(2)02 is similar to that of the

matrix R
(2)
2 Cov(ε2t ⊗ ε2t)R

(2)0
2 it follows that the inequality rk

³
eR(2)2 eΓ (0) eR(2)02

´
≤

(n− r) (n− r + 1) /2 must hold. Thus, with probability approaching one the rank

of the matrix eR(2)2 eΓ (0) eR(2)02 equals (n− r) (n− r + 1) /2, the rank of its probability

limit R
(2)
2 Cov(ε2t ⊗ ε2t)R

(2)0
2 . From Theorem 2 of Andrews (1987) we therefore find

that

³
eR(2)2 eΓ (0) eR(2)02

´+
=

³
R
(2)
2 Cov (ε2t ⊗ ε2t)R

(2)0
2

´+
+ op (1) (27)

= R
(2)
2 D+0

n−r
¡
Cov(D+

n−r (ε2t ⊗ ε2t))
¢−1

D+
n−rR

(2)0
2 + op (1) .

Here the latter equality can be justified by using the definition of the Moore-Penrose

inverse (cf. the expression obtained for
³
eR(2)2 eΓ (0) eR(2)02

´+
after (26)). The first equal-

ity also holds with the left hand side replaced by
³
R
(2)
2 Γ

∗ (0)R(2)02

´+
.

As will become clear below, T 1/2R
(2)
2 Γ

∗ (k)R(2)02 = Op (1) for k > 0. This in con-

junction with equations (24), (26) and (27) yields

T2 (K) = T
KX

k=1

tr
³
R
(2)
2 Γ

∗ (k)R(2)02

´0 ³
R
(2)
2 Γ

∗ (0)R(2)02

´+

×
³
R
(2)
2 Γ

∗ (k)R(2)02

´³
R
(2)
2 Γ

∗ (0)R(2)02

´+
+ op (1)

= T
KX

k=1

trΓ∗ (k)0 Γ∗ (0)−1 Γ∗ (k)Γ∗ (0)−1 + op (1) ,

where Γ∗ (k) is the sample serial covariance matrix of D+
n−r(ε2t⊗ ε2t) at lag k and the

latter equality follows from (27) with arguments similar to those used for (26). The

limiting distribution of test statistic T2 (K) can be derived from this.

To complete the proof, denote et = D+
n−r(ε2t⊗ε2t) and F ∗ (k) = Γ∗ (0)−1/2 Γ∗ (k)Γ∗ (0)−1/2 .

By standard arguments it can first be seen that

Γ∗ (k) = T−1
TX

t=k

(et − Eet) (et−k − Eet−k)0 + op
¡
T−1/2

¢
(k > 0) .

This and a standard application of a martingale central limit theorem show that the

rows of the matrix T 1/2F ∗ (k) converge in distribution to independent standard normal
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variates and, moreover, these limits are independent for k = 1, ..., K. Thus, it follows

that T2 (K) = T
PK

k=1trF
∗(k)F ∗ (k)0 + op (1)

d→ χ2
¡
K (n− r)2 (n− r + 1)2 /4

¢
.

Appendix 2

Derivatives of the Gaussian log-likelihood function. For numerical op-

timization and estimation of the matrices Q0 and Q1 in the limiting distributions

(16), (17) and (18) it is useful to have analytical expressions of the first and second

derivatives of the Gaussian log-likelihood function. It will be convenient to consider

the log-likelihood of a single observation which, by the expression of the conditional

density function (12) and the subsequent discussion, can be written as

l̄t (Φ, R1, δ) = log det (Φ)−
1

2
y0tΦ

0Φyt

−
rX

i=1

µ
1

2
log vit −

1

2
(v−1it − 1)(ρ01iΦyt)2

¶

def
= l̄0t (Φ) +

rX

i=1

l̄it (Φ, ρ1i, δi) .

With this parameterization, equation (6) can be written as

vit = (1− αi − βi) + βivi,t−1 + αi(ρ
0
1iΦyt−1)

2 i = 1, ..., r.

Note also that the formulation of some of the subsequent results assume that the

parameter matrix Φ is symmetric although the transpose sign is not suppressed

from the notation. The parameters of the model are collected in the vector θ =

[φ0 ρ011 · · · ρ
0
1r δ01 · · · δ

0
r]
0
where φ = vech(Φ) .

By straightforward differentiation,

∂l̄0t (θ) /∂φ = D0
nvec(Φ

−1)− 1
2
D0

nvec(yty
0
tΦ
0)− 1

2
D0

nvec(Φyty
0
t) (28)

and, for 1 ≤ i ≤ r,

∂l̄it (θ) /∂φ = −1
2
v−1it (∂vit/∂φ) +

1

2
v−2it (ρ

0
1iΦyt)

2
(∂vit/∂φ) (29)

−1
2
(v−1it − 1) [D0

nvec(yty
0
tΦ
0ρ1iρ

0
1i) +D0

nvec(ρ1iρ
0
1iΦyty

0
t)] ,
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where

∂vit/∂φ = βi∂vi,t−1/∂φ+ αi

£
D0

nvec(yt−1y
0
t−1Φ

0ρ1iρ
0
1i) +D0

nvec(ρ1iρ
0
1iΦyt−1y

0
t−1)

¤
.

From these one obtains

∂l̄t(θ)/∂φ =
rX

i=0

∂l̄it (θ) /∂φ. (30)

Next note that l̄0t(θ) does not depend on the parameters ρ1i and δi. Hence,

∂l̄t (θ) /∂ρ1i = −1
2
v−1it (∂vit/∂ρ1i) +

1

2
v−2it (ρ

0
1iΦyt)

2
(∂vit/∂ρ1i) (31)

−(v−1it − 1)Φyty0tΦ0ρ1i, i = 1, ..., r,

where

∂vit/∂ρ1i = βi(∂vi,t−1/∂ρ1i) + 2αiΦyt−1y
0
t−1Φ

0ρ1i.

Finally,

∂l̄t (θ) /∂αi = −
1

2
v−1it (∂vit/∂αi) +

1

2
v−2it (ρ

0
1iΦyt)

2
(∂vit/∂αi), i = 1, ..., r, (32)

and

∂l̄t (θ) /∂βi = −
1

2
v−1it (∂vit/∂βi) +

1

2
v−2it (ρ

0
1iΦyt)

2
(∂vit/∂βi), i = 1, .., r, (33)

where

∂vit/∂αi = −1 + βi(∂vi,t−1/∂αi) + (ρ
0
1iΦyt−1)

2

and

∂vit/∂βi = −1 + βi(∂vi,t−1/∂βi) + vi,t−1.

From equations (28) - (33) one can form ∂l̄t(θ)/∂θ which can further be used to obtain

an estimator for the matrix Q0 in (16), (17) and (18).

Instead of the second partial derivatives of the log-likelihood function we use

their conditional expectations which are somewhat simpler than the second partial

derivatives themselves. By straightforward differentiation we first obtain

∂2l̄0t (θ) /∂φ∂φ
0 = −D0

n(Φ
−1 ⊗ Φ−1)Dn −

1

2
D0

n(In ⊗ yty
0
t)Dn −

1

2
D0

n(yty
0
t ⊗ In)Dn

32



and, hence,

Et−1(∂
2 l̄0t (θ) /∂φ∂φ

0) = −D0
n(Φ

−1 ⊗Φ−1)Dn −
1

2
D0

n(In ⊗WHtW
0)Dn (34)

−1
2
D0

n(WHtW
0 ⊗ In)Dn.

For 1 ≤ i ≤ r we have,

∂2l̄it (θ) /∂φ∂φ
0 =

1

2
v−2it (∂vit/∂φ)(∂vit/∂φ

0)− 1
2
v−1it (∂

2vit/∂φ∂φ
0)

+
1

2
v−2it (ρ

0
1iΦyt)

2
(∂2vit/∂φ∂φ

0)− v−3it (ρ
0
1iΦyt)

2
(∂vit/∂φ)(∂vit/∂φ

0)

+
1

2
v−2it (∂vit/∂φ) [D

0
nvec(yty

0
tΦ
0ρ1iρ

0
1i) +D0

nvec(ρ1iρ
0
1iΦyty

0
t)]
0

+
1

2
v−2it [D

0
nvec(yty

0
tΦ
0ρ1iρ

0
1i) +D0

nvec(ρ1iρ
0
1iΦyty

0
t)] (∂vit/∂φ

0)

−1
2
(v−1it − 1) [D0

n(ρ1iρ
0
1i ⊗ yty

0
t)Dn +D0

n(yty
0
t ⊗ ρ1iρ

0
1i)Dn] .

Since Et−1
¡
(ρ01iΦyt)

2¢ = vit the second and third terms on the right hand side can-

cel and the first and fourth terms can be combined when conditional expectations

are taken on both sides. Furthermore, E0t−1 (yty
0
tΦ
0ρ1iρ

0
1i) = vitwiρ

0
1i = vitΦ

−1ρ1iρ
0
1i.

Hence, we find from the preceding equation that, for 1 ≤ i ≤ r,

Et−1(∂
2 l̄it (θ) /∂φ∂φ

0) (35)

= −1
2
v−2it (∂vit/∂φ)(∂vit/∂φ

0)

+
1

2
v−1it (∂vit/∂φ)

h
D0

nvec(Φ
−1ρ1iρ

0
1i) +D0

nvec(ρ1iρ
0
1iΦ

−10)
i0

+
1

2
v−1it

h
D0

nvec(Φ
−1ρ1iρ

0
1i) +D0

nvec(ρ1iρ
0
1iΦ

−10)
i
(∂vit/∂φ

0)

−1
2
(v−1it − 1) [D0

n(ρ1iρ
0
1i ⊗WHtW

0)Dn +D0
n(WHtW

0 ⊗ ρ1iρ
0
1i)Dn] .

From the above results one can form

Et−1(∂
2 l̄t (θ) /∂φ∂φ

0) =
rX

i=0

Et−1(∂
2l̄it (θ) /∂φ∂φ

0). (36)
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Recall that l̄0t (θ) does not depend on the parameters ρ1i and δi. Hence,

∂2l̄t (θ) /∂ρ1i∂ρ
0
1i =

1

2
v−2it (∂vit/∂ρ1i)(∂vit/∂ρ

0
1i)−

1

2
v−1it (∂

2vit/∂ρ1i∂ρ
0
1i)

+
1

2
v−2it (ρ

0
1iΦyt)

2
(∂2vit/∂ρ1i∂ρ

0
1i)− v−3it (ρ

0
1iΦyt)

2
(∂vit/∂ρ1i)(∂vit/∂ρ

0
1i)

−(v−1it − 1)Φyty0tΦ0 + v−2it Φyty
0
tΦ
0ρ1i(∂vit/∂ρ

0
1i).

Here the second and third terms on the right hand side cancel and the first and fourth

ones can be combined when conditional expectations are taken on both sides. Also,

Et−1 (Φyty0tΦ
0) = RHtR

0 and Et−1 (Φyty0tΦ
0ρ1i) = vitρ1i and we can conclude that

Et−1
¡
∂2 l̄t (θ) /∂ρ1i∂ρ

0
1i

¢
= −1

2
v−2it (∂vit/∂ρ1i)(∂vit/∂ρ

0
1i)− (v−1it − 1)RHtR

0 (37)

+v−1it ρ1i(∂vit/∂ρ
0
1i).

Let ci stand for either αi or βi. Then,

∂2 l̄t (θ) /∂c
2
i =

1

2
v−2it (∂vit/∂ci)

2 − 1
2
v−1it (∂

2vit/∂c
2
i )

+
1

2
v−2it (ρ

0
1iΦyt)

2
(∂2vit/∂c

2
i )− v−3it (ρ

0
1iΦyt)

2
(∂vit/∂ci)

2

from which one obtains

Et−1
¡
∂2 l̄t (θ) /∂c

2
i

¢
= −1

2
v−2it (∂vit/∂ci)

2, ci = αi, βi, i = 1, .., r, (38)

and, similarly,

Et−1
¡
∂2l̄t (θ) /∂αiβi

¢
= −1

2
v−2it (∂vit/∂αi)(∂vit/∂βi), i = 1, ..., r. (39)

Next consider

∂2l̄t (θ) /∂ρ1i∂φ
0 =

1

2
v−2it (∂vit/∂ρ1i)(∂vit/∂φ

0)− 1
2
v−1it (∂

2vit/∂ρ1i∂φ
0)

+
1

2
v−2it (ρ

0
1iΦyt)

2
(∂2vit/∂ρ1i∂φ

0)− v−3it (ρ
0
1iΦyt)

2
(∂vit/∂ρ1i)(∂vit/∂φ

0)

+v−2it Φyty
0
tΦ
0ρ1i(∂vit/∂φ

0)

−(v−1it − 1) [D0
n(yty

0
tΦ
0ρ1i ⊗ In) +D0

n(ρ1i ⊗ yty
0
tΦ
0)]
0
.
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The second and third terms on the right hand side cancel and the first and fourth

ones can be combined when conditional expectations are taken on both sides. Since

we also have Et−1 (Φyty0tΦ
0) = RHtR

0, Et−1 (yty0tΦ
0ρ1i) = vitΦ

−1ρ1i and Et−1 (yty0tΦ
0) =

Φ−1RHtR
0 we find that

Et−1
¡
∂2l̄t (θ) /∂ρ1i∂φ

0
¢
= −1

2
v−2it (∂vit/∂ρ1i)(∂vit/∂φ

0) + v−1it ρ1i(∂vit/∂φ
0) (40)

−(v−1it − 1)
£
D0

n(vitΦ
−1ρ1i ⊗ In) +D0

n(ρ1i ⊗ Φ−1RHtR
0)
¤0

for i = 1, ..., r.

Further, for ci = αi, βi,

∂2l̄t (θ) /∂ci∂φ
0 =

1

2
v−2it (∂vit/∂ci)(∂vit/∂φ

0)− 1
2
v−1it (∂

2vit/∂ci∂φ
0)

+
1

2
v−2it (ρ

0
1iΦyt)

2
(∂2vit/∂ci∂φ

0)− v−3it (ρ
0
1iΦyt)

2
(∂vit/∂ci)(∂vit/∂φ

0)

+
1

2
v−2it (∂vit/∂ci) [D

0
nvec(yty

0
tΦ
0ρ1iρ

0
1i) +D0

nvec(ρ1iρ
0
1iΦyty

0
t)]
0
.

This in conjunction with arguments similar to those already used give

Et−1(∂
2 l̄t (θ) /∂ci∂φ

0) = −1
2
v−2it (∂vit/∂ci)(∂vit/∂φ

0) (41)

+
1

2
v−1it (∂vit/∂ci)

h
D0

nvec(Φ
−1ρ1iρ

0
1i) +D0

nvec(ρ1iρ
0
1iΦ

−10)
i0

for ci = αi, βi and i = 1, ..., r.

Next note that

∂2l̄t (θ) /∂ci∂ρ
0
1i =

1

2
v−2it (∂vit/∂ci)(∂vit/∂ρ

0
1i)−

1

2
v−1it (∂

2vit/∂ci∂φ
0)

+
1

2
v−2it (ρ

0
1iΦyt)

2
(∂2vit/∂ci∂ρ

0
1i)− v−3it (ρ

0
1iΦyt)

2
(∂vit/∂ci)(∂vit/∂ρ

0
1i)

+v−2it (∂vit/∂ci)ρ
0
1iΦyty

0
tΦ
0,

which yields

Et−1(∂
2l̄t (θ) /∂ci∂ρ

0
1i) = −

1

2
v−2it (∂vit/∂ci)(∂vit/∂ρ

0
1i) + v−1it (∂vit/∂ci)ρ

0
1i (42)

for ci = αi, βi, i = 1, .., r.
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Finally,

∂2 l̄t (θ) /∂ρ1i∂ρ
0
1j = 0, i 6= j, (43)

∂2 l̄t (θ) /∂ρ1i∂cj = 0, i 6= j, (44)

and

∂2l̄t (θ) /∂ci∂cj = 0, i 6= j, (45)

where ci = αj, βi as before.

Using the expressions given in equations (34) - (45) one can form the blocks on

and below the diagonal of the matrix Et−1(∂2 l̄t(θ)/∂θ∂θ
0) and furthermore obtain an

estimator for the matrix Q1 in (16), (17) and (18).

First derivatives of the log-likelihood function of the mixture Gaussian

distribution. The log-likelihood of a single observation is

l̄t (ϑ) = log det (B)−
1

2

rX

i=1

log vit + logLt (ϑ) .

We start with calculating

∂l̄t (ϑ) /∂b = vec
³
B−10

´
− 1
2

rX

i=1

v−1it (∂vit/∂b)

+
1

Lt (θ)
(p∂L1t (ϑ1) /∂b+ (1− p) ∂L2t (ϑ) /∂b) ,

where

∂vit/∂b = [0
0 · · · 00 ∂vit/∂b

0
1i 0

0 · · · 00]
0

with

∂vit/∂b1i = βi (∂vi,t−1/∂b1i) + 2αiyt−1y
0
t−1b1i.

Note that all component vectors in ∂vit/∂b are of order n×1 and the nonzero compo-

nent is in the ith position. (Recall that b1i signifies the ith column of the matrix B1

or, equivalently, the ith column of the matrix B.) The vector ∂vit/∂b will also appear

in the following two partial derivatives needed to compute ∂l̄t (θ) /∂b.
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From the definition of L1t (ϑ) we find that

∂L1t (ϑ) /∂b = −1
2
L1t (ϑ) ∂tr

¡
BH−1

t Ψ1 (p)B
0yty

0
t

¢
/∂b

= −1
2
L1t (ϑ)

"
2vec

¡
yty

0
tBH−1

t Ψ1 (p)
¢
−

rX

i=1

(b01iyt)
2
(p+ (1− p)ψi) v

−2
it

∂vit
∂b

#
,

where the first term in the brackets is obtained by keeping B inside Ht in the previous

expression fixed while the latter term results whenB and B0 in the previous expression

are kept fixed. Similarly

∂L2t (ϑ) /∂b = −
1

2
L2t (ϑ)

"
2vec

¡
yty

0
tBH−1

t Ψ2 (p)
¢
−

rX

i=1

(b01iyt)
2 ¡

pψ−1i + (1− p)
¢
v−2it

∂vit
∂b

#
.

Now we have all the ingredients needed to compute ∂l̄t (θ) /∂b.

Next consider the partial derivative ∂l̄t (θ) /∂δ and recall that δ = [δ
0
1 · · · δ

0
r]
0
with

δi = [αi βi]
0 (i = 1, .., r). From the expression of l̄t (ϑ) we find that

∂l̄t (ϑ) /∂αi = −
1

2
v−1it (∂vit/∂αi) +

1

Lt (ϑ)
(p∂L1t (ϑ) /∂αi + (1− p) ∂L2t (ϑ) /∂αi) .

Here ∂vit/∂αi is as in (32) with ρ01iΦ replaced by b01i and

∂L1t (ϑ) /∂αi = −1
2
L1t (ϑ) (b

0
1iyt)

2
(p+ (1− p)ψi)

∂

∂αi
v−1it

=
1

2
L1t (ϑ) (b

0
1iyt)

2
(p+ (1− p)ψi) v

−2
it (∂vit/∂αi).

Similarly,

∂L2t (ϑ) /∂αi =
1

2
L2t (ϑ) (b

0
1iyt)

2 ¡
pψ−1i + (1− p)

¢
v−2it (∂vit/∂αi).

Also,

∂l̄t (ϑ) /∂βi = −
1

2
v−1it (∂vit/∂βi) +

1

Lt (ϑ)
(p∂L1t (ϑ) /∂βi + (1− p) ∂L2t (ϑ) /∂βi) ,

where ∂vit/∂βi is as in (33) and L1t (ϑ) /∂βi and ∂L2t (ϑ) /∂βi are obtained as L1t (ϑ) /∂αi

and ∂L2t (ϑ) /∂αi, respectively, except that ∂vit/∂αi is replaced by ∂vit/∂βi. In other

words,

∂L1t (ϑ) /∂βi =
1

2
L1t (ϑ) (b

0
1iyt)

2 ¡
pψ−1i + (1− p)

¢
v−2it (∂vit/∂βi)

37



and

∂L2t (ϑ) /∂βi =
1

2
L2t (ϑ) (b

0
1iyt)

2
(p+ (1− p)ψi) v

−2
it (∂vit/∂βi).

The above expressions can be used to form ∂l̄t (ϑ) /∂δi =
£
∂l̄t (ϑ) /∂αi ∂l̄t (ϑ) /∂βi

¤0

and furthermore ∂l̄t (ϑ) /∂δ =
£
∂l̄t (ϑ) /∂δ

0
1 · · · ∂l̄t (ϑ) /∂δ

0
r

¤0
.

For the partial derivative ∂l̄t (ϑ) /∂ψ we have

∂l̄t (ϑ) /∂ψi =
p

Lt (θ)
∂L1t (ϑ) /∂ψi +

1− p

Lt (θ)
∂L2t (ϑ) /∂ψi, i = 1, ..., n.

By the definitions,

∂L1t (ϑ) /∂ψi = exp

½
−1
2
y0tBH−1

t Ψ1 (p)B
0yt

¾
∂

∂ψi

Ã
nY

j=1

¡
p+ (1− p)ψj

¢1/2
!

−1
2
L1t (ϑ) ∂

¡
y0tBH−1

t Ψ1 (p)B
0yt
¢
/∂ψi.

Let bj and hjt denote the jth column of the matrix B and the jth diagonal element

of the matrix Ht, respectively. On the right hand side of the preceding equality we

then have

∂
¡
y0tBH−1

t Ψ1 (p)B
0yt
¢
/∂ψi =

∂

∂ψi

nX

j=1

(y0tbj)
2
h−1jt

¡
p+ (1− p)ψj

¢

= (y0tbi)
2
h−1it (1− p)

and

∂

∂ψi

Ã
nY

j=1

¡
p + (1− p)ψj

¢1/2
!

=
∂

∂ψi

(p + (1− p)ψi)
1/2

nY

j=1
j 6=i

¡
p+ (1− p)ψj

¢1/2

=
1− p

2
(p+ (1− p)ψi)

−1/2
nY

j=1
j 6=i

¡
p+ (1− p)ψj

¢1/2

=
1− p

2
(p+ (1− p)ψi)

−1
nY

j=1

¡
p+ (1− p)ψj

¢1/2

= det (Ψ1 (p))
1/2 1− p

2
(p+ (1− p)ψi)

−1 .

Thus, we can conclude that

∂L1t (ϑ) /∂ψi =
1− p

2
L1t (ϑ)

h
(p+ (1− p)ψi)

−1 − (y0tbi)2 h−1it
i
, i = 1, ..., n.
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As for ∂L2t (ϑ) /∂ψi, one similarly obtains

∂L2t (ϑ) /∂ψi = exp

½
−1
2
y0tBH−1

t Ψ2 (p)B
0yt

¾
∂

∂ψi

Ã
nY

j=1

¡
pψ−1j + (1− p)

¢1/2
!

−1
2
L2t (ϑ) ∂

¡
y0tBH−1

t Ψ2 (p)B
0yt
¢
/∂ψi,

where

∂
¡
y0tBH−1

t Ψ2 (p)B
0yt
¢
/∂ψi =

∂

∂ψi

nX

j=1

(y0tbj)
2
h−1jt

¡
pψ−1j + (1− p)

¢

= −pψ−2i (y0tbi)
2
h−1it

and

∂

∂ψi

Ã
nY

j=1

¡
pψ−1j + (1− p)

¢1/2
!

=
∂

∂ψi

¡
pψ−1i + (1− p)

¢1/2 nY

j=1
j 6=i

¡
pψ−1j + (1− p)

¢1/2

= − p

2ψ2i

¡
pψ−1i + (1− p)

¢−1/2 nY

j=1
j 6=i

¡
pψ−1i + (1− p)

¢1/2

= − p

2ψ2i

¡
pψ−1i + (1− p)

¢−1 nY

j=1

¡
pψ−1j + (1− p)

¢1/2

= −det (Ψ2 (p))1/2
p

2ψ2i

¡
pψ−1i + (1− p)

¢−1
.

Hence,

∂L2t (ϑ) /∂ψi = −
p

2ψ2i
L2t (ϑ)

h¡
pψ−1i + (1− p)

¢−1 − (y0tbi)2 h−1it
i
, i = 1, ..., n.

Now all the ingredients needed to obtain ∂l̄t (ϑ) /∂ψ are available.

Finally, to obtain the partial derivative ∂l̄t (ϑ) /∂p we first note that

∂l̄t (θ) /∂p =
1

Lt (θ)
(p∂L1t (ϑ) /∂p− p∂L2t (ϑ) /∂p) .

Here

∂L1t (ϑ) /∂p = exp

½
−1
2
y0tBH−1

t Ψ1 (p)B
0yt

¾
∂

∂p

Ã
nY

j=1

¡
p+ (1− p)ψj

¢1/2
!

−1
2
L1t (ϑ)

∂

∂p
y0tBH−1

t Ψ1 (p)B
0yt.
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For the first term on the right hand side,

∂

∂p

Ã
nY

j=1

¡
p+ (1− p)ψj

¢1/2
!

=
∂

∂p
exp

(
1

2

nX

j=1

log
¡
p+ (1− p)ψj

¢
)

= exp

(
1

2

nX

j=1

log
¡
p + (1− p)ψj

¢
)

×
∂

∂p

Ã
1

2

nX

j=1

log
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p+ (1− p)ψj

¢
!

=
nY

j=1

¡
p+ (1− p)ψj

¢1/2 1
2

nX

j=1

1− ψj

p+ (1− p)ψj

= det (Ψ1 (p))
1/2 1

2

nX

j=1

1− ψj

p+ (1− p)ψj

.

Further,

∂

∂p
y0tBH−1

t Ψ1 (p)B
0yt =

∂

∂p

nX

j=1

(y0tbj)
2
h−1jt

¡
p+ (1− p)ψj

¢

=
nX

j=1

(y0tbj)
2
h−1jt

¡
1− ψj

¢
.

Combining the above derivations gives

∂L1t (ϑ) /∂p =
1

2
L1t (ϑ)

nX

j=1

1− ψj

p+ (1− p)ψj

−1
2
L1t (ϑ)

nX

j=1

(y0tbj)
2
h−1jt

¡
1− ψj

¢
.

In a similar way,

∂L2t (ϑ) /∂p = exp

½
−1
2
y0tBH−1

t Ψ2 (p)B
0yt

¾
∂

∂p

Ã
nY

j=1

¡
pψ−1j + (1− p)

¢1/2
!

−1
2
L2t (ϑ)

∂

∂p
y0tBH−1

t Ψ2 (p)B
0yt
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and on the right hand side

∂

∂p

Ã
nY

j=1

¡
pψ−1j + (1− p)

¢1/2
!

=
∂

∂p
exp

(
1

2

nX
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log
¡
pψ−1j + (1− p)

¢
)
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(
1

2

nX

j=1

log
¡
pψ−1j + (1− p)

¢
)

×
∂
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Ã
1

2

nX

j=1

log
¡
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¢
!

=
nY

j=1

¡
pψ−1j + (1− p)

¢1/2 1
2

nX
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ψ−1j − 1
pψ−1j + (1− p)

=
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2
det (Ψ2 (p))

1/2
nX

j=1

ψ−1j − 1
pψ−1j + (1− p)

and

∂
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y0tBH−1

t Ψ2 (p)B
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nX
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(y0tbj)
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¢
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nX

j=1

(y0tbj)
2
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¢
.

Thus,

∂L2t (ϑ) /∂p =
1

2
L2t (ϑ)

nX
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ψ−1j − 1
pψ−1j + (1− p)
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.
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Figure 1: The exchange rate return series.
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Figure 2: The implied cross rate returns computed from the exchange rates against

the U.S: dollar.
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Figure 3: The two conditionally heteroskedastic factors (upper panel) and ho-

moskedastic linear combinations (lower panel) under normality.
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Table 1: Tests for the order of conditional heteroskedasticity.

Model Hypothesis T1 T2

Gaussian r = 1 23.828 (1.05e—6) 140.269 (3.08e—14)

r = 2 2.677 (0.102) 16.506 (0.057)

Mixture of r = 1 4.997 (0.025) 48.732 (0.076)

Gaussians r = 2 2.421 (0.120) 15.017 (0.090)

The figures in parentheses are marginal significance levels.

Table 2: Estimation results of the model with two conditionally heteroskedastic fac-

tors under normality.

Parameter Estimate Std.err. Parameter Estimate Std.err.

α1 0.195 0.076 α2 0.669 0.129

β1 0.444 0.650 β2 0.314 0.137

b11 0.604 0.348 b12 1.060 0.007

—10.511 0.818 0.187 0.668

10.079 0.558 —1.262 0.592

—0.216 0.221 0.015 0.063

w11 0.085 0.163 w12 —0.262 0.060

—0.025 0.162 —1.139 0.090

0.067 0.161 —1.193 0.068

—0.065 0.162 —0.994 0.045
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Table 3: Estimation results of the one-factor mixture model.

α1 0.302 ψ1 0.144

(0.065) (0.016)

β1 0.633 ψ2 0.048

(0.060) (0.005)

p 0.129 ψ3 0.317

(0.017) (0.042)

ψ4 0.466

(0.078)

B —0.005 3.260 0.458 —0.119

(0.067) (0.044) (0.047) (0.035)

—7.238 —1.494 0.898 —1.803

(0.068) (0.045) (0.048) (0.035)

7.243 —1.708 —0.003 0.638

(0.069) (0.045) (0.048) (0.036)

—0.066 0.021 —0.743 1.524

(0.077) (0.050) (0.046) (0.047)

W —0.025 0.139 1.361 0.661

(0.018) (0.025) (0.413) (0.254)

—0.099 —0.171 1.388 0.675

(0.018) (0.027) (0.427) (0.263)

0.038 —0.171 1.398 0.686

(0.018) (0.027) (0.429) (0.264)

—0.135 —0.119 1.164 1.220

(0.020) (0.029) (0.456) (0.284)

The figures in the parentheses are standard errors.
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