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Abstract

We conducted a genome-wide association analysis of 7 subfractions of low density lipopro-

teins (LDLs) and 3 subfractions of intermediate density lipoproteins (IDLs) measured by gra-

dient gel electrophoresis, and their response to statin treatment, in 1868 individuals of

European ancestry from the Pharmacogenomics and Risk of Cardiovascular Disease

study. Our analyses identified four previously-implicated loci (SORT1, APOE, LPA, and

CETP) as containing variants that are very strongly associated with lipoprotein subfractions

(log10Bayes Factor > 15). Subsequent conditional analyses suggest that three of these

(APOE, LPA and CETP) likely harbor multiple independently associated SNPs. Further,

while different variants typically showed different characteristic patterns of association with

combinations of subfractions, the two SNPs in CETP show strikingly similar patterns - both

in our original data and in a replication cohort - consistent with a common underlying molec-

ular mechanism. Notably, the CETP variants are very strongly associated with LDL subfrac-

tions, despite showing no association with total LDLs in our study, illustrating the potential

value of the more detailed phenotypic measurements. In contrast with these strong subfrac-

tion associations, genetic association analysis of subfraction response to statins showed

much weaker signals (none exceeding log10Bayes Factor of 6). However, two SNPs (in

APOE and LPA) previously-reported to be associated with LDL statin response do show

some modest evidence for association in our data, and the subfraction response proles at

the LPA SNP are consistent with the LPA association, with response likely being due pri-

marily to resistance of Lp(a) particles to statin therapy. An additional important feature of

our analysis is that, unlike most previous analyses of multiple related phenotypes, we ana-

lyzed the subfractions jointly, rather than one at a time. Comparisons of our multivariate

analyses with standard univariate analyses demonstrate that multivariate analyses can
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substantially increase power to detect associations. Software implementing our multivariate

analysis methods is available at http://stephenslab.uchicago.edu/software.html.

Introduction

Levels of plasma lipids and lipoproteins are related to risk of cardiovascular disease, and be-

cause of this, considerable attention has been devoted to genetic association analyses of lipid-

related measures. The largest of these studies are genetic association analyses for plasma con-

centrations of the common clinical lipid phentoypes: total cholesterol (TC), LDL-cholesterol

(LDL-C), HDL-cholesterol (HDL-C), and triglycerides (TG). For example, [1] performed a

meta-analysis of these traits in> 100,000 individuals of European ancestry, and identified a

total of 95 associated loci. Other (smaller, although still substantial) studies considered genetic

associations with more detailed lipid-related measurements, specifically plasma concentrations

of subfractions of very low density lipoproteins (VLDLs), intermediate density lipoproteins

(IDLs), LDLs, and HDLs, measured by NMR [2–4]. And, motivated by the fact that statin

drugs are widely used to treat lipid phenotypes, and that response to these drugs has a genetic

component, several studies have searched for genetic associations with response of LDL-C,

HDL-C, TC and TG to statin treatment [5–7].

In this paper we describe genetic association analyses of 7 subfractions of LDLs and 3 sub-

fractions of IDLs measured by gradient gel electrophoresis, and of their response to statin ther-

apy. Although our sample size is smaller than many recent lipid association studies (1868

individuals), our phenotypic measurements provide higher resolution information for IDLs

and LDLs than prior genetic association studies of either statin-treated or untreated samples.

Specifically, our 10 subfractions of IDLs and LDLs compare with 3–4 size subfractions in the

NMR-based studies, and no previous genome-wide association study of lipoprotein response

to statin therapy has considered subfraction data. While our smaller sample size limits what we

can say about genetic variants with small effects, for variants with sufficiently strong associa-

tions our data provide a more detailed picture of their associations with the entire IDL/LDL

subfraction profile than any previous study. We find several examples of SNPs that are only

very weakly associated with total LDL-C in our study, but are much more strongly associated

with one or more individual subfractions. Of particular note, we highlight two independently-

associated variants in the CETP gene that have no overall effect on total LDL-C in our study,

but a strong effect on several individual IDL/LDL subfractions (in addition to a well-established

strong effect on total HDL-C).

In addition to the detailed nature of the phenotypes, our study also differs from most previ-

ous studies in our use ofmultivariate association analysis of related phenotypes, rather than

treating each phenotype separately. Our results illustrate that association analysis of multivari-

ate phenotypes can substantially increase the strength of association signals compared with

conventional univariate analyses.

Methods

Study populations and genotype data

All samples in our analysis were derived from the Pharmacogenomics and Risk of Cardiovas-

cular Disease (PARC) study. The study population, experimental design, and genotyping pro-

cedures have been described in detail previously [6]. Briefly, this study contains individuals

from two statin trials: the Cholesterol and Pharmacogenetics (CAP) study [8], and the

Subfraction Analysis
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Pravastatin Inflammation/CRP Evaluation (PRINCE) study [9]. The PRINCE study consists of

two cohorts, one containing individuals with history of CVD (secondary prevention cohort)

and the other containing individuals with no history of CVD (primary prevention cohort). Par-

ticipant characteristics are summarized in Table 1.

Genotyping was conducted in two stages. The first stage individuals were genotyped on the

Illumina HumanHap300 bead chip and the second stage individuals were genotyped on the

Illumina HumanQuad610 bead chip and a custom-made iSelect chip. The HumanHap300 and

the HumanQuad610 chips (henceforth referred to as the 300K chip and the 610K chip) were

designed to tag common variation among individuals of European ancestry while 12,959 SNPs

in the iSelect chip were selected to increase coverage of candidate SNPs for cardiovascular dis-

ease regardless of minor allele frequency (MAF). Our analyses reported here utilized a total of

1,868 Caucasian individuals for whom complete LDL subfraction phenotype data were avail-

able (see below).

To maximize genomic coverage and combine the multiple groups genotyped on different

SNP chips, we performed genotype imputation [10] [11], using an imputation protocol that

has been previously described [12]. Briefly, genotype imputation was performed using IM-

PUTE2 [10] with an integrated reference panel that included 120 CEU haplotypes from the

1000 Genomes Pilot Project (“1000G”) [13] and 1910 worldwide haplotypes from the HapMap

Phase 3 Project (“HM3”) [14]. This procedure generated genotypes (either genotyped or im-

puted) for 7,836,525 SNPs.

Phenotypic measurements and normalisation

LDL cholesterol was estimated by the formula of [15] using measured total cholesterol, HDL

cholesterol, and triglyceride. All lipid measurements were consistently in range as determined

by the NHLBI-CDC Lipid Standardization Program. Gradient gel electrophoresis estimates of

LDL subclass concentrations and LDL peak diameter were determined from whole plasma by

2%–14% non-denaturing polyacrylamide gradient gel electrophoresis as described previously

[16] except that Sudan Black was used as the lipid stain [17], and the size range was extended

to include IDL [18] since the Friedewald formula provides a measure of cholesterol in the den-

sity range that includes IDL as well as LDL particles. The subfractions analyzed and their corre-

sponding particle size intervals were: LDL4b (22.0–23.2 nm), LDL4a (23.3–24.1 nm), LDL3b

(24.2–24.6 nm), LDL3a (24.7–25.5 nm), LDL2b (25.6–26.4 nm), LDL2a (26.5–27.1 nm), LDL1

(27.2–28.5 nm), IDL3 (28.6–29.0 nm), IDL2 (29.1–29.6 nm) and IDL1 (29.7–30.3nm). The

cholesterol concentrations of these subfractions were determined by multiplying percent of the

total stained LDL and IDL for each subfraction by the LDL cholesterol value [17]. In both stud-

ies, the LDL subfractions and LDL cholesterol values were estimated from blood samples taken

on one visit before statin treatment and one visit during the treatment (after 6 weeks in CAP

and 12 weeks in PRINCE).

Following [6] we separately normalized the 12 LDL-related phenotypes (total LDL-C, LDL

peak diameter, and the 10 LDL subfractions), by the following normalization procedure, which

aims to reduce the influence of outlying observations and avoid false positive association due

to systematic differences between studies/cohorts. We partitioned the individuals into six stra-

ta, corresponding to the two stages of genotyping in each of three groups (CAP, PRINCE pri-

mary prevention and PRINCE secondary prevention). Within each stratum we separately

quantile transformed the pre-treatment and post-treatment measurements to a standard nor-

mal distribution to yield pre-treatment and post-treatment phenotypes, P and T. Then we cal-

culated both the average A = (T + P)/2, and the difference D = (T − P) of the transformed

measurements for each individual. (The motivation is that analyses of A are well-powered to

Subfraction Analysis
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Table 1. Summary of phenotype distributions (mean ± standard deviation) for individuals in our analysis, stratified by study/cohort.

CAP PRINCE (secondary prevention) PRINCE (primary prevention)

N 581 797 490

Gender, N males 310 (53.4%) 631 (79.2%) 366 (74.7%)

Age 54.5±12.6 69.7±10.7 56.8±12.3

BMI 27.7±5.5 28.9±5.3 29.1±5.3

Smoking (# of subjects) 78 (13.4%) 110 (13.8%) 62 (12.7%)

Diabetic (# of subjects) 0 (0%) 225 (28.2%) 37 (7.6%)

type of statins simvastatin pravastatin pravastatin

dose of statins 40mg/day for 6 weeks 40mg/day for 12 weeks 40mg/day for 12 weeks

LDL-C (L)

Untreated 132±33.2 125±29.7 142.4±24.9

Treated 76.7±23.7 91.8±26.3 107.5±24.3

LDL peak particle diameter (Ld)

Untreated 266.9±8.9 262.4±9.1 262.9±8.3

Treated 267.6±8.6 262.4±8.7 262.8±8.1

IDL1 (i1)

Untreated 6.3±2.6 5±2.1 5.8±2.1

Treated 3.5±1.9 3.4±1.6 4.1±1.8

IDL2 (i2)

Untreated 6.8±2.5 5.5±2.1 6.4±2.1

Treated 3.7±1.6 3.8±1.6 4.6±1.7

IDL3 (i3)

Untreated 8.4±3.4 6.7±2.7 7.8±2.9

Treated 4.7±2.1 4.7±2 5.5±2.2

LDL1 (l1)

Untreated 34.1±17.3 27.2±15.5 31.4±16.4

Treated 17.9±9.1 18.1±9.6 21.8±11.2

LDL2a (l2a)

Untreated 25.3±12.9 23.5±12.3 28.3±13

Treated 13.6±6.6 16.5±8.6 20.5±9.5

LDL2b (l2b)

Untreated 22.9±12.3 25.8±12.8 30.7±14.5

Treated 13.8±6.7 19.5±9.6 23.4±10.4

LDL3a (l3a)

Untreated 14.5±12.1 17.6±12.6 18.5±13.6

Treated 9.1±6.2 13.7±8.9 15±10.1

LDL3b (l3b)

Untreated 3.9±3.2 4.5±3.3 4.4±3.4

Treated 2.8±1.3 3.8±2.4 3.8±2.5

LDL4a (l4a)

Untreated 4.7±1.9 4.6±2.5 4.5±2.3

Treated 3.6±1.2 4.1±1.8 4.2±1.9

LDL4b (l4b)

Untreated 5.1±2.1 4.6±2.5 4.7±2.2

Treated 3.9±1.5 4.2±1.9 4.6±2.2

Abbreviations for each phenotype are in parentheses.

doi:10.1371/journal.pone.0120758.t001
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identify associations that occur in both T and P, whereas analyses of D are aimed at identifying

associations with statin response.) We then separately corrected A and D for covariates (age,

log(BMI), sex, and smoking status) within each stratum using a standard multiple linear re-

gression, to yield covariate-corrected phenotypes A0 and D0 (obtained from the residuals of the

multiple regression). Finally, each of A0 and D0 were again quantile transformed to a standard

normal distribution within each strata, to yield final phenotypes ~A and ~D. Since previous anal-

yses of the PARC study suggest little potential for spurious associations due to cryptic popula-

tion stratification within strata [6], we did not further control for population substructure

within strata.

Replication cohort, genotype data, phenotypic measurements and
normalization

Replication of our CETP associations was performed among individuals of European descent

from the JUPITER study [7, 19]. Specifically, we examined genotype data at our two replication

SNPs, and phenotype data among up to 6745 JUPITER participants on VLDL, IDL and LDL

subfractions measurements determined by an ion mobility assay [20, 21]. We focused on the

12 ion-mobility phenotypes that correspond most closely to the 12 phenotypes in our study,

namely: total LDL (L), LDL peak diameter (Ld), VLDL small (i1), IDL1 (i2), IDL2 (i3), LDL1

(l1), LDL2a (l2a), LDL medium small (l2b), LDL small (l3a), LDL3b (l3b), LDL4a (l4a), LDL4b

(l4b).

Before association analysis each phenotype was quantile transformed to a standard normal

distribution, and then adjusted for covariates (age, sex, and region: North America vs Europe)

using a standard multiple linear regression. The covariate-corrected phenotypes (i.e. the resid-

uals of the multiple regression) were used in replication analyses. For the top SNP we regressed

these covariate-corrected phenotypes against SNP genotype to estimate an effect for each phe-

notype. We then took the residuals from this regression (to control for the effect of the top

SNP) and regressed them against SNP genotype at the secondary SNP to estimate remaining ef-

fects at the secondary SNP.

Multivariate association analyses

We performed multivariate association analyses using methods described in detail in [22]. To

outline these methods, consider analyzing d phenotypes Y1, . . ., Yd, and assessing their associa-

tion with a single SNP, whose genotypes are denoted by g. Instead of performing a single test of

association, the idea is to compare different models for the way that Y1, . . ., Yd could be associ-

ated with g. The null model is that none of them are associated with g. Then there are a large

number of alternative models, in which different subsets of the variables are associated with g.

For example, one alternative is that Y1 alone is associated with g, and the others are unassociat-

ed. Another is that Y2 alone is associated with g. Another is that all of them are associated with

g, etc. In addition, the method allows that some phenotypes might be “indirectly” associated

with g, which means that their association with g is mediated entirely through the directly asso-

ciated phenotypes. (Specifically, these phenotype are associated with g, but are conditionally in-

dependent of g given the directly associated phenotypes.)

Formally, consider partitioning the phenotypes into three groups,U, D and I whereU denotes

the phenotypes that are unassociated with g, D denotes the phenotypes that are “directly” associ-

ated with g, and I denotes the phenotypes that are “indirectly” associated with g. The support in

the data for each possible partition γ = (U, D, I), compared with the null (γ = γ0, where γ0 is the

partition with all phenotypes inU), is given by the Bayes FactorBF
g
¼ PðY jg; gÞ=PðY jg

0
Þ. Here

we use expressions for these Bayes Factors from a multivariate normal model for Y [22]. Since in

Subfraction Analysis
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practice any of the alternative hypotheses may hold, the overall evidence against the null hypoth-

esis is given by a weighted average of these Bayes Factors

BFav :=
X

g6¼g0

w
g
BF

g ð1Þ

where the weights wγ can be chosen to reflect the relative prior plausibility of different values of

γ. Here we use the default weights suggested in [22], which come from putting uniform prior

probability on the number of associated phenotypes A = jD[Ij = 1, . . ., d and, conditional on A,

uniform prior probability on jDj = 1, . . ., A.

In cases where there is strong evidence against the null hypothesis, these methods can be

used to compare the evidence for different alternative hypotheses. In particular, we summarize

the evidence for Yj being associated with g using the posterior probability of association P(Yj 2

D or I). (In figures presented here we give these posterior probabilities conditional on γ 6¼ γ0.)

In comparisons below, we compare the multivariate Bayes Factor BFav with the Bayes Factor

from the d univariate tests BF
uni

¼ ð1=dÞ
Pd

j¼1
BFj where BFj denotes the Bayes Factor from a

univariate association test of Yj. Note that BFj is highly correlated with the usual p value testing

for association between Yj and g [23], and BFuni is highly correlated with the minimum of these

p values across the d phenotypes [22]. For more details on the connections between these Bayes

Factors and standard tests see [22].

Calculation of the Bayes Factors requires specification of a single hyperparameters, σa,

which controls how large the expected genetic effects are for truly associated SNPs. In all the

Bayes Factor calculations used here we averaged over σa = 0.05, 0.1, 0.2, 0.4. (See [24] for

discussion.)

Initial filtering to reduce computation of genome-wide analysis

Because the total number of possible values for γ in (Eq 1) is large, computing this value ge-

nome-wide is computationally intensive (e.g., 30 min/SNP for 12 phenotypes). To reduce com-

putation we performed an initial filtering step in which, for all SNPs (7,836,525), we compute

BFall, which is the BF for γ where all variables are in D, and BFuni. (Note that BFall corresponds

to a standard multivariate test of association, such as MANOVA; see [22].) We then performed

the full analysis only on SNPs (24,601 for ~A and 25,175 for ~D) that appear promising based on

this filter (log10 BFuni > 1.3 or log10 BFall > 1.3). S2 Text and S3 Text in Supporting Informa-

tion show detailed results from the full analysis.

Identifying deviations from multivariate normality

To identify individuals with phenotypes that appear to deviate from multivariate normality we

performed multivariate outlier detection based the Mahalanobis distance as follows. Given d-

dimensional phenotype vectors y1, . . ., yn, the Mahalanobis distance of yi from the mean

m̂ := ð1=nÞ
Pn

i¼1
yi is computed using

m2

i := ðyi � m̂Þ
t
Ŝ�1ðyi � m̂Þ; ð2Þ

where Ŝ ¼ ð1=ðn� 1ÞÞ
Pn

i¼1
ðyi � m̂Þðyi � m̂Þ

t
is the sample covariance matrix. For each indi-

vidual we obtain a p value testing whether the individual’s phenotype is consistent with the

multivariate normal model by using the fact that, under a multivariate normal distribution,

m2

i � w
2

d .

Subfraction Analysis
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Results

The effect of statin treatment on LDL subfractions

Fig 1 shows the mean and standard deviation of the absolute and fractional change in LDL sub-

fractions, by study/cohort. The three cohorts show similar trends, with stronger effects in CAP

than PRINCE, presumably reflecting both the different statins and doses used, and the different

enrollment criteria. In particular, all three studies show a consistent trend of larger fractional

change in the larger (lower-density) particles, and lower fractional change in the smaller

(higher-density) particles. This is consistent with studies showing that very small LDL have

low affinity for the LDL receptor [25].

Genome-wide association analyses, irrespective of statin exposure

To identify genetic variants that are associated with LDL-C subfractions, irrespective of statin

exposure, we conducted a multivariate genome-wide scan of an average of the pre-treatment

measurements (P) and post-treatment measurements (T) for all twelve LDL-C related pheno-

types simultaneously (10 subfractions plus Ld, and total LDL-C; S1 Fig in Supporting Informa-

tion shows correlations among the phenotypes). The normalization and data processing steps

used to derive this phenotype (~A) are described in the methods section. The rationale for

Fig 1. Effects of statin on cholesterol concentrations in LDL subfractions. Dashed lines show (a) mean absolute change, and (b) mean fractional
change, in each study/cohort in each subfraction (see Table 1 for abbrevations); dotted lines show ± one standard deviation; subfractions are in order from
lower (left) to higher (right) density lipoprotein.

doi:10.1371/journal.pone.0120758.g001

Subfraction Analysis
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averaging pre-treatment and post-treatment measures is that it reduces the influence of envi-

ronmental and temporal fluctuations in phenotype, and of measurement errors (see also [6]).

Our analysis summarizes the evidence for each SNP being associated with the multivariate

phenotype data (against the null of no association) by a Bayes Factor, BFav, which compares

the likelihood of the data under a range of alternative models, with the likelihood under the

null model (see methods). Although there is no direct correspondence between Bayes Factors

and p values, typically log10 BFav � 5 − 6 corresponds roughly to conventional levels of ge-

nome-wide significance.

We found SNPs in or near four genes (SORT1, CETP, APOE, and LPA; S2 Fig in Support-

ing Information) that showed very strong association signals (log10 BFav > 15), and no other

SNPs had log10 BFav > 5. The association results, including details of the most strongly associ-

ated SNPs in each gene, are summarized in Table 2. Notably, all these signals weremuch stron-

ger (15+ orders of magnitude) than in a univariate analysis of LDL-C alone, indicating the

potential gains from using both more detailed phenotypic measurements (vs LDL-C) and mul-

tivariate analysis methods (vs univariate analysis), an issue we return to below.

The multivariate association analysis methods we use are based on an assumption of multi-

variate normality (formally, of the residuals, although when effect sizes are small this is similar

to multivariate normality of the phenotypes). Although we transformed each phenotype to be

univariate normal, this does not guarantee that the phenotypes will be, jointly, multivariate

normal. Therefore, to check for sensitivity to deviations from multivariate normality, we re-

peated the analysis after removing 89 individuals who were identified as potential outliers from

multivariate normality on the basis of their Mahalanobis distance from the mean (p< 0.01 in a

test for multivariate normality; see Methods). All four of the strongest associations remained

Table 2. Summary of the strongest associations with LDL subfractions in our analysis.

Gene chr type SNP log10 BFav (LDL
subfractions)

log10 BF
(LDL-C)

Associated1 lipids r
2 with2 top

SNP
Imputation3

quality
MAF4

SORT1 1 top rs7528419 30.3 3.1 - - 0.99 0.20

lead rs629301 29.9 3.1 LDL-C (TC) 1 0.99 0.20

APOE 19 top rs7412 22.8 7.2 - - 0.81 0.07

lead5 rs439401 -0.6 0.6 TG 0.02 + 0.38

LPA 6 top rs55730499 16.8 -0.3 - - 0.62 0.07

lead rs1564348 -0.6 -0.3 LDL-C(TC) 0.001 + 0.16

lead rs1084651 -0.6 -0.4 HDL-C 0.01 0.82 0.13

CETP 16 top rs247616 16.2 -0.1 - - + 0.33

lead rs3764261 15.6 -0.1 HDL-C (TC,LDL-C,
TG)

0.96 + 0.32

Rows corresponding to the “top” SNPs summarize the results of our analysis for the SNP showing strongest association in each gene (see S1 Table in

Supporting Information for other detailed results). Rows corresponding to the “lead” SNP summarize results for the most significant SNP reported in the

large meta-analysis of four lipid traits (LDL-C, HDL-C, total cholesterol, TC, and Triglycerides, TG) by [1].
1 The associated lipid traits from [1]. (the strongest associated trait is outside parentheses)
2 r2 between the top and lead SNPs.
3 Imputation quality reported from the software IMPUTE2 [10]; “+” for the typed SNP.
4 Minor allele frequency.
5 [1] reported another lead SNP for APOE associated with LDL-C (the most strongly associated trait), TC, and HDL-C, but that SNP was not included in

our reference panel for imputation.

doi:10.1371/journal.pone.0120758.t002
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strong in this analysis; the biggest drop in signal was at rs247616 in CETP, which dropped

from 16.2 to 12.2.

All these genes have been previously identified as containing SNPs associated with LDL-C

in a large (univariate) meta-analysis of over 100,000 individuals [1], and also identified as

being associated with lipid subfractions measured by an NMR-based method, which distin-

guishes three subfractions of IDLs and LDLs [2]. However, our more detailed measurements,

which distinguish 10 subfractions of IDLs and LDLs, provide greater resolution to examine ef-

fects of these genetic variants on subfractions of IDLs and LDLs than previous studies. Fig 2

shows the mean value of each (normalized) subfraction phenotype by genotype class, for the

most strongly associated SNP in each gene (“top SNP”). The four SNPs exhibit distinctively dif-

ferent patterns, presumably reflecting different roles these genes play in lipoprotein metabo-

lism. Among them, only rs7528419 in SORT1 has an effect that is consistent in direction

among all subfractions, although it primarily affects the higher-density LDL subfractions (l3b,

l4a and l4b; see Table 1 for abbreviations) as reported previously [21]. This SNP is in high LD

(r2 = 1) with the SNP rs12740374 that has been identified as a causal variant contributing to

change in plasma LDL-C [26]. The SNP rs247616 in CETP shows a complex pattern of associa-

tion, with the C allele showing an increase in both the lowest density (i1 and i2) and highest

density subfractions (l3a and l3b), but a decrease in the middle of the range (l1 and l2a). Simi-

larly, SNP rs7412 in APOE also affects a wide range of subfractions, with the minor allele in-

creasing some (i1) and decreasing others (l1, l2a, l2b, l3a and l3b). The effect of SNP

rs55730499 in LPA is concentrated entirely on the lowest density subfraction (i1) and this SNP

is in high LD (r2 = 0.9) with the SNP rs10455872 that has been reported as associated with plas-

ma lipoprotein(a) [Lp(a)] levels [27, 28]. This result probably reflects the fact that Lp(a) parti-

cles are in the same size range as the IDL1 subfraction, and likely contribute to this subfraction

measurement; that is, this result may reflect an association of this SNP with Lp(a), rather than

with the IDL1 subfraction [29].

Multiple Independent Associations in CETP, APOE and LPA. Previous analyses (e.g.

[1] and [3]) have indicated that many lipid-affecting genes contain multiple variants that inde-

pendently affect lipid-related phenotypes. In addition, for example, [3] has shown that multiple

variants in some genes affect phenotypes similarly (or dissimilarly). We therefore searched for

additional independently-associated SNPs near these four genes (±150kb). We did this for

each gene by performing a multivariate association analysis on the residuals obtained by re-

gressing out the effects of the most strongly associated SNP in that gene. Although no second-

ary SNPs showed signals that would be considered “genome-wide” significant, CETP, APOE

and LPA all contained secondary SNPs with moderately strong signals (log10 BFav > 2; see

Table 3 for details of the secondary SNPs). Furthermore, the secondary SNPs at CETP

(rs11076175) and LPA (6–161069320) showed effects on the subfraction profiles that were,

qualitatively, strikingly similar to those of the top SNP in those genes (Fig 2).

In contrast the secondary SNP at APOE (rs157581) showed a very different pattern to the

top SNP, with the minor allele showing a consistent increase in all subfractions. That is, the top

and secondary SNPs in CETP (and also LPA) have similar phenotypic consequences, possibly

reflecting a similar underlying molecular effect, whereas the two SNPs in APOE have different

phenotypic consequences, presumably reflecting different underlying molecular effects. The

top SNP (rs7412) for APOE is one of two nonsynonymous SNPs in APOE exon 4 that define

the �1/�2/�3 haplotype system. The other variant (rs429358) has a modest association in the sec-

ondary analysis (log10 BFav > 1.77) and is not in LD with the top SNP (r2 < 0.01).

The CETP locus is of considerable interest in light of controversies surrounding the relation

of CETP genetic variation to risk of cardiovascular disease, and the failure of pharmacologic in-

hibitors of CETP to reduce this risk in recent clinical trials [30]. Given the very striking
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Fig 2. Effects of associated SNPs on LDL subfractions. Solid lines showmean (normalized) phenotype for each subfraction (see Table 1 for
abbrevations) by genotype class (reference homozygotes: red, heterozygotes: purple, non-reference homozygotes: sky blue; the proportion of individuals is
shown next to the genotype; sky blue lines are omitted if the proportion is� 0.01); dotted lines show ±2 standard errors. Results for secondary SNPs are
based on residuals from regressing out top SNPs. Grey shading indicates posterior probability of association (either directly or indirectly) for each phenotype
(> 0.9: dark grey, > 0.75: light grey, < 0.75: white; raw numbers given at top of figure). Note that, because the minor alleles have opposite effects on total
HDL-C at the two SNPs in CETP, the y-axis is reversed for the secondary SNP to emphasize the similar shapes of the curves.

doi:10.1371/journal.pone.0120758.g002
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patterns of association at CETP, we sought to replicate this association in an independent pop-

ulation. To this end, we obtained LDL subfraction measurements, measured by ion mobility

technology, for up to 6745 individuals of European ancestry from the JUPITER study (see

Methods). To replicate the results for our top SNP, we estimated its effect on each subfraction

using simple linear regression; to replicate results for the secondary SNP we estimated its effect

on each subfraction after controlling for the top SNP. In both cases these replication data show

effect size estimates that are highly concordant with those in our original study population

(Fig 3), demonstrating that the highly significant initial findings also generalize to other

populations.

As CETP has been known for strong effect on total HDL-C (the top and secondary SNPs

have log10 BF> 20 in our study), we investigated whether the association of the top and sec-

ondary SNPs with subfractions is partially mediated by association with HDL-C. To do this,

for the five phenotypes, ‘Ld’, ‘i1’, ‘l1’, ‘l2a’, and ‘l3a’, with strong association signals without

controlling for HDL-C (p-value< 0.005 from a standard simple linear regression), we exam-

ined how effect on the subfractions changes after controlling for HDL-C. The effect size of each

SNP after controlling HDL-C was obtained by including the SNP and HDL-C as a covariate in

a standard multiple linear regression. The percentage changes in effect size of the top SNP

rs247616 after controlling for HDL-C are -72.7, 4.4, -89.6, -67.4, and -97.5 for ‘Ld’, ‘i1’, ‘l1’,

‘l2a’, and ‘l3a’, respectively (similar changes for the secondary SNP rs11076175); see S3 Fig in

Table 3. Summary of the secondary associations with LDL subfractions in our analysis.

Gene chr SNP log10 BFav(LDL subfractions)1 log10 BF(LDL-C)
1 Imputation quality2 MAF3

APOE 19 rs157581 2.68 3.62 0.94 0.22

LPA 6 6–161069320 2.65 -0.44 0.61 0.36

CETP 16 rs11076175 2.34 -0.05 + 0.18

See S1 Table in Supporting Information for other detailed results.
1 Results from a multivariate association analysis on the residuals obtained by regressing out the effects of the most strongly associated SNP in

each gene.
2 Imputation quality reported from the software IMPUTE2 [10]; “+” for the typed SNP.
3 Minor allele frequency.

doi:10.1371/journal.pone.0120758.t003

Fig 3. Replication of two independent associations in CETP (top SNP rs247616 and secondary SNP rs11076175). Dashed lines show estimated effect
sizes on (normalized) phenotype for each subfraction in our study (red) and JUPITER (blue); dotted lines show ±2 standard errors. Note that, the y-axis is
reversed for the secondary SNP as in Fig 2.

doi:10.1371/journal.pone.0120758.g003
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Supporting Information. Thus effect size for ‘i1’ is essentially unaffected by controlling for

HDL-C, whereas effects on other subfractions are very substantially reduced (after controlling

for HDL-C, the signal for the top SNP in analyses of 12 subfractions dropped from 16.2 to

3.43). These results are consistent with the SNP’s effect on LDL subfractions being largely me-

diated through its effect on HDL-C.

Comparisons with previous studies

Chasman et al. [2] performed association studies on lipoprotein subfraction measurements ob-

tained by NMR-based methods. Tukiainen et al. [3] used an NMR-based serum metabolomics

platform to quantify 216 metabolic variables, some of which could be related to the subfraction

measurements used here. For example, large LDL and small LDL subfractions measured by an

NMR-based method correspond most closely to LDL1/LDL2a and LDL3a/LDL3b, respectively,

in our study (see Table 2 in [31]).

Compared with these previous studies, the association results we report here for the top

SNP in CETP are mostly novel. Our top SNP in CETP (rs247616) is not in high LD (r2 < 0.5)

with any SNP reported as associated with NMR-based subfractions in [2]. The SNP is in high

LD with a SNP (rs3764261) reported by [3], but they found no significant association between

this SNP and any LDL-related measurements (their Table 1, bottom line).

The secondary SNP we report for CETP (rs11076175) is in high LD (r2 = 0.95) with one

(rs7499892) of the SNPs reported in [2]. Although [2] makes no mention of the distinctive pat-

terns of association at this SNP, the estimated effects reported in their supplementary informa-

tion (Figure S4 in [2]) shows patterns concordant with those we highlight here: the effects on

total IDL and small (i.e. high density) LDL particles are opposite in direction to the effect on

large (low-density) LDL particles. Indeed, further examining their Figure S4 we note that there

are other SNPs in CETP, not in high LD (r2 < 0.5) with either the top or secondary SNP in our

analysis, that show similar distinctive association patterns, lending further support to the idea

that many of the SNPs affecting lipids in CETP may have similar affects on subfractions, per-

haps through a shared mechanism.

At APOE, both our top and secondary associations are distinct from those reported in [2]

(r2 < 0.5 with any association reported there). Our top SNP (rs7412) was reported in the

serum metabolomics study [3], with their most strongly associated phenotype being ‘enzymati-

cally measured LDL-C’ (Table 2 and Table S10 in [3]).

The top SNP in SORT1 from our analysis is in high LD (r2 = 1) with SNPs reported as asso-

ciated in the previous NMR-based studies (rs646776 in [2] and rs629301 in [3]). However, nei-

ther of these previous studies has the resolution to highlight the distinctive patterns of effects

highlighted in the gradient gel electrophoresis results, with by far the strongest associations

being with the smallest and densest LDL subfractions (3b/4a/4b).

The two independent associations for LPA from our analysis were not reported in either of

[2, 3]. Since these association may be due to associations with Lp(a), rather than with an LDL

subfraction, this difference may reflect different sensitivities of the technologies used to Lp(a).

Interestingly, our secondary SNP (6–161069320) is not in LD (r2 < 0.25) with any of five SNPs

that have been reported in the NHGRI GWAS catalog [32] as associated with Lp(a) levels, and

so may represent a novel association with Lp(a).

Genome-wide association analysis of statin response

To identify SNPs associated with response to statin we performed a multivariate genome-wide

association analysis using the difference between post-treatment and pre-treatment measures

of each phenotype as a multivariate outcome. These differences, ~D, were obtained using the
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standardized (quantile-normalized) phenotypes (see Methods), so this association analysis tar-

gets genetic variants whose standardized effect on phenotype changes pre- and post- treatment.

For example, a SNP that explains 1% of phenotypic variance before treatment and 2% after

treatment would be associated with response to statin in our analysis.

Only one SNP (rs6430626) had log10 BFav > 5 (actual log10 BFav = 5.3). The phenotypes

contributing to this strong multivariate signal included a modest (univariate) association with

total LDL-C response (log10 BF = 1.7). However, imputation quality at this SNP was low (0.25),

and a substantial part of the association signal appeared to be driven by deviations from multi-

variate normality: on removing 96 individuals detected as having outlying (multivariate) phe-

notypes at the 0.01 significance threshold (see Methods), log10 BFav fell to 2.3. Furthermore,

neither this SNP, nor other SNPs in LD with it, showed even nominal associations with (total)

LDL response to statins in the JUPITER study (p values near 0.9).

Although no other SNPs showed strong evidence for association with statin response in our

analysis, our data also provide the potential opportunity to assess which subfractions of LDL

are most likely responsible for previously-observed associations with LDL-C response to statin

in the much larger JUPITER study [7]. To this end we examined the three SNPs (near the

genes ABCG2, APOE and LPA) highlighted in [7] as being associated with fractional change in

LDL-C (at p value< 5 × 10−8).

The SNP rs1481012 near ABCG2 showed no signal for association with response to statin in

either the subfractions or total LDL-C (log10 BFav = −0.65). Possibly this lack of signal could re-

flect our small sample size, although it could also be due to the different statin drugs used

(CAP used simvastatin; PRINCE used pravastatin; JUPITER used rosuvastatin).

The SNPs rs7412 in APOE and rs10455872 in LPA had modest association signals with stat-

in response in our data (rs7412: log10 BFav = 1.6 and rs10455872: log10 BFav = 0.8). Both these

SNPs are associated with LDL phenotypes both before and after statin treatment, so these asso-

ciations with statin response must reflect a difference in the strengths of these associations in

the untreated vs treated condition. That is, they show a statistical interaction with treatment.

To gain additional insights into these interactions we examined whether the effect sizes are

stronger in the treated or the untreated data. The APOE SNP showed consistently stronger esti-

mated effects in the treated condition compared with the untreated condition, across the

smaller particles (l2a-l4a; Fig 4a). The LPA SNP also showed stronger effects in treated vs un-

treated conditions, but with the effects concentrated in the IDL1, and, to a lesser extent, IDL2

subfraction (Fig 4b). As noted above, the association of this SNP with the IDL1 subfraction

likely reflects, at least in part, the effect of this SNP on Lp(a) particles. The stronger association

with IDL1 post-treatment may therefore be explained by the fact that Lp(a) levels are resistant

to statin treatment [27], and so will contribute more strongly to the post–statin measures than

the pre-statin measures.

Comparison of multivariate and univariate association analyses

In our genome-wide association analysis irrespective of statin exposure, all four of the strongest

associations (in or near CETP, APOE, SORT1, and LPA) showed very much stronger associa-

tion signals in the multivariate analysis than in a univariate analysis of LDL-C. Two factors

could contribute to this increased signal: first, our use of more-detailed phenotypes (the sub-

fractions), any of which could show individually stronger association signals than total LDL-C;

and second, our analysis of these phenotypes simultaneously, in a multivariate way, rather than

one at a time. We now investigate the contributions of these two factors to increased associa-

tion signals in more detail. To do this we compare three different Bayes Factors that test for as-

sociation: the BF based on univariate analysis of LDL-C (BFldl), the BF based on univariate
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analysis of all 12 phenotypes (BFuni) and the BF based on multivariate analysis of all 12 pheno-

types (BFav). We observed above that for the strongest associations BFav was many orders of

magnitude larger than BFldl. We now attempt to decompose this gain in signal into two parts,

using the identity

log
10
ðBFav=BFldlÞ ¼ log

10
ðBFuni=BFldlÞ þ log

10
ðBFav=BFuniÞ: ð3Þ

Intuitively, we can think of the first term as capturing the gain (or loss) from the more detailed

subfraction measurements, and the second term as capturing the gain (or loss) in going from a

univariate to a multivariate analysis.

To increase the number of SNPs contributing to this assessment, we compare not only the

very strongest associations, but also more modest association signals. To attempt to ensure that

these more modest associations nonetheless reflect likely genuine associations we focus on

SNPs in or near the 95 genes (±150kb) identified as being associated with lipid traits in [1]

(“Global Lipids genes”). We included all the genes from this study, and not only those associat-

ed with LDL-C, because we wanted to allow for the fact that, as illustrated in our main analysis,

SNPs may be strongly associated with LDL subfractions without being strongly associated with

LDL-C. We include in our comparisons any SNP for which any of the BFs (BFav, BFldl, BFuni)

exceed 103. Given the modest nature of some of these associations we cannot be completely

Fig 4. Effects of associated SNPs (rs7412 in APOE and rs10455872 in LPA) on treated and untreatedmeasures of LDL subfractions, and on their
difference. Upper panels show the effects of the SNPs on the difference between treated and untreated measures of LDL subfractions. Labels and colors
are as in Fig 2. Lower panels show estimated effect size (dashed lines) and ±2 standard errors (dotted lines) in the treated and untreated (normalized)
phenotype for each subfraction.

doi:10.1371/journal.pone.0120758.g004
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confident that all of them are genuine, although it seems reasonable to believe that most of

them are.

Fig 5 breaks down the gain (or loss) from using BFav vs BFldl (panel a) into a component

due to the more detailed measurements (panel b) and a component due to the multivariate

analysis (panel c). For the majority of associations, both the use of more detailed phenotypic

measurements and the use of multivariate association analysis contribute to an increase in the

association signal. For some associations (e.g. in SORT1, APOA1) the main gain comes from

the more detailed phenotype measurements; for others (e.g. some associations in APOE, LPA)

the increase in association signal is greater in moving from the univariate to

multivariate analysis.

It is natural to ask what features of the different associations explain these different behav-

iors, and, more generally, under what circumstances more detailed measurements or multivari-

ate analyses may prove most helpful. For multivariate analyses, the general answer is that the

gains in multivariate analyses are largest when the effects are discordant with the correlation

among phenotypes. For example, for two positively correlated phenotypes, the gains of multi-

variate analysis will be greatest when the effects on the two phenotypes have opposite signs;

there will also be substantial gains when one phenotype has an effect and the other has zero ef-

fect; the gains will be smallest when both phenotypes have an effect of the same sign. See [22]

for more discussion. This observation helps explain the gain of the multivariate analyses for

APOE and LPA associations, both of which exhibit some discordance between effect and corre-

lation structure: for APOE, some negatively-correlated subfractions (e.g. l1 and l3a; see S1 Fig

in Supporting Information) show effects in the same direction (Fig 2); for LPA, subfraction i1

shows a substantive effect, and many subfractions correlated with this subfraction (both posi-

tively and negatively) show no effect. It is harder to generalize as to when more detailed mea-

surements will increase power to detect associations. In our study, the largest gains in power

from the subfraction measurements were at SORT1 and at CETP, and these gains appear to be

for different reasons. At CETP, the gain is due to the genetic variants affecting subfractions

having effects in different directions, which approximately “cancel out” so that the effect on

total LDL-C is small compared with the effects on individual subfractions. At SORT1, the gain

is because the genetic variants affect primarily the smaller (l3b, l4a, l4b) subfractions, which to-

gether represent only a small proportion of total LDL-C, and contribute correspondingly little

to overall variation in total LDL-C (See Table 1). That is, the genetic effects on these subfrac-

tions are diluted by variation in the other more abundant subfractions (l1-l3a) when testing for

association with LDL-C.

We note that, of course, power is only one potential benefit of the subfraction measure-

ments: even when the more detailed measurements do not increase power to detect associa-

tions, being able to estimate the effects on different subfractions may still be useful (e.g.

because the different subfractions have different biologic and clinical implications).

Discussion

We have presented an association analysis of genetic variants with detailed measurements of

IDL/LDL subfractions, and highlighted several SNPs that, while only weakly associated with

total LDL-C in our study, are strongly associated with the subfractions. Perhaps the most inter-

esting of the associations are the two independently-associated SNPs in CETP. From previous

studies these variants are known to be very strongly associated with plasma HDL-C (log10
BF> 20 in our study), and less strongly associated with total LDL-C. For example, the lead

SNP in [1] explains 1.5% of the variance in HDL-C, but only 0.06% of the variance in LDL-C

(see S1 Text in Supporting Information). Our data demonstrate that, nonetheless, these
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Fig 5. Decomposition of the gain (or loss) from amultivariate analysis of 12 phenotypes vs a univariate analysis of LDL-C into two components:
one from usingmore detailed measurements, and one from using amultivariate analysis. Plotted are (a) log10 BFav (the BF based on multivariate
analysis of all 12 phenotypes) vs log10 BFldl (the BF based on univariate analysis of LDL-C), (b) log10 BFuni (the BF based on univariate analysis of all 12
phenotypes) vs log10 BFldl, and (c) log10 BFav vs log10 BFuni. SNPs are colored according to the nearest gene.

doi:10.1371/journal.pone.0120758.g005
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variants are very strongly associated with multiple subfractions of LDL, with effects in different

directions on different subfractions approximately cancelling each other out to yield a small

overall effect on total LDL-C. Interestingly, these independent variants have similar effects on

the different subfractions, consistent with a shared underlying functional mechanism that may

involve selective CETP-mediated cholesterol-triglyceride exchange between HDL and specific

subclasses of apoB-containing particles [33]. The findings complement previous analyses of

LDL subfractions in two hyperalphalipoproteinemic patients with genetic deficiency of CETP

[34], and recent data on the effects of the CETP inhibitor anacetrapib on lipoprotein subfrac-

tion concentrations [33], both of which indicate that CETP influences LDL subclasses in a

manner consistent with the CETP genotype associations shown here. Specifically, reduced

CETP activity in both instances results in an increase in small LDL particles together with a re-

duction in mid-sized LDL. While the mechanism for this effect is not known, it has been sug-

gested that it is related to the existence of separate pathways giving rise to larger vs. mid-sized

and smaller LDL [18, 34], with CETP deficiency selectively resulting in triglyceride enrichment

of particles in the second of these pathways, and a resultant shift from mid-sized to smaller

LDL through the action of lipase activity [33, 34].

Our study also provides a practical illustration of the potential benefits of joint association

analysis of multiple related phenotypes in genetic association studies, rather than considering

each phenotype one at a time. While in principle the potential benefits of joint analysis are well

established, and have been highlighted in several recent papers (e.g. [35–42]), in practice the

vast majority of association studies of multiple phenotypes continue to rely on univariate anal-

yses. We hope that our comparisons provide further motivation to investigators to consider

joint multivariate analyses as a tool to help improve power to detect genetic associations.

Supporting Information

S1 Text. Computing proportion of variance in phenotype explained by a given SNP (PVE).

(PDF)

S2 Text. Detailed results from the full analysis, irrespective of statin exposure. Results from

the full analysis for 24,689 SNPs (24,601 SNPs which pass through our initial filtering step and

88 SNPs reported in the large meta-analysis of four lipid traits by [1]): rs number, chromo-

some, position, two alleles, minor allele frequency, imputation quality, log10 BFav, log10 BFall,

log10 BF from a univariate analysis of each phenotype, and marginal posterior probability of di-

rect, indirect, no association for each phenotype.

(TXT)

S3 Text. Detailed results from the full analysis of statin response. Results from the full analy-

sis for 25,175 SNPs which pass through our initial filtering step: rs number, chromosome, posi-

tion, two alleles, minor allele frequency, imputation quality, log10 BFav, log10 BFall, log10 BF

from a univariate analysis of each phenotype, and marginal posterior probability of direct, indi-

rect, no association for each phenotype.

(TXT)

S1 Fig. Spearman correlations among 16 phenotypes. In addition to 12 phenotypes consid-

ered in our main analysis, correlations with triglycerides (Tg), HDL-cholesterol (H), total cho-

lesterol (T), ApoB levels (A) are also included. See Table 1 in the main text for abbrevations for

12 phenotypes. Correlations are computed by using (a) (normalized) pre-treatment measure-

ments (P in the methods section); (b) (normalized) post-treatment measurements (T in the

methods); (c) (normalized) averages of pre-treatment measurements and post-treatment
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measurements (~A in the methods); (d) (normalized) differences between post-treatment and

pre-treatment measures (~D in the methods).
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S2 Fig. Regional plots of the SORT1, APOE, LPA and CETP. Regional plots of the four loci

are created by using the tool LocusZoom [43] (with log10 BFav in y-axis). Purple diamond is the

top SNP with the strongest association in each locus. Each circle corresponds to a SNP whose

color indicates the linkage disequilibrium with the top SNP. LDL subfraction associations

around (a) SORT1, (b) APOE, (c) LPA, and (d) CETP.
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S3 Fig. Effect size with ±2 standard error before (blue) and after (red) controlling for

HDL-C for each subfraction. (a) The top SNP rs247616 and (b) the secondary SNP

rs11076175 in CETP. Note that, because the minor alleles have opposite effects on total

HDL-C at the two SNPs, the y-axis is reversed for the secondary SNP to emphasize the similar

pattern of effect size.
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