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Abstract: A joint model fo r multivariate mixed ordinal and continuous responses is presented. In this model 
the ordinal responses are intercorrelated and also are dependent on the continuous responses. The likelihood 
is found and modified Pearson residuals, where the correlation between multivariate responses can be taken 
into account, are presented to find abnormal observations. The model is applied to a medical data, obtained 
from an observational study on women, where the correlated responses are the ordinal response of
osteoporosis of the spine and continuous responses are body mass index and waist. The effect of some 
covariates on all responses are investigated simultaneously.
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INTRODUCTION

Some biomedical, psychological, health and
economic sciences data include some correlated discrete 
and continuous outcomes. The first example is the
analysis of development toxicity endpoints when the 
relationship between fetal weight and malformation in 
live fetus is an important statistical issue [1]. The second 
example is in the study of the maternal smoking effect 
on respiratory illness in children where we have a 
continuous measure of pulmonary function and an
ordinal measure of chronic symptoms in children. The 
third example is on the simultaneous effect of type of 
accommodation on body mass index and waist as
continuous responses and osteoporosis of the spine as 
ordinal response (vide, our application in Section 3). For 
the first example, separate analysis of the categorical or 
the continuous responses can not properly assess the 
effect of dose on fetal weight and malformations
simultaneously. For the second example, separate
analysis can not assess the effect of maternal smoking on 
all the responses simultaneously. In the third example, 
separate analysis can not assess the effect of type of 
accommodation on body mass index, waist and
osteoporosis of the spine. Furthermore, separate analysis 
give biased estimates for the parameters and misleading 
inference [2]. Consequently, we need to consider a
method in which these variables can be modelled jointly.

For joint modelling of responses, one method is to 
use the general location model of Olkin and Tate [3], 
where the joint distribution of the continuous and

categorical variables is decomposed into a marginal 
multinomial distribution for the categorical variables 
and a conditional multivariate normal distribution for the 
continuous variables, given the categorical variables (for 
a mixed poisson and continuous responses where Olkin 
and Tate's [3] method is used see Yang et al. [4]). A 
second method for joint modelling is to decompose the 
joint distribution as a multivariate marginal distribution 
for the continuous responses and a conditional
distribution for categorical variables given the
continuous variables. Cox and Wermuth [5] empirically 
examined the choice between these two methods. The 
third method uses simultaneous modelling of categorical 
and continuous variables to take into account the
association between the responses by the correlation 
between errors in the model for responses. For more 
details of this approach see, for example, Heckman [6] in 
which a general model for simultaneously analyzing two 
mixed correlated responses is introduced and Catalano 
and Ryan [1] who extend and used the model for a 
cluster of discrete and continuous outcomes (vide also, 
Fitzmaurice and Laird [7] and Fitzmaurice and Laird [8]). 
All the above references consider correlated nominal
and continuous responses.

The aim of this paper is to use and extend an 
approach similar to that of Heckman [6], for jointly 
modelling of a nominal and a continuous variable, to 
joint modelling of multivariate ordinal and continuous 
outcomes.   The   model   is   described   in   terms   of   a 
correlated multivariate normal distribution for the
underlying   latent variables   of  ordinal  responses  and 
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continuous responses. Some modified Pearson residuals 
are also presented to detect outliers  where the
correlations between responses are also taken into
account.

In Section 2, the model and modified Pearson
residuals are given. In Section 3, the model is used on a 
medical data set where osteoporosis, body mass index 
(BMI) and waist are correlated responses in an
observational study on women. In this model
osteoporosis of the spine is an ordinal response, BMI and 
waist are continuous responses and age, the amount of 
total body calcium (Ca), job status (employee or
housekeeper) and type of accommo dation (house or
apartment) are explanatory variables. We shall
investigate the effects of these explanatory variables on 
responses simultaneously. In Section 4, the paper
concludes with some remarks. 

MODEL AND MODIFIED RESIDUALS

Model and likelihood: Suppose the vector of response 
for ith individual is: 

i i1 iM iMi(M1 1
H =(Y, . . . ,Y ,Z ,...,Z )1) ′+

where Yi m for m=1,…,M1, are ordinal responses each 
with cm levels and Zim for m=M1+1,…,M are continuous 
responses. All responses are correlated. Let *

imY  for 
m=1,…,M1 denote the underlying random variable of 
the ordinal response of ith individual and mth outcomes 
with cm levels. Define 

*
im 1m

*
im mj im m ( j 1 ) m

*
m im m(c m

1 Y < ,
Y = j 1 Y , j=1,...,c 2,

c Y > ,1)

+

 θ + θ ≤ ≤ θ −
 θ −

where
m 1m m1 m(c )= ( ,..., )
−

θ θ θ  are the vector of cutpoints 

parameters for m=1,…,M1. The joint model takes the 
form:

*
im im m im 1Y = X ' , m=1,.. .,Mβ + ε (1a)

im im m im 1Z = X ' , m = M 1,...,Mβ + ε + (1b)

where Xi m are vectors of explanatory variables for ith 
individual and mth outcomes.

It is assumed that imE( ) = 0ε . The covariance matrix 

of the vector of errors 
1i1 iM i (M 1) iM1

[( ,..., , ,..., ) ]+ ′ε ε ε ε  is Σ.

For example, when M1=1 and M=3, 

1 12 2 13
2

1 21 1 1 2 23
2

2 31 1 2 32 2

1 σ ρ σ ρ 
 Σ = σ ρ σ σ σ ρ 
 σ ρ σ σ ρ σ 

The vector of parameters βm, for m=1,…,M, Σ and 
the vector of parameters θm for m=1,…,M1 should be 
estimated. The vector, βm for m=M1+1,…,M, includes 
an intercept parameter but βm, for m=1,…,M1, due to 
having cutpoints parameters, is assumed not to include 
any intercept. In this model any multivariate distribution 
can be assumed for the errors in the model. Here, a 
multivariate normal distribution is used. The likelihood 
for this model is given in the appendix. 

Residual and goodness-of-fit: The quantities consider 
in residual analysis help to identify poorly fitting
observations that are not well explained by the model. 
Start with using theoretical form, involving E(Y|Xim),
for m=1,…,M1, E(Z|Xim) for m=M1,…,M and 

11 12

21 22

Σ Σ 
Σ =  Σ Σ 

where Y is the vector of ordinal response, Z is the vector 
of continuous response, Σ11=Var(Y), Σ22=Var(Z) and 
Σ12=Σ21′=Cov(Z,Y) are theoretical parameters, rather 
than their predicted values to define residuals. The
Pearson residuals for a M-M1 dimensional vector of 
continuous responses can take the form:

1
P 2
iz 22 i i i(M1 1) iMr = [Z E(Z | X ,...,X )]

−

+Σ − (2a)

and that for a M1 dimensional vector of ordinal response 
can take the form:

1
P 2
iy 11 i i i1 iM1

r = [Y E(Y | X ,...,X )]
−

Σ − (2b)

where
1i i(M 1) iMZ = (Z ,...,Z )+ ′  and i 1 M1

Y=( Y, . . . ,Y )′ . For

example, when M1=1, M=2 and c1=3 we have:

i1 i1 1 2E(Y | X ) = 3 (P P )− +

2
i1 i1 1 2 1 2Var(Y | X ) = 3 P P (P P )+ − +

i 2 i2 i2 2E(Z | U ) = X 'β

where 1 1 i1 1P = ( X ' )Φ θ − β  and 2 2 i1 1P = ( X ' ).Φ θ − β  The 
estimated Pearson residuals can be found by using 
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the maximum likelihood estimates of the parameters, 
obtained by system (1), in (2a) and (2b). However, the 
residuals in equations (2a) and (2b) do not take into 
account the correlation between responses. The
following modified Pearson residuals consider this
correlation between responses: 

1
P 2
i i i

ˆ ˆr = (K )
−

Σ − µ (3)
Where,

i i iK = (Z , Y )′ ′ ′

1 1i i i(M 1) iM i i1 iM
ˆ ˆˆ =(E(Z | X ,...,X ),E(Y | X , . . . , X ))′ ′+ ′µ

 and 

ˆV̂ar(Z) Cov(Z,Y)ˆ
ˆ ˆCov(Z,Y) Var(Y)

 
Σ =   

 

For example, when M1=1, M=2, c1=3 and ρ is orrelation 
between Y1 and Z2, we have

2 1 2 1 2 1Cov(Z , Y ) = E ( Z Y ) E(Z )E(Y)−

2 1 2 2 1= E ( Z E ( Y | Z ) ) E(Z ) E ( Y )−

1 2 Z 2 12
y

= z( yP(Y = y | Z =z)) f (z)dz E(Z )E(Y)−∑∫

1 Z 2 12
= z E(Y | z ) f (z)dz E(Z )E(Y)−∫

1 2 Z 2 12
= z[3 (N (z) N (z))]f (z)dz E(Z ) E ( Y )− + −∫ (4)

Where,

1 1 i1 1 i1

1 2

( X (z X ))
N ( z )=

1

ρ ′ ′θ − β + − β σΦ 
− ρ   

and

2 1 i1 1 i1

2 2

( X (z X ))
N ( z ) =

1

ρ ′ ′θ − β + − β σΦ 
− ρ   

In (3), in the case of Σ12=ρ=0, N1(z)=P1 and 
N2(z)=P2 and so Cov(Z,y)=0 Hence, in this case
components of riP give residuals in (2a) and (2b). The 
Pearson residual for ith observation is based on the
Pearson goodness-of-fit statistics 

n
2 2

p i i
i=1

ˆ= ( K , )χ χ µ∑

with the following ith component 

2 1
p i i i i i i

ˆˆ ˆ ˆ( K , ) = ( K ) (K )−′χ µ − µ Σ −µ

One may use a Cholesky decomposition for finding 
the square root of Σ̂  in (3) and the function integrate in 
R to numerically calculate the integral given in (4).

APPLICATION

In this section, we use the joint model in equation 
(1a) and (1b) for the medical data set describe in the 
following subsection. 

Data: The medical data set is obtained from an
observational study on women in the Taleghani hospital 
of Tehran, Iran. These data record status of osteoporosis 
of the spine as an ordinal response and BMI and waist as 
continuous responses for 163 patients. Osteoporosis of 
the spine is a disease of bone in  which the bone mineral 
density (BMD) is reduced, bone microarchitecture is 
disrupted and the amount and variaty of non-collagenous
proteins in bone is altered. BMI is a statistical measure 
of the weight of body mass index. A person body mass 
index may be accurately calculated using any of the 
formulas such as:

2

W
B MI =

H

where, W is weight and H is height. These three
variables, osteoporosis of the spine, BMI and waist are 
endogenous correlated variables and they have to be 
modelled simultaneously. Explanatory variables which 
affect these variables are: (1) amount of total body 
calcium (Ca), (2) job status (Job, employee or
housekeeper), (3) type of the accommodation (Ta, house 
or apartment) and (4) age.

Descriptive statistics (mean and standard deviation 
for continuous responses and frequency or precetage for 
ordinal response) are given in Table 1. Y1  is osteoporosis

Table 1: Descriptive statistics for medical data

No. Mean SD

 Z_2:BMI 163 29.357 10.806
 Z_3: Waist 163 96.990 4.781

 Y_1:Osteoporosis
of the spine Levels No. Percentage

None 59 0.362
Mild 65 0.399
Severe 39 0.239
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of the spine of individual as an ordinal response with 3 
levels. These levels defined as 1: individual hasn't
osteoporosis of the spine (None), 2: individual has mild 
osteoporosis of the spine (Mild), 3: individual has severe 
osteoporosis of the spine (Severe). Z = (Z2, Z3)′ is the 
vector of continuous response where Z2 is the BMI of 
individual and Z3 is the waist of individual. 

Table 1 shows less Precentage for severe
osteoporosis than those of none and mild levels. The 
vector of explanatory variable is X=(Job, Age, Ta, Ca). 

Models for medical data: For comparative purposes, 
two models are considered. The first model (model I) 
does not consider the correlation between all responses. 
This model is

*
1 11 12 13 14 1Y = Job Age Ta Caβ + β + β +β + ε (3a)

2 20 21 22 23 24 2Z = Job Age Ta Caβ + β +β +β + β + ε (3b)

3 30 31 32 33 34 3Z = Job Age Ta Caβ +β + β +β + β + ε (3c)

The covariance matrix of the vector of errors (ε1, ε2,
ε3)′ for this model is 2 2

Ind 1 2=diag{1, , }Σ σ σ . The second 
model (model II) uses model I and takes into account the 
correlation between three errors. For this model
covariance matrix is: 

1 12 2 13
2

1 21 1 1 2 23
2

2 31 1 2 32 2

1 σ ρ σ ρ 
 Σ = σ ρ σ σ σ ρ 
 σ ρ σ σ ρ σ 

Here, a multivariate normal distribution with
correlation ρ12,ρ13 and ρ23 are assumed for the errors and 
these parameters should be also estimated. 

RESULTS

Results of using two models are given in Table 2. 
Model (I) shows a weak significant effect of age on BMI, 
a weak significant effect of Ta on waist and a weak 
significant effect of Ca on the ordinal response. From 
these effects we can inferred that the older the patient the 
less the BMI, people who live in apartment have more 
waist than of that people who live in a house and the 
more the amount of calcium of the body of the patient 
the higher is the probability of low value of osteoporosis 
of the spine. Model (II) gives the same results as model 
(I). To compare model (II) and model (I) we have
deviance =123.318 with two d.f. (P-value < 0.001). So 
one  may  p reffered model (II). For model (II) correlation 

Table 2: Results using two models for medical data (**: Significant 
at %5 level, *: Significant at %10 level)

Model I Model II
--------------------------- ------------------------------

Parameter Est. SE Est. SE

11(Job)β -0.570 0.515 -0.548  0.515

12(Age)β 0.002 0.013 0.002 0.021

13(Ta)β 0.006 0.181 0.005  0.153

14(Ca)β 0.211* 0.123 0.211*  0.126

1θ 1.207 1.472 1.237  1.889

2θ 2.284 1.477 2.315  1.894

20 (Const)β 35.523** 6.239 35.518**  5.689

21(Job)β 1.734 2.168 1.734 2.520

22 (Age)β -0.101 * 0.055 -0.101 *  0.054

23 (Ta)β 0.991 0.770 0.990  0.774

24 (Ca)β -0.283 0.517 -0.282  0.368

30 (Const)β 86.151** 14.153 86.151**  9.664

31(Job)β 1.653 4.918 1.652  6.498

32 (Age)β 0.127 0.125 0.126 0.127

33 (Ta)β 3.001 * 1.744 3.000* 1.746

34 (Ca)β 0.010 0.173 0.009  0.179
2
1 1( z )σ 22.647** 0.259 21.949**  0.259
2
2 2(z )σ 116.524** 0.588 112.949** 0.588

ρ12 - - -0.210** 0.084
ρ13 - - -0.101 0.086
ρ23 - - 0.715 ** 0.038
-loglike 1273.044 1211.385

parameters ρ23 and ρ12 are strongly significant. They 
show a positive correlation between BMI and waist 
( 23ρ̂ =0.715) and it shows a negative correlation between 
BMI and osteoporosis of the spine ( 12ρ̂ =-0.210). The 
estimated variance of BMI and waist 2 2

1 2ˆ ˆ( and )σ σ obtained
by model (II) are less than those of model (I). A 
consequence of estimating correlation parameters by 
model (II) is that the estimated standard errors of
constant parameters in models for continuous responses 
are reduced in comp aring them with results obtained by 
model I. Using residuals defined in equation (3), we 
have not found any abnormal observation. 

DISCUSSION

In this paper a multivariate latent variable model is 
presented for simultaneously modelling of ordinal and 
continuous    correlated    responses.     Some    modified 
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residual  are  also  presented to detect outliers. We 
assume  a  multivariate  normal  distribution  for  errors 
in the model. However, any other multivariate
distribution such as t or logistic can also be used. Binary 
responses  are  a  special case of ordinal responses. So, 
our model can also be used for mixed binary and 
continuous  responses.  For  correlated  nominal, ordinal 

and continuous  responses  Deleon  and  Carriere [9] 
have developed a model by extending general location 
model.  However, the kind of Scientific question they 
can  answer  is different with what our model can do 
(vide Section 1). Generalization of our model for
nominal, ordinal and continuous responses is an ongoing 
research on our part.

Appendix: Likelihood for mixed model of multivariate ordinal and continuous responses
Suppose

1i i1 iMY = (Y , . . . , Y )′  and 
1i i(M 1) iMZ = (Z ,...,Z )+ ′ . Let 

11 M 1 M= ( ,..., , ,..., ')′ ′ ′ ′η β β θ θ . The likelihood function of 
model (1) is 

1 1

1 1 1 1

n n
(1) (2) (1) (2)

i i i i i i i i 1 M 1 M i i MM
i=1 i=1

n n
(1) (2)

i1 i1 iM i i i 1 M 1 M i i MMM1
i=1 i=1

L( , | z ,y ,x) = f ( z , y | x , x , , )= f ( Y = y z ,x , ,... , , ,..., )f(z | x , ,..., )1

= P(Y = y , . . . , Y = y z , x , ,..., , , ,..., ) f ( z | x , ,... ) =1

η Σ η Σ β β Σ θ θ β β+

β β Σ θ θ β β+

∏ ∏

∏
1

1 1 11 1 11

(2)
i i MM

* (1)
i1 1y iM i i 1 M 1 M1(y M Mii 1 iMiM

f(z | x , ,..., )1

* P( Y ,..., Y z , x , ,..., , , ,..., )) (y ) (y )1−

β β+

× θ ≤ ≤ θ θ ≤ ≤ θ β β Σ θ θ
−

∏

Where,
θm0 = -∞, (1)

mc i i1 iMm
, x = (x ,...,x )′θ =+∞  and 

1

(2)
i i(M 1) iMx = ( x ,...,x )+ ′ .

To find a better from for the likelihood, define *
A y im yim 1 imyim

I = I ( < Y < )
θ −

θ θ

where I(•)is the indicator function. So, *
y im y Aim 1 im yim

P( < Y < ) = E ( I )
− θ

θ θ

Thus, the likelihood would be,

n
(2) (1)

i i M i1 i 1M1i=1

M1
(1)

A A A i i 1 M 1 M1 1y y yim i1 i(m 1)m=2

[f(z | x , ,..., )E(I = 1 | x , )1

E(I = 1 | I =1,...,I =1 , z , x , ,..., , , ,..., )]
  



  


    





Now, the expectation in the right hand can be, approximated as (vide [10]),

(1)
A A A i i 1 M 1 M1 1y y yim i1 i(m 1)

(im) 1
A 21 m 1 A A

y y yim i1 i (M1

E I 1 | I =1,...,I = 1 ,z , x , ,..., , , ,...,

=E(I ) (1 E(I ),...,1 E(I ))
1)

θ θ θ
−

−
−θ θ θ

 
= β β Σ θ θ   

′+ Ω Ω − −
−

where )(
21
imΩ  is a row vector consisting of the entries

A A A A A A 1
y y y y y yim iM im iM im iM1 1 1

Cov(I , I ) = E( I I ) E(I )E(I ) , m =1 , . . . , M,
θ θ θ θ θ θ

− m 1 1 1is (M 1) (M 1)−Ω − × −  matrix with (h,l)

element, h, l=1,..., (M1-1).

Let Φ be the cumulative standard normal distribution, hence

* *
i1 i1 i 2 i1 i 1 i2

n 1y 1(y 1)Y | z , z Y | z , z(2) i i
i i M * 1 / 2 * 1 / 2M1i=1 i1 i1 i 2 i1 i1 i 2

M1
(1)

A A A i i 1 M1y y ym=2 im i1 i(m 1)

L( , | z ,y ,x) = [f(z | x , ,..., ) ( ( ) ( ))1 (Var(Y | z , z )) (Var(Y | z , z ))

E(I = 1 | I =1,...,I = 1 , z , x , ,..., ,

−

θ θ θ
−

θ −µ θ − µ
η Σ β β Φ −Φ+

β β

∏

∏ 1 M1
, ,..., )]Σ θ θ
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Where,

*
i 1 i1 i2

12
i2 2 i 21 23 1 2

1 i1 12 1 13 2 2Y | z , z
i3 3 i 323 1 2 2

12
12 1* 1 23 1 2

i i1 i2 12 1 13 2 2
13 223 1 2 2

z ' x
' x ( )

z ' x

Var(Y | z ,z ) 1 ( )

−

−

− β σ ρ σ σ  
µ = β + ρ σ ρ σ    −βρ σ σ σ   

ρ σ σ ρ σ σ  
= − ρ σ ρ σ    ρ σρ σ σ σ   
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