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Many economically important characteristics of agricultural
crops are measured as ordinal traits. Statistical analysis of
the genetic basis of ordinal traits appears to be quite different
from regular quantitative traits. The generalized linear model
methodology implemented via the Newton–Raphson algo-
rithm offers improved efficiency in the analysis of such data,
but does not take full advantage of the extensive theory
developed in the linear model arena. Instead, we develop a
multivariate model for ordinal trait analysis and implement an
EM algorithm for parameter estimation. We also propose a
method for calculating the variance-covariance matrix of the

estimated parameters. The EM equations turn out to be
extremely similar to formulae seen in standard linear model
analysis. Computer simulations are performed to validate the
EM algorithm. A real data set is analyzed to demonstrate
the application of the method. The advantages of the EM
algorithm over other methods are addressed. Application of
the method to QTL mapping for ordinal traits is demonstrated
using a simulated baclcross (BC) population.
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published online 16 August 2006
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Introduction

Many disease resistance traits in plants are scored in
several ordered categories based on the magnitude of the
disease symptoms. For example, this approach has been
used for sheath blight resistance in rice (Zou et al, 2000),
clubroot resistance in Brassica napus (Manzanares-
Dauleux et al, 2000) and cucumber mosaic virus
resistance in pepper (Caranta et al, 2002). Similarly, many
characters in animals and humans are expressed as
binary or ordinal traits, including the score for calving
difficulty, expression of congential malformations, num-
bers of reproductive events and so on. In other cases
traits are actually continuously distributed, but, for
technical reasons, measured as ordinal traits.

Special statistical methods are required to analyze
traits measured on an ordinal scale (McCullagh and
Nelder, 1989). The probability model of McIntyre et al
(2001) used the trait penetrances directly as the genetic
parameters of interest. The method can only be applied
to QTL mapping for binary traits. A generalized linear
model is currently considered to be the most appropriate
for ordinal data analysis method because, using a simple
link function, we can adopt theory and methodology
developed extensively in linear model for continuously
distributed data. The key to using a generalized linear
model is the use of a hypothetic continuous latent
variable (known as liability). The observed categorical
phenotype depends on whether the liability exceeds one

or more of an ordered threshold. This generalized linear
model is, therefore, also called the threshold model
(Lynch and Walsh, 1998).
Many statistical methods of estimation and hypothesis

testing have been developed under the threshold model.
They include a maximum likelihood method (Aitchison
and Silvery, 1957; Ashford, 1959) and a Bayesian method
(Albert and Chib, 1993; Sorensen et al, 1995). Under the
maximum likelihood framework, parameters are often
estimated iteratively via the Fisher scoring algorithm or
the Newton–Raphson ridge algorithm (Ashford, 1959).
When the Bayesian method is applied, the posterior
means or modes of parameters are often inferred from a
posterior sample generated from a Markov chain Monte
Carlo process (Sorensen et al, 1995). The Bayesian
method is more versatile than the ML method because
it can handle more complicated models. However, the
ML method is more cost effective because no MCMC
sampling is required. Both methods are, therefore,
currently being used in ordinal data analysis. A thorough
description of the statistical methods for ordinal data
analysis may be found in McCullagh and Nelder (1989)
and Fahrmeir and Tutz (1994).
When parameters are estimated using the Bayesian

method via MCMC sampling, realizations of the latent
variable are sampled from its conditional posterior
distribution (a truncated normal distribution if the probit
link function is used). Once the latent variable has been
sampled, the problem of parameter estimation becomes
that of parameter estimation in the usual linear model. In
this way, the latent variable is treated as a missing value
in the Bayesian analysis.
For binary data, Xu et al (2003) developed an EM

algorithm to search for the MLE of parameters, also by
treating the latent variable as a missing value. Xu et al
(2005a, b) recently extended the EM algorithm for binary
data to handle ordinal traits and multiple binary traits.
Compared to the Fisher scoring or the Newton–Raphson
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algorithm, the EM algorithm has the following desirable
properties: (1) it is numerically stable, in stark contrast to
the Newton–Raphson algorithm that crashes easily when
the thresholds are not well separated; (2) the steps of EM
iterations are transparent and intuitive, and thus easily
understood by biologists; (3) the EM algorithm takes full
advantage of the results developed in the usual linear
model analysis. Unfortunately, the EM algorithm also
has two undesirable properties: (1) the convergence
process may be slow and (2) it does not automatically
provide an estimate of the variance–covariance matrix of
the parameters. The first undesirable property is no
longer a problem, thanks to the ever-growing computing
power. The second problem has been circumvented by
using the Louis’ (1982) information matrix for EM. Xu
et al (2003) developed the information matrix of para-
meters for binary trait analysis, which were extended
recently by Xu et al (2005a) to handle ordinal traits.
However, the method of Xu et al (2005a) estimates
parameters in two steps: estimating the regression
coefficients conditional on the thresholds and estimating
the thresholds conditional on the regression coefficients.
They called the method ECM algorithm (expectation and
conditional maximization, Meng and Rubin (1993)).
Although the ECM method is a convenient approach
for finding the ML solution, the information matrix of the
parameters are hard to derive. Therefore, Xu et al (2005a)
did not provide an estimate of the variance–covariance
matrix.

In this study, we propose an EM algorithm for
parameter estimation in a single step, that is, solving
for the thresholds and regression coefficients simulta-
neously. As a consequence, the variance–covariance
matrix of the parameters can be found on the basis of
the Louis’ information matrix.

Statistical models

Univariate model
Let sj be the ordinal data observed for subject j,
8j¼ 1,y,n, where n is the sample size. Let C be the
number of ordered categories in the data set. Variable sj is
defined as Sj¼ k if j belongs to category k, 8k¼ 1,y,C. A
set of fixed thresholds, t1, t2, y, tC�1, on an underlying
scale define the observed categories on the ordinal scale.
Further define yj as an underlying latent variable for
individual j. The relationship between the latent variable
and the thresholds is Sj¼ k if tk�1 oy1rtk where t0¼�N

and tC¼N. Here, we define Cþ 1 thresholds but only
C�1 of them are parameters of interest and these
thresholds are denoted by a vector t¼ [t1 t2y tC�1]T.
For notational convenience, let m¼C�1 so that t is an
m� 1 vector.

The natural choice for the distribution of y is the
normal distribution, under which the model is called the
probit model. The latent variable is described by the
following linear model

yj ¼ Xjbþ ej ð1Þ
where b is a p� 1 vector for the model effects, Xj is a 1� p
known design matrix, and ej is a residual error assumed
to be N(0, 1) distributed. This model is commonly used in
ordinal data analysis, especially in QTL mapping for
ordinal traits (Hackett and Weller, 1995; Rao and Xu,

1998; Xu et al, 2005a). It is called the univariate model or
the threshold model. As mentioned in the introduction,
the variance–covariance matrix of the estimated regres-
sion coefficients is hard to derive under the EM
algorithm, although estimation of the regression coeffi-
cients themselves is relatively straightforward (Xu et al,
2005a).

Multivariate model
An alternative model for ordinal traits is the so-called
multivariate model or cumulative threshold model, in
which we formulate the ordinal trait analysis as a
multivariate problem. The ordinal trait with C categories
can be described by C�1 binary traits. Each binary trait is
controlled by its own latent variable with its own
threshold. These binary observations are defined as

wjk ¼
0 if sj � k
1 otherwise

�
ð2Þ

For each binary trait, we define a latent variable yjk that is
linked to wjk by wjk¼ 0 for yjkrtk and wjk¼ 1 for yjk4tk.
So, each subject is described by a vector
wj¼ [wj1wj2ywjm]T which is controlled by a vector
yj¼ [yj1 yj2y yjm]T. The relationship between Sj under
the univariate model and wj under the multivariate
model is shown in Table 1 for the case where C¼ 6.

The multivariate liabilities are described by the
following multivariate linear model,

yj1

yj2

..

.
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2
666664

3
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2
666664

3
777775

ð3Þ

In matrix notation, we have

yj ¼ �Imtþ ð1m 
 XjÞbþ ej ð4Þ

where Im is a m�m identity matrix, 1m is an m� 1 vector
with all elements equal to 1 and # represents the
Kronecker matrix product. Let h¼ t//b be an (mþ p)� 1
vector for the parameters and Zj¼ (�Im)||(1m#Xj) be an
m� (mþ p) design matrix, where the symbols ‘//’ and
‘||’ represent vertical and horizontal matrix concatena-
tions, respectively, a notation adopted from SAS/IML

Table 1 Relationship between sj under the univariate model and wj

under the multivariate model for C¼ 6

Univariate (sj) Multivariate (wj)

wj1 wj2 wj3 wj4 wj5

1 0 0 0 0 0
2 1 0 0 0 0
3 1 1 0 0 0
4 1 1 1 0 0
5 1 1 1 1 0
6 1 1 1 1 1
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(SAS Institute, 1999a). The above model (Equation (4))
can be rewritten as

yj ¼ Zjhþ ej ð5Þ

The residual errors are assumed to be distributed
as an m-dimensional independent normal, that is,
ejBNm(0, Im).

Parameter estimation

Under the multivariate model, we have formulated the
thresholds as a subset of the regression coefficients. As a
result, we are able to estimate the entire parameter vector
(including the thresholds and the original regression
coefficients) simultaneously in a single step. If we treat
the liability vector as data, we have the following
complete-data log likelihood

LðhÞ ¼ � 1

2

Xn
j¼1

ðyj � ZjhÞTðyj � ZjhÞ ð6Þ

Note that the variance–covariance matrix of the
residual errors is an identity matrix (constant), and thus
it does not play a role in the maximum likelihood
analysis. In addition, this log likelihood function is not
the observed likelihood function, which is a function of
wj with yj integrated out (the actual form of the
likelihood function is dealt with in the discussion).

The EM algorithm requires maximization of eL(h), the
expected L(h), with respect to the parameters because the
latent variable y is missing (not observable). The
expectation is taken with respect to y conditional on
the parameters (h) and the observed data (w), and has
the following form,

eLðhÞ ¼E½LðhÞjw; hðtÞ

¼ � 1

2

Xn
j¼1

E ðyj � ZjhÞTðyj � ZjhÞjwj; h
ðtÞ

h i ð7Þ

The parameter values, however, are the quantities to be
estimated. To calculate the conditional expectation, we
need to choose an arbitrary value of h from its legal
domain to start the maximization process. Once h¼ h(t) is
chosen for, t¼ 0, we can use h(t) to compute the
conditional expectation of the complete-data log likeli-
hood (still a function of h). We then maximize the
conditional expectation of the log likelihood (Equation
(7)) with respect to the parameters and obtain the
following EM iteration formula for h,

hðtþ1Þ ¼
Xn
j¼1

ZT
j Zj

2
4

3
5
�1 Xn

j¼1

ZT
j Eðyjjwj; h

ðtÞÞ

2
4

3
5 ð8Þ

where

Eðyjjwj; h
ðtÞÞ ¼

Eðyj1jwj1; h
ðtÞÞ

..

.

Eðyjmjwjm; h
ðtÞÞ

2
64

3
75 ð9Þ

is an m� 1 vector for the conditional expectation of yj
given the parameter values at the tth iteration and the

observed ordinal trait. The kth element of the above
vector is

Eðyjkjwjk; h
ðtÞÞ

¼
�t

ðtÞ
k þ Xjb

ðtÞ þ
fðtðtÞk � Xjb

ðtÞÞ
FðXjb

ðtÞ � t
ðtÞ
k Þ

forwjk ¼ 1

�t
ðtÞ
k þ Xjb

ðtÞ �
fðtðtÞk � Xjb

ðtÞÞ
FðtðtÞk � Xjb

ðtÞÞ
forwjk ¼ 0

8>>>>><
>>>>>:

ð10Þ

where f(x) and F(x) represent the standardized normal
density function and the cumulative standardized normal
distribution function, respectively. Equation (10) is the
expectation of a truncated normal variable (Cohen, 1991).
In summary, the EM algorithm requires initialization

of the parameters with h¼ h(t) for t¼ 0 and the following
two steps:

E-Step:
Calculate E(yj|wj, h(t)) using Equation (10);

M-Step:
Update parameter h with h¼ h(tþ 1) using Equation (8).
The E- and M-Steps are repeated several times until

some criterion of convergence is satisfied. Let tmax be the
number of iterations taken for the EM algorithm to
converge. The MLE of h is ĥ ¼ hðtmaxÞ.

Information matrix

The observed information matrix for h can be found
using the method of Louis (1982), which requires the first
and the second partial derivatives of the complete-data
log likelihood. The first partial derivative is

q
qh

LðhÞ ¼ Sðh; yÞ ¼
Xn
j¼1

ZT
j yj �

Xn
j¼1

ZT
j Zjh ð11Þ

and the second partial derivative is

q2

qh2
LðhÞ ¼ Bðh; yÞ ¼ �

Xn
j¼1

ZT
j Zj ð12Þ

The observed information matrix of Louis (1982) is

IðhÞ ¼E
y
½�Bðh; yÞ � E

y
½Sðh; yÞSTðh; yÞ

¼
Xn
j¼1

ZT
j Zj �

Xn
j¼1

ZT
j Zjhh

T
Xn
j¼1

ZT
j Zj

þ
Xn
j¼1

ZT
j EðyjÞh

T
Xn
j¼1

ZT
j Zj

þ
Xn
j¼1

ZT
j Zjh

Xn
j¼1

EðyTj ÞZj � E
Xn
j¼1

ZT
j yj

Xn
j¼1

yTj Zj

2
4

3
5

ð13Þ
where E(yj) is a short notation for E(yj|wj, h). After
extensive algebraic manipulation, we can show that

IðhÞ ¼E
y
½�Bðh; yÞ � E

y
½Sðh; yÞSTðh; yÞ

¼
Xn
j¼1

ZT
j I� VðyjÞ
� �

Zj

ð14Þ
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where V(yj) is a short notation for V(yj|wj, h) the
conditional variance–covariance matrix of yj. It is an
m�m diagonal matrix with the kth diagonal element
defined as

Vðyjkjwjk; hÞ ¼
1�Qj0ðQj0 þ xjkÞ forwjk ¼ 0
1�Qj1ðQj1 � xjkÞ forwjk ¼ 1

�
ð15Þ

where

xjk ¼ tk � Xjb
Qj0 ¼ fðxjkÞ=FðxjkÞ
Qj1 ¼ fðxjkÞ=Fð�xjkÞ ¼ fðxjkÞ=½1� FðxjkÞ

8<
: ð16Þ

(see Cohen, 1991 for the variance of a truncated normal
distribution).

Hypothesis tests

An analytical form of the likelihood function for the
observed data is needed only if a likelihood ratio test is
to be performed. Instead, under the multivariate model,
we are able to formulate the variance-covariance matrix
for the estimated parameters by taking the inverse of the
information matrix,

VðhÞ � I�1ðhÞ ð17Þ
which can be used to derive the Wald test statistic
(Fahrmeir and Tutz, 1994). Therefore, the likelihood ratio
test statistic is no longer required. The Wald test for the
null hypothesis of H0: b¼ 0 is

W ¼ b̂
T
VðbÞ½ �1b̂; ð18Þ

where V(b) is simply a subset of matrix V(h). Under the
null hypothesis, W will asymptotically follow a w2-
distribution with p degrees of freedom. Each individual
regression coefficient can also be tested separately with

Wk ¼
b̂2k

VðbkÞ
: ð19Þ

Under the null hypothesis H0: bk¼ 0, Wk will asympto-
tically follow a w2-distribution with one degree of
freedom.

Interval mapping of QTL

The particular reason for developing this EM algorithm
was to solve the problem of QTL mapping for ordinal
traits. The algorithm is sufficiently general, that we have
been able to present it in a more general way. We now
demonstrate application of the model to QTL mapping.
Suppose that we collect the phenotypes of n backcross
(BC) progeny and genotyped all the markers for these
individuals. We can scan QTL along the genome using
the idea of interval mapping (Lander and Botstein, 1989;
Haley and Knott, 1992). The model in the context of
interval mapping is

yj1
yj2

..

.

yjm

2
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3
7775 ¼ �

1 0 	 	 	 0
0 1 	 	 	 0
..
. ..

. . .
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2
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3
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xj
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..

.

xj

2
6664

3
7775bþ

ej1
ej2

..

.

ejm

2
6664

3
7775 ð20Þ

where xj is the genotype indicator variable for individual
j at a putative position of the genome and it is defined as
xj¼ 1 for one genotype and xj¼�1 for the alternative
genotype (only two genotypes are present in an BC

population at any particular locus). The regression
coefficient b¼mAA�mAa is the difference between the
average values of the two genotypes. Variable x is not
observable but its probability distribution can be inferred
from genotypes of flanking markers (ie interval mapping).

Two approaches can be taken to incorporate the
conditional probability distribution of variable x. One is
the mixture model approach (Lander and Botstein, 1989) by
treating xj as a missing value. A detailed algorithm for the
mixture model for binary traits has been developed by Xu
et al (2003), which can be directly adopted here for ordinal
traits without much modification. The other approach is to
adopt the idea of Haley and Knott (1992) who replaced xj
by x̂j¼ pj�qj¼ 2pj�1, the conditional expectation of xj given
marker information, where pj¼Pr(xj¼ 1|flanking marker)
and qj¼Pr(xj¼�1|flanking marker)¼ 1�pj.

To map QTL in F2 populations, the model should
be written as

yj1
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.
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2
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3
7777775
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þ
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" #

þ

ej1
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..

.

ejm

2
6666664

3
7777775 ð21Þ

where xj1¼ {þ 1,0,�1} and xj2¼ {�1, þ 1,�1} for genotype
array {AA,Aa, aa}, and b1¼ a¼ 1

2(mAA�maa) (additive effect)
and b2¼ d¼ mAa�1

2(mAAþmaa) (dominance effect). Let

pjðþ1Þ ¼ Prðxj ¼ þ1jflankingmarkerÞ
pjð0Þ ¼ Prðxj ¼ 0jflankingmarkerÞ
pjð�1Þ ¼ Prðxj ¼ �1jflankingmarkerÞ

8<
:

The conditional expectations of the two x variables are

x̂j1 ¼ pjðþ1Þ � pjð�1Þ
x̂j2 ¼ pjð0Þ � ½pjðþ1Þ þ pjð�1Þ

�
which will replace xj1 and xj2 in model (21) for QTL
mapping in F2 populations.

Illustrations

Example 1: This example shows the analysis of a
simulated data set with multiple replications. We
simulated four explanatory variables Xj¼ [xj1 xj2 xj3 xj4].
The values of the four variables for each subject were
generated from a multivariate normal distribution, that
is, Xj: N4(0,R), where

R ¼

1 0:5 0 0:1
0:5 1 0:5 �0:2
0 0:5 1 0
0:1 �0:2 0 1

2
664

3
775

The true values of the regression coefficients were

b ¼ ½ b1 b2 b3 b4 T ¼ ½ 0:5 0 �0:5 �1:0 T

The liability for subject j was generated by yj¼Xjbþ ej
where ej was simulated from N(0, 1). The observed
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ordinal measurement was converted from yj using
thresholds

t ¼ ½ t1 t2 t3 T ¼ ½�1:5 0 1:5 T

There were three thresholds (excluding t0¼�N and
tC¼ þN) and four ordinal categories (C¼ 4). The
sample size (n) was simulated at the following four
levels: 100, 250, 500 and 750.

For each simulated data set, the proposed EM
algorithm was used to estimate the parameters. Mean-
while, the variance-covariance matrix of the EM esti-
mates was calculated using the inverse of the Louis’
(1982) information matrix. The simulation was replicated
1000 times, from which we were able to evaluate the
property of the EM algorithm. Note that the data were
simulated under the univariate model, but analyzed
under the proposed multivariate model. We demon-
strated that the multivariate model is a good approxima-
tion to the univariate model.

For comparison, we also analyzed each data set using
the SAS procedure, PROC LOGISTIC (SAS Institute,
1999b), with the logit link function replaced by the probit
link function. We were also able to use PROC PROBIT
(SAS Institute, 1999b), but for some reason the estimated

parameters had signs opposite to the ones obtained from
our EM estimates. The PROC LOGISTIC program uses the
univariate model but finds the MLE with the Newton–
Raphson ridge algorithm. The program also calculates
the variance–covariance matrix using the observed
information matrix. Results of the Newton–Raphson
algorithm are considered as exact because the data were
simulated using exactly the same univariate model.
Results from the simulated data analysis are listed in

Table 2 for the estimated parameters and the variances of
the estimated parameters. Tables 3 and 4 give the
covariances of the estimated parameters. Table 2 shows

(A) the average ĥ ¼ ½̂t1 t̂2 t̂3 b̂1 b̂2 b̂3 b̂4T calculated across

the 1000 replicates, denoted by
�̂h ¼ 1

1000

P1000
i¼1 ĥ, (B) the

variance of
�̂h calculated across the 1000 replicates,

denoted by VðĥÞ ¼ 1
1000�1

P1000
i¼1 ðĥ��̂hÞ2 , and (C) the

average V(h) calculated across the 1000 replicates,

denoted by VðhÞ ¼ 1
1000

P1000
i¼1 VðhÞ.

The bias of parameter estimation for each method can
be evaluated by comparing

�̂h with the true value of h.
When the sample size was small, say 100–250, slight bias
has been observed for each estimated parameter. There is
no clear trend on which method has a larger bias than the

Table 2 Estimated parameters and the variances of the estimates for the EM algorithm and the Newton–Raphson algorithm in the simulated
data analysis (example 1)

Sample size Method t1 t2 t3 b1 b2 b3 b4

100 EM
A �1.5735 �0.0060 1.5831 0.5317 0.0078 �0.5318 �1.0452
B 0.0520 0.0256 0.0520 0.0271 0.0434 0.0287 0.0295
C 0.0480 0.0244 0.0510 0.0189 0.0293 0.0191 0.0241

Newton
A �1.5569 0.0028 1.5584 0.5226 0.0030 �0.5263 �1.0463
B 0.0442 0.0239 0.0529 0.0252 0.0417 0.0265 0.0316
C 0.0445 0.0241 0.0471 0.0237 0.0375 0.0237 0.0285

250 EM
A �1.5279 0.0056 1.5297 0.5080 0.0015 �0.5116 �1.0188
B 0.0186 0.0095 0.0175 0.0100 0.0142 0.0087 0.0097
C 0.0189 0.0092 0.0179 0.0079 0.0103 0.0067 0.0078

Newton
A �1.5290 0.0000 1.5300 0.5124 0.0052 �0.5139 �1.0269
B 0.0181 0.0094 0.0188 0.0102 0.0136 0.0081 0.0094
C 0.0179 0.0091 0.0170 0.0103 0.0136 0.0086 0.0093

500 EM
A �1.5080 0.0019 1.5108 0.5016 �0.0003 �0.5028 �1.0039
B 0.0082 0.0043 0.0084 0.0049 0.0061 0.0047 0.0044
C 0.0088 0.0045 0.0089 0.0038 0.0048 0.0037 0.0038

Newton
A �1.5181 0.0008 1.5113 0.5091 �0.0023 �0.5011 �1.0136
B 0.0086 0.0044 0.0090 0.0054 0.0067 0.0047 0.0048
C 0.0084 0.0044 0.0084 0.0050 0.0063 0.0048 0.0046

750 EM
A �1.5063 �0.0008 1.5054 0.4979 0.0062 �0.5031 �1.0006
B 0.0054 0.0028 0.0058 0.0033 0.0040 0.0030 0.0035
C 0.0059 0.0030 0.0058 0.0024 0.0029 0.0022 0.0026

Newton
A �1.5139 0.0003 1.5078 0.5014 0.0007 �0.5038 �1.0073
B 0.0059 0.0029 0.0057 0.0029 0.0038 0.0029 0.0033
C 0.0056 0.0029 0.0055 0.0031 0.0039 0.0029 0.0032

A: The average ĥ calculated across the 1000 replicates using
�̂h ¼ 1

1000

P1000
i¼1 ĥ.

B: The sample variance of
�̂h calculated across the 1000 replicates using VðĥÞ ¼ 1

1000�1

P1000
i¼1 ðĥ��̂hÞ2.

C: The average VðĥÞ calculated across the 1000 replicates using VðhÞ ¼ 1
1000

P1000
i¼1 VðhÞ.
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other for the regression coefficients, but the estimated
thresholds, for example, t1, appear to have a larger bias
for the Newton method than for the EM algorithm.

The variance of each estimated parameter calculated
from the sample of 1000 replicates, VðĥÞ , is a good
indication of the precision of the estimate. When the
sample size was small, say 100, the Newton method
tends to have a consistently smaller variance than the EM
algorithm, although the difference is barely noticeable.
The multivariate model appears to be a good approx-
imation of the univariate model.

Recall that V(h) is the variance of parameters calcu-
lated from the information matrix for each replicate and
VðhÞ is the average of V(h) calculated across the 1000
replicates. If VðhÞ is close to VðĥÞ , it means that the
method for calculating V(h) is reasonable. When the
sample size was small (n¼ 100), the EM algorithm has a
smaller VðhÞ than VðĥÞ, but the bias goes away quickly as
the sample size increases. The Newton method, however,
always behave well, regardless of the sample size.

Table 3 gives the covariances between estimated
parameters for both the EM algorithm (upper triangular
elements) and the Newton method (lower triangular
elements) using covðŷi; ŷjÞ ¼ 1

1000�1

P1000
k¼1 ðŷi � �̂yiÞðŷj � �̂yjÞ.

Again, when the sample size was small (n¼ 100), the two
methods are slightly different for the covariances, but the

differences diminish quickly as the sample size increases.
Table 4 lists the averages of the covariances between
parameters calculated from the 1000 replicates for both
the EM algorithm (upper triangular elements) and the
Newton method (lower triangular elements) using
covðyi; yjÞ ¼ 1

1000

P1000
k¼1 covðyi; yjÞ . The conclusion of

Table 3 also applies to Table 4. Comparing Table 3 with
Table 4, we conclude that the methods for calculating
cov(yi, yj) in both the EM algorithm and the Newton
method are reasonably good.

Example 2: This example shows the analysis of a real
data set. The data were obtained from Koch and
Edwards (1988) for a double-blind clinical trial investi-
gating a new treatment for rheumatoid arthritis. In this
data set, there were n¼ 84 subjects with different ages
who received an active or placebo treatment for their
arthritis pain, and the subsequent extent of improvement
was recorded as marked, some, or none. The dependent
variable was an ordinal categorical observation with
three categories (1¼none, 2¼ some and 3¼marked).
The three explanatory variables were treatment (active or
placebo), sex (male or female), and age (recorded as a
continuous variable), respectively. The design matrix was
Xj¼ [xj1 xj2 xj3] where the three variables in the vector
correspond to treatment, sex and age, respectively. We
analyzed this real data set using both the proposed EM

Table 3 Covariances of estimated parameters calculated from 1000 replicates for the EM algorithm (upper triangles) and the Newton–
Raphson algorithm (lower triangles) in the simulated data analysis (example 1)

Sample size t1 t2 t3 b1 b2 b3 b4

100
t1 0.0115 �0.0118 �0.0052 �0.0033 0.0092 0.0133
t2 0.0073 0.0062 0.0017 �0.0037 0.0025 0.0000
t3 �0.0072 0.0064 0.0094 �0.0036 �0.0052 �0.0154
b1 �0.0041 0.0024 0.0092 �0.0116 0.0023 �0.0073
b2 �0.0041 �0.0048 �0.0047 �0.0151 �0.0144 0.0073
b3 0.0092 0.0031 �0.0039 0.0038 �0.0184 �0.0001
b4 0.0122 �0.0004 �0.0147 �0.0079 0.0097 �0.0013

250
t1 0.0020 �0.0040 �0.0022 �0.0002 0.0027 0.0049
t2 0.0024 0.0022 0.0003 �0.0004 0.0001 �0.0004
t3 �0.0025 0.0027 0.0028 �0.0003 �0.0022 �0.0051
b1 �0.0021 0.0004 0.0028 �0.0054 0.0018 �0.0027
b2 �0.0003 �0.0005 �0.0004 �0.0072 �0.0050 0.0014
b3 0.0027 0.0002 �0.0020 0.0027 �0.0066 0.0012
b4 0.0047 �0.0004 �0.0050 �0.0030 0.0019 0.0011

500
t1 0.0010 �0.0018 �0.0011 �0.0002 0.0015 0.0024
t2 0.0013 0.0010 0.0002 �0.0003 0.0003 0.0001
t3 �0.0011 0.0013 0.0013 �0.0002 �0.0009 �0.0024
b1 �0.0010 0.0002 0.0013 �0.0025 0.0009 �0.0018
b2 �0.0003 �0.0004 �0.0003 �0.0033 �0.0026 0.0013
b3 0.0015 0.0004 �0.0008 0.0013 �0.0035 0.0002
b4 0.0023 0.0000 �0.0023 �0.0022 0.0018 0.0001

750
t1 0.0000 �0.0012 �0.0008 0.0001 0.0008 0.0016
t2 0.0008 0.0000 0.0000 0.0001 �0.0001 0.0000
t3 �0.0007 0.0009 0.0007 0.0001 �0.0008 �0.0015
b1 �0.0008 0.0000 0.0007 �0.0015 0.0004 �0.0012
b2 0.0001 0.0002 0.0001 �0.0021 �0.0014 0.0008
b3 0.0008 �0.0001 �0.0008 0.0006 �0.0019 0.0002
b4 0.0016 0.0000 �0.0015 �0.0014 0.0011 0.0001

A covariance between two estimated parameters was calculated from 1000 replicates using covðŷi; ŷjÞ ¼ 1
1000�1

P1000
k¼1 ðŷi � �̂yiÞðŷj � �̂yjÞ.
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algorithm and the Newton method implemented in the
PROC LOGISTIC procedure of SAS.

Table 5 gives the estimated parameters and their
variances and Table 6 give the covariances of the
estimated parameters for both methods. The estimated
parameters are very similar for the two methods. The
variances of parameter estimates are different for the two
methods. The EM algorithm produced smaller variances
than the Newton method, implying that the sample size
(n¼ 84) was not sufficiently large for the EM to provide
accurate estimates for the variances, although the
estimates of parameters are remarkably close to those
of the Newton method.

Example 3: This example shows the analysis of a
simulated BC population for interval mapping of

quantitative trait loci. This simulation serves as a
working example to demonstrate the method for QTL
mapping. We assumed that the liability has a zero mean
and a unit residual variance. A single QTL was placed at
position 25 cM of a 100 cM long chromosome covered by

Table 4 Averages of covariances among parameters calculated from 1000 replicates for the EM algorithm (upper triangles) and the Newton–
Raphson algorithm (lower triangles) in the simulated data analysis (example 1)

Sample size t1 t2 t3 b1 b2 b3 b4

100
t1 0.0088 �0.0077 �0.0037 �0.0009 0.0152 0.0131
t2 0.0058 0.0085 0.0038 �0.0066 0.0050 �0.0009
t3 �0.0067 0.0073 0.0113 �0.0049 �0.0046 �0.0147
b1 �0.0045 0.0038 0.0086 �0.0167 0.0051 �0.0095
b2 �0.0011 �0.0058 �0.0058 �0.0174 �0.0230 0.0104
b3 0.0083 0.0036 �0.0030 0.0058 �0.0202 �0.0008
b4 0.0137 �0.0012 �0.0169 �0.0075 0.0125 �0.0024

250
t1 0.0022 �0.0024 0.0018 �0.0007 0.0029 0.0045
t2 0.0028 0.0033 0.0009 �0.0011 0.0004 �0.0008
t3 �0.0024 0.0028 0.0034 �0.0006 �0.0020 �0.0050
b1 �0.0015 0.0001 0.0036 �0.0072 0.0027 �0.0035
b2 �0.0002 �0.0001 �0.0004 �0.0069 �0.0066 0.0022
b3 0.0020 0.0002 �0.0015 0.0025 �0.0062 0.0010
b4 0.0048 �0.0005 �0.0056 �0.0035 0.0022 0.0006

500
t1 0.0011 �0.0013 �0.0011 0.0001 0.0014 0.0024
t2 0.0012 0.0015 0.0002 �0.0001 0.0000 �0.0001
t3 �0.0013 0.0015 0.0016 �0.0004 �0.0007 �0.0024
b1 �0.0016 0.0005 0.0017 �0.0031 0.0012 �0.0021
b2 0.0002 �0.0006 �0.0004 �0.0036 �0.0033 0.0017
b3 0.0014 0.0004 �0.0007 0.0014 �0.0035 0.0001
b4 0.0027 �0.0002 �0.0026 �0.0025 0.0018 0.0001

750
t1 0.0005 �0.0010 �0.0009 0.0000 0.0009 0.0017
t2 0.0008 0.0008 0.0000 0.0001 0.0001 0.0000
t3 �0.0011 0.0008 0.0009 0.0002 �0.0008 �0.0016
b1 �0.0009 �0.0001 0.0008 �0.0021 0.0004 �0.0016
b2 0.0000 0.0001 0.0001 �0.0020 �0.0018 0.0012
b3 0.0009 0.0001 �0.0008 0.0007 �0.0019 0.0002
b4 0.0017 0.0001 �0.0015 �0.0014 0.0010 0.0002

The average of a covariance was calculated using covðyi; yjÞ ¼ 1
1000

P1000
k¼1 covðyi; yjÞ.

Table 5 Estimated parameters and their variances for the EM
algorithm and the Newton–Raphson algorithm in the real data
analysis (example 2)

Method Statistic t1 t2 b1 b2 b3

EM ĥ 2.3189 2.8528 �1.0600 �0.7199 �0.0243

Var(h) 0.2776 0.3030 0.0487 0.0598 0.0001
Newton ĥ 2.2910 2.8257 �1.0689 �0.7429 �0.0232

Var(h) 0.4246 0.4473 0.0789 0.0997 0.0001
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Figure 1 Wald test statistic profile for the simulated chromosome.
The true position of the QTL was 25 cM.
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11 evenly placed markers. The effect of the QTL was
a¼ 0.50, which explained h2¼ a2/(a2þ 1)¼ 20% of the
liability variance (see Xu et al (2005b) for the definition of
h2). We simulated five ordered categories (C¼ 5) with
four threshold values. The four thresholds were chosen
by trial and error so that the expected frequencies of the
five categories occurring in the BC population had a ratio
of 1:2:4:2:1. The threshold values generating this ratio
were

t ¼ ½�1:4394 �0:5932 0:5932 1:4394 T

The population size was n¼ 300. Only one sample
was generated and analyzed as a working example to
demonstrate the method.

The chromosome was scanned from one end to the
other with a one cM increment. Figure 1 shows the Wald
test statistic profile across the genome. The peak of the
test statistic profile occurs at position 26 cM (the true
position was 25 cM). The estimated QTL parameters at
position 26 cM are given in Table 7, which are quite close
to the true values. Table 7 also gives the covariance
matrix.

Discussion

The log likelihood function given in Equation (6) is the
complete-data log likelihood function, which is only
used to derive the EM algorithm. The actual observed log
likelihood function that can be used for deriving the
likelihood ratio test statistic must have the latent variable
y integrated out. Such an observed log likelihood
function has the following form,

LoðhÞ ¼
Xn
j¼1

XC
k¼1

wjk loge Fðxjb� tkÞ
�

þð1� wjkÞ loge Fðtk � xjbÞ
�
:

ð22Þ

As we have proposed using the Wald test statistic for
testing hypotheses, this observed log likelihood function
is not required. For people who prefer the likelihood
ratio test, Equation (22) must be used. The focus of this
paper has been to derive the EM algorithm and the
information matrix under the EM method. As a result,
hypothesis tests were only briefly mentioned in the
manuscript and the actual tests were carried out in
neither the simulation experiment nor the real data
analysis.

Some advantages of the EM algorithm over the
Newton–Raphson algorithm were discussed in the
introduction. One of them is that the EM formulae are
more transparent and intuitive to biologists who have
little knowledge in advanced statistics except some basic

background in linear modeling. The derivations of the
EM algorithm and the variance–covariance matrix of the
parameters are demanding to some extent, but the final
results are extremely simple. The estimated parameters
and the variance–covariance matrix of the parameters
have the following expressions,

ĥ ¼
Pn
j¼1

ZT
j Zj

" #�1 Pn
j¼1

ZT
j EðyjÞ

" #

VðhÞ ¼
Pn
j¼1

ZT
j I� VðyjÞ
h i

Zj

( )�1

8>>>>><
>>>>>:

ð23Þ

People will immediately recognize the similarity between
this set of equations and those commonly seen in the
usual linear model analysis. If yj were observed
variables, as in the usual linear regression analysis, then
E(yj)¼yj and V(yj)¼ 0 would hold. The above equations
would be

ĥ ¼
Pn
j¼1

ZT
j Zj

" #�1 Pn
j¼1

ZT
j yj

" #

VðhÞ ¼
Pn
j¼1

ZT
j Zj

" #�1

8>>>>>><
>>>>>>:

ð24Þ

which are exactly the least square estimates of the
parameters and the variance–covariance matrix of the
estimates in the usual regression analysis. The EM
algorithm only requires substitutions of yj by E(yj) and
I by I�V(yj), where E(yj) and V(yj) are the means and
variances of truncated normal variables (Cohen, 1991).
This is a very desirable property of the proposed EM
algorithm.

The exact form of the variance–covariance matrix,
V(yj), is still unknown. We ignored the covariance
elements (assumed to be zero) of the matrix and used a
diagonal approximation. This approximation has caused
biased (downward) estimates for the variances of the
regression coefficients when the sample size was small.
As a result, the Wald test statistic is biased upward.
Therefore, the test statistic under the null model may not
follow the assumed w2-distribution. In QTL mapping,
however, the exact form of the distribution for the test
statistic is not important because the critical value of the
test statistic used to declare statistical significance is
often drawn from a permutation test (Churchill and
Doerge, 1994). Therefore, the slightly biased Wald test
will not alter the conclusion of QTL mapping relative to
an unbiased test.

Developing a Bayesian method for ordinal traits is
straightforward. If an uninformative prior is assigned to
the parameters, the conditional posterior distribution

Table 6 Covariances of estimated parameters for the EM algorithm
(upper traingles) and the Newton–Raphson algorithm (lower
triangles) obtained from the real data analysis (example 2)

t1 t2 b1 b2 b3

t1 0.2669 �0.0305 �0.0477 �0.0039
t2 0.4274 �0.0353 �0.0508 �0.0040
b1 �0.0490 �0.0536 0.0117 0.0000
b2 �0.0750 �0.0779 0.0194 �0.0000
b3 �0.0060 �0.0061 �0.0001 �0.0001

Table 7 Estimated parameters (column 2) and their covariance
matrix (columns 3–7, upper triangular elements) at position 26 cM
of the simulated chromosome (example 3)

Estimate t1 t2 t3 t4 b

t1 �1.560049 0.01303 0.00044 �0.00023 �0.00076 �0.00160
t2 �0.65383 0.00668 �0.00010 �0.00035 �0.00075
t3 0.56573 0.00646 0.00019 0.00040
t4 1.46154 0.01218 �0.00000
b 0.53811 0.00273
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of h given y is multivariate normal with mean ĥ and
variance–covariance matrix V(h). Given h sampled from
the normal distribution, yjk is a truncated normal
variable with mean �tkþ xjb and variance one. Standard
algorithms for sampling a truncated normal variable are
available (Devroye, 1986). Given the fact that the
Bayesian method implemented via the MCMC is so
simple, how do we justify the need of an EM algorithm?
The reason is twofold, the cost effectiveness and the
prevention of MCMC error.
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