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ABSTRACT

Motivation: Many complex disease syndromes such as asthma
consist of a large number of highly related, rather than independent,
clinical phenotypes, raising a new technical challenge in identifying
genetic variations associated simultaneously with correlated traits.
Although a causal genetic variation may influence a group of highly
correlated traits jointly, most of the previous association analyses
considered each phenotype separately, or combined results from a
set of single-phenotype analyses.
Results: We propose a new statistical framework called graph-
guided fused lasso to address this issue in a principled way.
Our approach represents the dependency structure among the
quantitative traits explicitly as a network, and leverages this trait
network to encode structured regularizations in a multivariate
regression model over the genotypes and traits, so that the genetic
markers that jointly influence subgroups of highly correlated traits can
be detected with high sensitivity and specificity. While most of the
traditional methods examined each phenotype independently, our
approach analyzes all of the traits jointly in a single statistical method
to discover the genetic markers that perturb a subset of correlated
triats jointly rather than a single trait. Using simulated datasets
based on the HapMap consortium data and an asthma dataset,
we compare the performance of our method with the single-marker
analysis, and other sparse regression methods that do not use any
structural information in the traits. Our results show that there is a
significant advantage in detecting the true causal single nucleotide
polymorphisms when we incorporate the correlation pattern in traits
using our proposed methods.
Availability: Software for GFlasso is available at
http://www.sailing.cs.cmu.edu/gflasso.html
Contact: sssykim@cs.cmu.edu; ksohn@cs.cmu.edu;
epxing@cs.cmu.edu

1 INTRODUCTION
Recent advances in high-throughput genotyping technologies
have significantly reduced the cost and time of genome-wide
screening of individual genetic differences over millions of single
nucleotide polymorphism (SNP) marker loci, shedding light to
an era of ‘personalized genome’ (The International HapMap
Consortium, 2005; Wellcome Trust Case Control Consortium,
2007). Accompanying this trend, clinical and molecular phenotypes
are being measured at phenome and transcriptome scale over
a wide spectrum of diseases in various patient populations and
laboratory models, creating an imminent need for appropriate
methodology to identify omic-wide association between genetic
markers and complex traits which are implicative of causal
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relationships between them. Many statistical approaches have been
proposed to address various challenges in identifying genetic locus
associated with the phenotype from a large set of markers, with
the primary focus on problems involving a univariate trait (Li
et al., 2007; Malo et al., 2008). However, in modern studies the
patient cohorts are routinely surveyed with a large number of traits
(from measures of hundreds of clinical phenotypes to genome-wide
profiling of thousands of gene expressions), many of which are
correlated among them. For example, in Figure 1, the correlation
structure of the 53 clinical traits in the asthma dataset collected as a
part of the Severe Asthma Research Program (SARP) (Moore et al.,
2007) is represented as a network, with each trait as a node, the
interaction between two traits as an edge and the thickness of an
edge representing the strength of correlation. Within this network,
there exists several subnetworks involving a subset of traits, and
furthermore, the large subnetwork on the left-hand side of Figure 1
contains two subgroups of densely connected traits with thick edges.
In order to understand how genetic variations in asthma patients
affect various asthma-related clinical traits in the presence of such
a complex correlation pattern among phenotypes, it is necessary to
consider all of the traits jointly and take into account their correlation
structure in the association analysis. Although numerous research
efforts have been devoted to studying the interaction patterns among
many quantitative traits represented as networks (Friedman, 2004;
Mehan et al., 2008) as well as discovering network submodules
from such networks (Hu et al., 2005; Segal et al., 2003), this
type of network structure has not been exploited in association
mapping (Cheung et al., 2005; Stranger et al., 2005). Many of the
previous approaches examined one phenotype at a time to localize
the SNP markers with a significant association, and combined the
results from a set of such single-phenotype association mapping
across phenotypes. However, we conjecture that one can detect
additional weak associations and at the same time reduce false
signals by combining the information across multiple phenotypes
under a single statistical framework.

In QTL mapping studies with pedigree data, a number of
approaches have been proposed to detect pleiotropic effect of
markers on multiple correlated traits by considering the traits jointly.
However, these approaches involve only a weak and indirect form
of structural information present in the phenotypes. The methods
based on multivariate regression with multiple outcomes (Knott and
Haley, 2000; Liu et al., 2007; Xu et al., 2005) were concerned with
finding genetic loci that influence all of the phenotypes jointly, rather
than explicitly taking into account the complex interaction patterns
among the phenotypes. A different approach has been proposed
that first applies a principal component analysis (PCA) to find the
directions in which phenotypes are the most correlated, and then
uses a multivariate regression on the projected phenotypes (Mangin
et al., 1998; Weller et al., 1996). The transformation via PCA allows
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Fig. 1. Illustration of association analysis using phenotype correlation graph
for asthma dataset.

one to extract the components that explain the majority of variation
in phenotypes, but has a limitation in that it is not obvious how to
interpret the derived phenotypes.

More recently, in expression quantitative trait locus (eQTL)
analysis which treats microarray gene expression measurements as
quantitative traits, researchers have begun to combine an explicit
representation of correlation structure in phenotypes, such as gene
networks, with genotype information to search for genetic causes
of perturbations of a subset of highly correlated phenotypes (Chen
et al., 2008; Emilsson et al., 2008; Lee et al., 2006; Zhu et al., 2008).
A module network (Segal et al., 2003), which is a statistical model
developed for uncovering regulatory modules from gene expression
data, was extended to incorporate genotypes of regulators, such
that the expression of genes regulated by the same regulator was
explained by the variation of both the expression level and the
genotype of the regulators (Lee et al., 2006). Although the model
was able to identify previously unknown genetic perturbations in
yeast regulatory network, the genotype information used in the
model was limited to markers in regulators rather than the whole
genome. Several other studies incorporated a gene co-regulation
network in a genome-wide scan for association. In a network eQTL
association study for mouse (Chen et al., 2008), a gene co-regulation
network was learned, a clustering algorithm was applied to this
network to identify subgroups of genes whose members participate
in the same molecular pathway or biological process, and then, a
single-phenotype analysis was performed between genotypes and
the phenotypes within each subgroup. If the majority of phenotypes
in each subgroup were mapped to the common locus in the genome,
that locus was declared to be significantly associated with the
subgroup. Using this approach, new obesity-related genes in mouse
were identified by examining the network module associated with
the genetic locus previously associated with obesity-related traits
such as body mass index and cholesterol level. A similar analysis
was performed on yeast, where clusters of yeast genes were mapped
to a common eQTL hotspots (Zhu et al., 2008). One of the main
disadvantages of this approach is that it first applies a clustering
algorithm to identify subgroups of phenotypes in the network,
rather than directly incorporating the network itself as a correlation
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Fig. 2. Illustrations for multiple output regression with (A) lasso; (B)
GFlasso; and (C) GwFlasso.

structure, since the full network contains much richer information
about complex interaction patterns than the clusters of phenotypes.
Another disadvantage of this approach is that it relies on a set of
single-phenotype statistical tests and combines the results afterwards
in order to determine whether a marker is significantly affecting
a subgroup of phenotypes, thus requiring a substantial effort in
conducting appropriate multiple hypothesis testing. We believe that
an approach that considers markers and all of the phenotypes jointly
in a single statistical method has the potential to increase the power
of detecting weak associations and reduce susceptibility to noise.

In this article, we propose a family of methods, called
the graph-guided fused lasso (GFlasso), that fully incorporates
the quantitative-trait network as an explicit representation
for correlation structure without applying additional clustering
algorithms to phenotypes. Our methods combine multiple
phenotypes in a single statistical framework, and analyze them
jointly to identify SNPs perturbing a subset of tightly correlated
phenotypes instead of combining results from multiple single-
phenotype analyses. The proposed methods leverage a dependency
graph defined on multiple quantitative traits such as the graph for
the asthma-related traits shown in Figure 1, assuming that such a
graph structure is available from preprocessing steps or as prior
knowledge from previous studies. It is reasonable to assume that
when a subset of phenotypes are highly correlated, the densely
connected subgraphs over these correlated traits contain variables
that are more likely to be synergistically influenced by the same or
heavily overlapping subset(s) of SNPs with similar strength than an
arbitrary subset of phenotypes.

The proposed approach is based on a multivariate regression
formalism with the L1 penalty, commonly known as lasso, that
achieves sparsity in the estimated model by setting many of the
regression coefficients for irrelevant markers to 0 (Tibshirani, 1996).
This property of lasso makes it a natural approach for genome-wide
association analysis, where the marker genotypes are treated as the
predictors, the phenotype in question is treated as the response, and
the (sparse) set of markers having non-zero regression coefficients
are interpreted as the markers truely associated with the phenotype.
However, when applied to association mapping with multivariate
traits, lasso is equivalent to a single-trait analysis that needs to be
repeated over every single trait. In other words, for a collection
of traits, each trait would be treated as independent of all other
traits, and every trait would be regressed on a common set of
marker genotypes via its own lasso (Fig. 2A), ignoring the possible
coupling among traits. Our innovations in GFlasso that enable
a departure from the baseline lasso for a single trait is that, in
addition to the lasso penalty, we employ a ‘fusion penalty’ that
fuses regression coefficients across correlated phenotypes, using
either unweighted or weighted connectivity of the phenotype graph
as a guide. This additional penalty will encourage sharing of
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common predictors (i.e. associated markers) to coupled responses
(i.e. traits). The two fusion schemes lead to two variants of the
GFlasso: a graph-constrained fused lasso (GcFlasso) based on
only the graph topology (Fig. 2B), and a graph-weighted fused
lasso (GwFlasso) that offers a flexible range of stringency of the
graph constraints through edge weights (Fig. 2C). We developed an
efficient algorithm based on quadratic programming for estimating
the regression coefficients under GFlasso. The results on two
datasets, one simulated from HapMap SNP markers and the other
collected from asthma patients, show that our method outperforms
competing algorithms in identifying markers that are associated with
a correlated subset of phenotypes.

2 LASSO REGRESSION FOR MULTIPLE
INDEPENDENT PHENOTYPES

Let X be an N ×J matrix of genotypes for N individuals and J SNPs,
where each element xij of X is assigned 0, 1 or 2 according to the
number of minor alleles at the j-th locus of the i-th individual. Let Y
denote an N ×K matrix of K quantitative trait measurements over
the same set of individuals. We use yk to denote the k-th column of Y.
A conventional single-trait association via linear regression model
can be applied to this multiple-trait setting by fitting the model to X
and each of the K traits yk’s separately:

yk =Xβk +εk, ∀k =1,...,K, (1)

where βk is a J-vector of regression coefficients for the k-th trait
that can be used in a statistical test to detect SNP markers with
significant association, and εk is a vector of N independent error
terms with mean 0 and a constant variance. We center each column
of X and Y such that

∑
i yik =0 and

∑
i xij =0, and consider the

model in Equation (1) without an intercept. We obtain the estimates
of B={β1,...,βK } by minimizing the residual sum of squares:

B̂= argmin
∑

k

(yk −Xβk)T ·(yk −Xβk). (2)

In a typical genome-wide association mapping, one examines a
large number of marker loci with the goal of identifying the
region associated with the phenotypes and markers in that region.
A straight-forward application of the linear regression method in
Equation (2) to association mapping with large J can cause several
problems such as an unstable estimate of regression coefficients and
a poor interpretability due to many irrelevant markers with non-zero
regression coefficients. Sparse regression methods such as forward
stepwise selection (Weisberg, 1980), ridge regression (Hoerl et al.,
1975; Malo et al., 2008) and lasso (Tibshirani, 1996) that select
a subset of markers with true association have been proposed to
handle the situation with large J . Forward stepwise selection method
iteratively selects one relevant marker at a time while trying to
improve the model fit based on Equation (2), but it may not produce
an optimal solution because of the greedy nature of the algorithm.
Ridge regression has an advantage of performing the selection in
a continuous space by penalizing the residual sum of square in
Equation (2) with the L2 norm of βk’s and shrinking the regression
coefficients toward 0, but it does not set the regression coefficients
of irrelevant markers to exactly 0. We use lasso that penalizes the
residual sum of square with the L1 norm of regression coefficients
and has the property of setting regression coefficients with weak
association markers exactly to 0, thus offering the advantages of

both forward stepwise selection and ridge regression. The lasso
estimate of the regression coefficients can be obtained by solving
the following:

B̂lasso = argmin
∑

k

(yk −Xβk)T ·(yk −Xβk)+λ
∑
k,j

|βkj|, (3)

where λ is a regularization parameter that controls the amount of
sparsity in the estimated regression coefficients. Setting λ to a large
value increases the amount of penalization, setting more regression
coefficients to 0. Many fast algorithms are available for solving
Equation (3) (Efron et al., 2004; Tibshirani, 1996).

Lasso for multiple-trait association mapping in Equation (3) is
equivalent to solving a set of K independent regressions for each
trait with its own L1 penalty, and does not provide a mechanism to
combine information across multiple traits such that the estimates
reflect the potential relatedness in the regression coefficients for
those correlated traits that are influenced by common SNPs.
However, several traits are often highly correlated such as in gene
expression of co-regulated genes in eQTL study, and there might be
genotype markers that are jointly associated with those correlated
traits. Below, we extend the standard lasso and propose a new
penalized regression method for detecting markers with pleiotropic
effect on correlated quantitative traits.

3 GFLASSO FOR MULTIPLE CORRELATED
PHENOTYPES

In order to identify markers that are predictive of multiple
phenotypes jointly, we represent the correlation structure over the
set of K traits as an edge-weighted graph, and use this graph to
guide the estimation process of the regression coefficients within
the lasso framework. We assume that we have available from a
preprocessing step a phenotype correlation graph G consisting of
a set of nodes V , each representing one of the K traits and a set
of edges E. In this article, we adopt a simple and commonly used
approach for learning such graphs, where we first compute pairwise
Pearson correlation coefficients for all pairs of phenotypes using
yk’s, and then connect two nodes with an edge if their correlation
coefficient is above the given threshold ρ. We set the weight of
each edge (m,l)∈E to the absolute value of correlation coefficient
|rm,l|, so that the edge weight represents the strength of correlation
between the two nodes. This thresholded correlation graph is also
known as a relevance network, and has been widely used as a
representation of gene interaction networks (Butte et al., 2000;
Carter et al., 2004). It is worth pointing out that the choice of
methods for obtaining the phenotype network is not a central issue of
our method. Other variations of the standard relevance network have
been suggested (Zhang and Horvath, 2005), and any of these graphs
can also be used within our proposed regression methods. Below,
we first introduce GcFlasso that makes use of unweighted graph,
and further extend this method to GwFlasso to take into account the
full information in the graph including edge weights.

Given the correlation graph of phenotypes, it is reasonable to
assume that if two traits are highly correlated and connected with
an edge in the graph, their variation across individuals might be
explained by genetic variations at the same loci, possibly having the
same amount of influence on each trait. In GcFlasso, this assumption
is expressed as an additional penalty term that fuses two regression
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coefficients βjm and βjl for each marker j if traits m and l are
connected with an edge in the graph, as follows:

B̂GC =argmin
∑
k

(yk −Xβk)T ·(yk −Xβk)

+λ
∑
k

∑
j

|βjk |+γ
∑

(m,l)∈E

∑
j

|βjm −sign(rml)βjl|, (4)

where λ and γ are regularization parameters that determine the
amount of penalization. The last term in Equation (4) is called a
fusion penalty (Tibshirani et al., 2005), and encourages βjm and
sign(rm,l)βjl to take the same value by shrinking the difference
between them toward 0. A larger value for γ leads to a greater fusion
effect, or greater sparsity in |βjm −sign(rm,l)βjl|’s. We assume that
if two traits m and l connected with an edge in G are negatively
correlated with rml <0, the effect of a common marker on those
traits takes an opposite direction and we fuse βjm and (−βjl),
or equivalently, βjm and sign(rm,l)βjl . When the fusion penalty
is combined with the lasso penalty as in Equation (4), the lasso
penalty sets many of the regression coefficients to 0 and for
the remaining non-zero regression coefficients, the fusion penalty
flattens the values across multiple highly correlated phenotypes for
each marker so that the strength of influence of each marker becomes
similar across those correlated traits. The idea of fusion penalty has
been first used in the classical regression problem over univariate
response (i.e. single output) from high-dimensional covariates to
fuse the regression coefficients of two adjacent covariates when the
covariates are assumed to be ordered such as in time (Tibshirani
et al., 2005). This corresponds to coupling pairs of elements in
the adjacent rows of the same column in the coefficient matrix B
in Equation (4). In GcFlasso, we employ a similar strategy in a
multiple-output regression in order to identify pleiotropic effect of
markers, and let the trait correlation graph determine which pairs
of regression coefficients should be fused. Now, every such coupled
coefficient pair corresponds to the elements of the corresponding
two columns in the same row of matrix B in Equation (4).

In a multiple-trait association mapping, networks of clinical traits
or molecular traits (i.e. gene expressions) typically contain many
subnetworks within which nodes are densely connected and we are
interested in finding the genetic variants that perturb the entire set of
traits in each subnetwork. This can potentially increase the power of
detecting weak associations between genotype and phenotype that
may be missed when each phenotype is considered independently.
When used in this setting, GcFlasso looks for associations between
a genetic marker and a subgraph of phenotype network rather than a
single phenotype. Unlike other previous approaches for detecting
pleiotropic effect that first apply clustering algorithms to learn
subgroups of traits and then search for genetic variations that perturb
the subgroup, GcFlasso uses the full information on correlation
structure in phenotypes available as a graph, where the subgroup
information is embedded implicitly within the graph as densely
connected subgraphs. Although the fusion penalty in GcFlasso is
applied locally to a pair of regression coefficients for neighboring
trait pairs in the graph, this fusion effect propagates to the regression
coefficients for other traits that are connected to them in the graph.
For densely connected nodes, the fusion is effectively applied to all
of the members of the subgroup, and the set of non-zero regression
coefficients tend to show a block structure with the same values
across the correlated traits given a genotype marker with pleiotropic
effect on those traits, as we demonstrate in experiments. If the edge

connections are sparse within a group of nodes, the corresponding
traits are only weakly related and there is little propagation of fusion
effect through edges in the subgroup. Thus, GcFlasso incorporates
the subgrouping information through the trait correlation graph in a
more flexible manner compared to previous approaches.

Now, we present a further generalization of GcFlasso that exploit
the full information in the phenotype networks for association
mapping. Note that the only structural information used in
GcFlasso is the presence or absence of edges between two
phenotypes in the graph. GwFlasso is a natural extension of
GcFlasso that takes into account the edge weights in graph G in
addition to the graph topology. GwFlasso weights each term in
the fusion penalty in Equation (4) by the amount of correlation
between the two phenotypes being fused, so that the amount
of correlation controls the amount of fusion. More generally,
GwFlasso weights each term in the fusion constraint in Equation (4)
with a monotonicaly increasing function of the absolute values of
correlations, and finds an estimate of the regression coefficients as
follows:

B̂GW =argmin
∑

k

(yk −Xβk)T ·(yk −Xβk) (5)

+λ
∑

k

∑
j

|βjk |+γ
∑

(m,l)∈E

f (rml)
∑

j

|βjm −sign(rml)βjl|.

If the two phenotypes m and l are highly correlated in graph G
with a relatively large edge weight, the fusing effect increases
between these two phenotypes since the difference between the
two corresponding regression coefficients βjm and βjl is penalized
more than for other pairs of phenotypes with weaker correlation. In
this article, we consider f1(r)=|r| for G1

wFlasso and f2(r)=r2 for
G2

wFlasso. We note that the GcFlasso is a special case of GwFlasso
with f (r)=1.

The optimization problems in Equations (4) and (5) can be
formulated as a quadratic programming as described in Appendix A,
and there are many publicly available software packages that
efficiently solve such quadratic programming problems. The
regularization parameters λ and γ can be determined by a cross-
validation or a validation set.

4 RESULTS
We compare the results from our proposed methods, GcFlasso,
G1

wFlasso and G2
wFlasso, with the ones from the single-marker

analysis as well as multivariate regression methods such as ridge
regression and lasso that do not use any structural information in
the phenotypes. For ridge regression, lasso and our methods, we
selected the regularization parameters using a validation set. We used
[−log(P-value)] for the standard single-marker analysis, and the
absolute value of regression coefficients |βjk |’s for the multivariate
regression methods and our proposed methods, as a measure of
the strength of association. We also compared our methods with
reduced-rank regression, which is a multivariate-output approach
that first applies CCA to find canonical variables before applying
multivariate regression.

4.1 Simulation study
We simulated genotype data for 250 individuals based on the
HapMap data in the region of 8.79–9.20 M in chromosome 7. The
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first 60 individuals of the genotype data came from the parents of
the HapMap CEU panel. We generated genotypes for additional
190 individuals by randomly mating the original 60 individuals
on the CEU panel. We included only those SNPs with minor
allele frequency >0.1. Since our primary goal is to measure the
performance of the association methods in the case of multiple
correlated phenotypes, we sampled 50 SNPs randomly from the 697
SNPs in the region in order to reduce the correlation among SNPs
from the linkage disequilibrium.

Given the simulated genotype, we generated the true associations
represented as regression coefficients B and phenotype data as
follows. We assumed that the number of phenotypes is 10, and that
there are three groups of correlated phenotypes of size 3, 3 and 4,
respectively, so that the phenotypes in each group form a subnetwork
in the correlation graph of phenotypes. For simplicity, we assumed
that there were no environmental factors or other genetic effects,
and that all of the covariance components in the traits came from
the relevant SNPs in the given set of SNPs. We randomly selected
three SNPs as affecting all of the phenotypes in the first subnetwork,
and four SNPs as influencing each of the remaining two subnetwork.
We assumed that there is one additional SNP affecting phenotypes
in the first two subnetworks, which corresponds to the case of a SNP
perturbing a super network consisting of two subnetworks such as
the large subnetwork on the left-hand side of Figure 1. In addition,
we assumed one additional SNP affecting all of the phenotypes. We
set the effect size of all of the true association SNPs to the same
value. Once we set the regression coefficients, we generated the
phenotype data with noise distributed as N(0,1), using the simulated
genotypes as covariates.

We evaluate the performance of the association methods based
on two criteria, sensitivity/specificity and phenotype prediction
error. The sensitivity and specificity measure whether the given
method can successfully detect the true association SNPs with few
false positives. The (1-specificity) and sensitivity are equivalent
to type I error rate and (1-type II error rate), and their plot is
widely known as a receiver operating characteristic (ROC) curve.
The phenotype prediction error represents how accurately we can
predict the values of phenotypes given the genotypes of new
individuals, using the regression coefficients estimated from the
previously available genotype and phenotype data. We generate
additional dataset of 50 individuals, ynew and Xnew, and compute the
phenotype prediction error as sum of squared differences between
the true values ynew and predicted values ŷnew of the phenotypes,∑

k(ynew
k − ŷnew)′ ·(ynew

k − ŷnew), where ŷk
new =Xnewβ̂k . For both

criteria for measuring performance, we show results averaged over
50 randomly generated datasets.

In the results shown below, for each dataset of size N , we fit
lasso and the graph-guided methods using (N −30) samples, and
use the remaining 30 samples as a validation set for determining
the regularization parameters. Once we determine the regularization
parameters, we use the entire dataset of size N to estimate the final
regression coefficients given the selected regularization parameters.

We apply the various association methods to datasets with varying
sample sizes, and show the ROC curves in Figure 3. We used the
threshold ρ = 0.3 to obtain the phenotype correlation graph and set
the effect size to 0.5. The results confirm that lasso is an effective
method for detecting true causal SNPs and is affected less by
the irrelevant SNPs, compared to the single-marker analysis, ridge
regression and CCA-based regression. When we use the weighted

Fig. 3. ROC curves for comparison of association analysis methods with
different sample size N . (A) N = 50; (B) N = 100; (C) N = 150; (D) N = 200;
and (E) N = 250. The effect size is 0.5, and the threshold ρ for the phenotype
network is set to 0.3. Note that the curves for GcFlasso, G1

wFlasso and
G2

wFlasso almost entirely overlap.

fusion penalty in addition to the lasso penalty as in GcFlasso,
G1

wFlasso and G2
wFlasso, the performance significantly improves

over lasso across all of the samples sizes shown in Figure 3.
In order to see how the effect size affects the performance

of the methods for association analysis, we vary the effect size
and show the ROC curves in Figure 4, for the threshold ρ = 0.1
of the phenotype correlation network and sample size N =100.
G1

wFlasso and G2
wFlasso outperform all of the other methods across

all of the effect sizes. Because of the relatively low value of the
threshold ρ =0.1, the correlation phenotype contains many edges
between a pair of phenotypes that are only weakly correlated. Thus,
GcFlasso that does not distinguish edges for strong correlation from
those for weak correlation does not show a consistent performance
across different effect size, performing better than lasso at effect
size 0.3 but worse than lasso at effect size 1.0. G1

wFlasso and
G2

wFlasso have the flexibility to handle different strengths of
correlation in the graph, and consistently outperforms GcFlasso as
well as the methods that do not consider the structural information
in the phenotypes.

In order to examine the effect of the threshold ρ for the phenotype
correlation graph on the performance of our methods, we evaluate
the GFlasso methods with ρ at 0.1, 0.3, 0.5 and 0.7, and show the
ROC curves in Figure 5. We include the ROC curves for the single-
marker analysis, the ridge regression, lasso and the CCA-based
method that do not use the thresholded phenotype correlation graph
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Fig. 4. ROC curves for comparison of association analysis methods with
varying effect size. Effect size is (A) 0.3; (B) 0.5; (C) 0.8; and (D) 1.0. The
sample size is 100, and the threshold ρ for the phenotype correlation graph
is 0.1.

Fig. 5. ROC curves for comparison of association analysis methods with
different values of threshold (ρ) for the phenotype correlation network. (A)
ρ = 0.1; (B) ρ = 0.3; (C) ρ = 0.5; and (D) ρ = 0.7. The sample size is 100, and
the effect size is 0.8.

in each panel of Figure 5 repeatedly for the ease of comparison. We
use the sample size N =100 and the effect size 0.8. Regardless of
the threshold ρ, G1

wFlasso and G2
wFlasso outperform all of the other

methods or perform at least as well as lasso. As we have seen in
Figure 4, GcFlasso does not have the flexibility of accommodating
edges of varying correlation strength in the phenotype correlation
graph, and this negatively affects the performance of GcFlasso at the
low threshold ρ =0.1 in Figure 5A. As we increase the threshold ρk
in Figure 5B and C, the phenotype correlation graph include only
those edges with significant correlations. Thus, the performance
of GcFlasso approaches that of G1

wFlasso and G2
wFlasso, and the

curves of the three methods in the GFlasso family almost entirely

Fig. 6. Comparison of association analysis methods in terms of phenotype
prediction error. The threshold ρ for the phenotype correlation network is
(A) ρ = 0.1; (B) ρ = 0.3; (C) ρ = 0.5; and (D) ρ = 0.7.

overlap. When the threshold is relatively high at ρ =0.7, the number
of edges in the graph is close to 0, effectively removing the
fusion penalty. As a result, the performance of the graph-guided
methods becomes close to lasso. Overall, taking into account the
correlation structure in phenotypes improves the detection rate of
true causal SNPs. Once the phenotype correlation graph includes
the edges that capture strong correlations, including more edges
by further lowering the threshold ρ does not significantly affect
the performance of G1

wFlasso and G2
wFlasso. The same tendency is

shown in the prediction errors in Figure 6.
We show an example of a simulated dataset and the estimated

association strength in Figure 7, using the sample size N =100
and effect size 0.8. Although lasso is more successful in setting
the regression coefficients of irrelevant SNPs to 0 than the ridge
regression and the CCA-based method, it still finds many SNPs as
having a non-zero association strength. GcFlasso, G1

wFlasso and
G2

wFlasso remove most of those spurious SNPs, and shows a clear
block structure in the estimated regression coefficients, with each
causal SNP spanning subgroups of correlated phenotypes. Since
GcFlasso uses only the information on the presence or absence of
edges, when edges of weak correlation connect nodes across two true
subgraphs, GcFlasso is unable to ignore the weak edges and fuses the
effect of SNPs on the phenotypes across those two subgraphs. This
undesirable property of GcFlasso disappears when we incorporate
the edge weights in G1

wFlasso and G2
wFlasso.

We show the computation time for solving a single optimization
problem for lasso, GcFlasso and GwFlasso in Figure 8 for varying
number of SNPs and phenotypes.

4.2 Case study using asthma dataset
We apply our methods to data collected from 543 asthma patients
as a part of the Severe Asthma Research Program (SARP). The
genotype data were obtained for 34 SNPs within or near IL-4R
gene that spans a 40 kb region on chromosome 16. This gene has
been previously shown to be implicated in severe asthma (Wenzel
et al., 2007). We used the publicly available software PHASE (Li and
Stephens, 2003) to impute missing alleles and phase the genotypes.
The phenotype data included 53 clinical traits related to severe
asthma such as age of onset, family history and severity of various
symptoms. The phenotype correlation graph thresholded at 0.7 as
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A B

C D E F

G H I J

Fig. 7. Results of association analysis by different methods based on a single
simulated dataset. Effect size 0.8 and threshold ρ =0.3 for the phenotype
correlation graph are used. Bright pixels indicate large values. (A) The
correlation coefficient matrix of phenotypes; (B) the edges of the phenotype
correlation graph obtained at threshold 0.3 are shown as white pixels; (C) The
true regression coefficients used in simulation. Rows correspond to SNPs and
columns to phenotypes; (D) −log(P-value). Absolute values of the estimated
regression coefficients are shown for ((E) ridge regression; (F) CCA; (G)
lasso; (H) GcFlasso; (I) G1

wFlasso; and (J) G2
wFlasso.

Fig. 8. Comparison of the computation time for lasso, GcFlasso,
G1

wFlasso and G2
wFlasso. (A) Varying the number of SNPs with the number of

phenotypes fixed at 10. The phenotype correlation graph at threshold ρ =0.3
with 31 edges is used. (B) Varying the number of phenotypes with the number
of SNPs fixed at 50. The phenotype networks are obtained using threshold
ρ =0.3. The number of edges in each phenotype network is 11, 34, 53, 88
and 142 for the number of phenotypes 10, 20, 30, 40 and 50, respectively.

shown in Figure 1 reveals several subnetworks of correlated traits.
Our goal is to examine whether any of the SNPs in the IL-4R gene
are associated with a subnetwork of correlated traits rather than an
individual trait. We standardized measurements for each phenotype
to have mean 0 and SD 1 so that their values are roughly in the same
range across phenotypes.

Figure 9A shows the correlation matrix of the phenotypes after
reordering the phenotypes using the agglomerative hierarchical
clustering algorithm so that highly correlated phenotypes are
clustered with a block structure along the diagonal. Using threshold
ρ =0.7, we obtain a phenotype correlation graph as shown in
Figure 9B, where the white pixel at position (i,j) indicates that

A B

C D E

F G H

Fig. 9. Results for the association analysis of the asthma dataset. (A)
Phenotype correlation matrix. (B) Phenotype correlation matrix thresholded
at ρ = 0.7. (C) −log(P-value) from single-marker statistical tests using a
single-phenotype analysis. Estimated βk’s for (D) ridge regression; (E) lasso;
(F) GcFlasso; (G) G1

wFlasso; and (H) G2
wFlasso.

the i-th and j-th phenotypes are connected with an edge in the
graph. The graph shows several blocks of white pixels representing
densely connected subgraphs. We show the full graph in Figure 1.
We present results for the single-marker regression analysis, ridge
regression, lasso, GcFlasso, G1

wFlasso and G2
wFlasso in Figure 9C–

H, respectively, where the rows represent phenotypes, and the
columns correspond to genotypes, with bright pixels indicating high
strength of association. The phenotypes in rows are rearranged
according to the ordering given by the agglomerative hierarchical
clustering so that each row in Figure 9C–H is aligned with the
phenotypes in the correlation matrix in Figure 9A. In the fusion
penalty in our proposed methods, we use the edges in Figure 9B
obtained at threshold ρ =0.7. The graph obtained at threshold ρ =
0.7 seems to capture the previously known dependencies among the
clinical traits such as subnetworks corresponding to lung physiology
and quality of life. We select the regularization parameters in lasso,
GcFlasso, G1

wFlasso and G2
wFlasso using a 5-fold cross validation.

As shown in Figures 9C and E, both the single-marker regression
analysis and lasso find a SNP near the top row, known as
Q551R, as significantly associated with a block of correlated
phenotypes. This subset of traits corresponds to the bottom
subnetwork (consisting of baselineFEV1, PreFEFPred, AvgNO,
BMI, PostbroPred, BaseFEVPer, PredrugFEV1P, MaxFEV1P,
FEV1Diff and PostFEF) that resides within the large subnetwork on
the left-hand side of Figure 1, and represents traits related to lung
physiology. This Q551R SNP has been previously found associated
with severe asthma and its traits for lung physiology (Wenzel et al.,
2007), and our results confirm this previous finding. In addition,
the results from the single-marker analysis in Figure 9C show that
on the downstream of this SNP, there is a set of adjacent SNPs
that appears to be in linkage disequilibrium with this SNP and at
the same time has generally a high level of association with the
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Table 1. Summary of results for the association analysis of the asthma
dataset

ρ Number of edges Number of non-zero βjm’s

Lasso GcFlasso G1
wFlasso G2

wFlasso

0.3 421 125 105 106 108
0.5 165 125 108 107 107
0.7 71 125 105 105 110
0.9 11 125 125 123 123

same subset of phenotypes. On the other hand, lasso in Figure 9E
sets most of the regression coefficients for this block of SNPs in
linkage disequilibrium with Q551R to 0, identifying a single SNP as
significant. This confirms that lasso is an effective method for finding
sparse estimates of the regression coefficients, ignoring most of the
irrelevant markers by setting corresponding regression coefficients
to 0. The ridge regression as shown in Figure 9D does not have the
same property of encouraging sparsity as lasso. In fact, in statistical
literature, it is well-known that the ridge regression performs poorly
in problems that require a selection of a small number of markers
affecting phenotypes.

Since our methods in the GFlasso family include the lasso penalty,
the results from GcFlasso, G1

wFlasso and G2
wFlasso show the same

property of sparsity as lasso in their estimates, as can be seen
in Figure 9F–H. In addition, because of the fusion penalty, the
regression coefficients estimated by our methods form a block
structure, where the regression coefficients for each SNP are set to
the same value within each block. Thus, each horizontal bar indicates
a SNP influencing a correlated block of phenotypes. It is clear that the
horizontal bars in Figure 9F–H are generally aligned with the blocks
of highly correlated phenotypes in Figure 9A. This block structure
is much weaker in the results from lasso in Figure 9E. For example,
Figure 9F–H show that the SNPs rs3024660 and rs3024622 on the
downstream of Q551R are associated with the same block of traits
as Q551R, generating an interesting new hypothesis that these two
SNPs as well as Q551R might be jointly associated with the same
subset of clinical traits. These two SNPs were only in a weak linkage
disequilibrium with SNP Q551R (r2 =0.48 and 0.012, respectively).
This block structure shared by the two SNPs is not obvious in the
results of single-marker tests and lasso.

We fit lasso and our methods in the GFlasso family, while varying
the threshold for the correlation graph, and summarize the results
in Table 1. When the threshold is high at ρ =0.9, only a very small
number of edges are included in the phenotype correlation graph
and the contribution of the graph-guided fusion penalty in GFlasso
is low. Thus, the number of non-zero regression coefficients found
by GcFlasso, G1

wFlasso and G2
wFlasso is similar to the result of lasso

that does not have the fusion penalty. When we lower the threshold
to ρ =0.7, the number of non-zero regression coefficients decreases
significantly for our methods. As can be seen in Figure 9B, most
of the significant correlation structure is captured in the thresholded
correlation graph at ρ =0.7. Thus, as we further lower the threshold,
the number of non-zero regression coefficients generally remains
unchanged.

5 DISCUSSION
In this article, we proposed a new family of regression methods
called GFlasso that directly incorporates the correlation structure
represented as a graph and uses this information to guide the
estimation process. Often, we are interested in detecting genetic
variations that perturb a sub-module of phenotypes rather than
a single phenotype, and GFlasso achieves this through fusion
penalty in addition to the lasso penalty that encourages parsimony
in the estimated model. Using simulated and asthma datasets,
we demonstrated that including richer information on phenotype
structure as in GwFlasso and GcFlasso improves the accuracy in
detecting true associations.

One of the possible directions for future research is to explore
the use of more sophisticated graph-learning algorithms such
as graphical Gaussian models within the GFlasso framework
instead of simply using a thresholded correlation graph. Another
possible extension is to learn the graph structure and the
regression coefficients jointly by combining GFlasso with graphical
lasso (Friedman et al., 2008) that learns sparse covariance matrix
for phenotypes. Also, in this work, we considered only continuous-
valued traits, but the method can be extended to include logistic
regression for discrete-valued traits. Scalability of the method
to a large dataset is another important issue that needs to be
addressed in the future research. Since the problem is formulated
as a convex optimization, we can directly benefit from advances in
convex optimization research to speed up the process of parameter
estimation. Finally, in addition to the structural information in the
phenome, we would like to incorporate the structure in the genome
such as linkage disequilibrium structure in order to identify a block
of correlated markers influencing a set of correlated phenotypes.
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APPENDIX A

A1. PARAMETER ESTIMATION
In this section, we describe the procedure for obtaining estimates of
the regression coefficients in GwFlasso. Since GcFlasso is a special

case of GwFlasso with f (r)=1, the same procedure can be applied
to GcFlasso in a straight-forward manner. The optimization problem
in Equation (5) is the Lagrangian form of the following optimization
problem:

GwFlasso :B̂GW =argmin
∑

k

(yk −Xβk)T ·(yk −Xβk) (6)

s.t.
∑

k

∑
j

|βjk |≤s1and
∑

(m,l)∈E

f (rml)
∑

j

|βjm−sign(rml)βjl|≤s2.

where s1 and s2 are tuning parameters corresponding to λ and γ in
Equation (5).

Since the objective function and constraints in Equation (6) are
convex, we can formulate this problem as a quadratic programming
(QP) as follows. Let βc denote a (J ·K)-vector that can be obtained
by concatenating βk’s such that βc = (βT

1 ,...,βT
K )T . We represent

βjk =β+
jk −β−

jk , where β+
jk ≥0 and β−

jk ≥0, and let β+
c and β−

c

denote (J ·K)-vectors of β+
jk ’s and β−

jk ’s, respectively. We define
θj,(m,l) =βj,m −sign(rml)βj,l for all (m,l)∈E and j=1,...,J , and

let θj,(m,l) =θ+
j,(m,l) −θ−

j,(m,l) with θ+
j,(m,l) ≥0 and θ−

j,(m,l) ≥0. Let

θc = (θT
1 ,...,θT|E|)T , where θe = (θ1,e,...,θJ,e)T for e= (m,l)∈E.

We define θ+
c and θ−

c similarly. Let M be a (J ·|E|)×(J ·K) matrix,
or equivalently a |E|×K matrix of J ×J sub-matrices. Each sub-
matrix Be,k of M for e=1,...,|E| and k =1,...,K is an identity
matrix if e= (m,l) and k =m. If e= (m,l) and k = l, Be,k is set to
a diagonal matrix with −1 along the diagonal. Otherwise, Be,k is
set to a matrix of 0’s. Let R be a (J ·|E|)-vector of |E| sub-vectors
with length J . Each sub-vector in R is set to f (rm,l)·1J , where 1J
represents a J-vector of 1’s. Then, the QP problem for Equation (6)
can be written as

min
∑

k

(yk −Xβk)T ·(yk −Xβk)

subject to

⎛
⎜⎜⎝

0
0
0
0

⎞
⎟⎟⎠≤

⎛
⎜⎜⎝

I −I I 0 0
M 0 0 −I I
0 1T

(J·K) 1T
(J·K) 0 0

0 0 0 RT RT

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

βc
β+

c
β−

c
θ+

c
θ−

c

⎞
⎟⎟⎟⎟⎠

≤

⎛
⎜⎜⎝

0
0
s1
s2

⎞
⎟⎟⎠,

where I is a (J ·K)×(J ·K) identity matrix, and 1(J·K) is a (J ·K)-
vector of 1’s.
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