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Abstract

One of the key challenges in the implementation of discrete element method (DEM) to model powder’s flow is the appropri-

ate selection of material parameters, where empirical approaches are mostly applied. The aim of this study is to develop an 

alternative systematic numerical approach that can efficiently and accurately predict the influence of different DEM param-

eters on various sought macroscopic responses, where, accordingly, model validation based on experimental data is applied. 

Therefore, design of experiment and multivariate regression analysis, using an optimized quadratic D-optimal design model 

and new analysis tools, i.e., adjusted response and Pareto graphs, are applied. A special focus is laid on the impact of six 

DEM microscopic input parameters (i.e., coefficients of static and rolling friction, coefficient of restitution, particle size, 

Young’s modulus and cohesion energy density) on five macroscopic output responses (i.e., angle of repose, porosity, mass 

flow rate, translational kinetic energy and computation time) using angle of repose tests applied to free-flowing and cohesive 

powders. The underlying analyses and tests show, for instance, the substantial impact of the rolling friction coefficient and 

the minor role of the static friction coefficient or the particle size on the angle of repose in cohesive powders. In addition, in 

both powders, the porosity parameter is highly influenced by the static and rolling friction coefficients.

Keywords Discrete element method · Free-flowing powder · Cohesive powder · Design of experiment · Multivariate 

regression analysis · Angle of repose

1 Introduction

One of the big challenges in the pharmaceutical industry is 

to optimize the powder solid handling process performance. 

This significantly relies on the flowability of the granular 

material in different process stages including hopper dis-

charge, powder feeding, blending, mixing and die filling. 

Flowability, which describes the behavior of powder, is 

dependent on a range of fundamental powder properties. 

The flow properties of powders can be affected by various 

essential particle properties, including mean particle size 

and distribution, particle shape, surface roughness and 

moisture content. Powder flow also depends on the interpar-

ticle interactions where, for instance, flowability decreases 

with increasing cohesiveness of the powder. According to 

Parker et al. [1], cohesion is defined as the bonding or join-

ing of two particles of the same material. A bulk solid with 

poor flowability is considered to be cohesive, which is due 

to the relatively high interparticle forces compared to the 

particle weight [2]. The inherent strength of the interparticle 

forces of attraction (often called cohesive forces) is derived 

from a combination of van der Waals forces and electro-

static charge on the surface of the particles. These forces 

hold particles close to their neighbors and thus result in the 

formation of agglomerates. Capillary force (liquid bridge), 

van der Waals force, electrostatic force and the weight force 

are all considered as adhesive forces, mainly interparticle 

forces between the particles and the wall. Understanding 

the physical meaning of these properties and their impact 

on the final product design is crucial in the development and 

successful production of solid dosage forms.
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During their operation, industrial machines dealing with 

powders might encounter diverse problems which, due to 

their complexity, are most of the time difficult to analyze by 

traditional means. Therefore, many studies are extensively 

applied to optimize their operations, to deeply understand 

their functionalities, and to predict possible defects. For 

modeling a granular material, several numerical approaches 

on different scales and with different degrees of complexity 

and computational costs can be found in the literature. The 

microscopic discrete element method (DEM) (Cundall and 

Strack [3]) accounts for the most popular schemes and pro-

vides an effective approach for the understanding of granular 

material’s mechanical behavior and flowability on the micro-

scale. In particular, DEM is a particle-based method used to 

model movement and interaction of bulk material [2]. Each 

particle is treated individually and its motion is described 

by Newton’s equation of motion. A soft-sphere approach is 

used, where colliding particles are allowed to slightly over-

lap resulting in a repulsive force [4]. DEM has been proven 

to be an important and efficient tool in several fields such as 

powder metallurgy, chemical engineering, pharmaceuticals 

and agriculture. To mention some, DEM simulations have 

been applied in granular-related processes such as die fill-

ing [5], bulk compression [6], powder mixing [7], particles 

packing [8, 9], agglomerates fragmentation [10], flow in 

screw conveyor [11–13] and outflow from a hopper. Apart 

from DEM, other approaches, such as continuum porous 

media mechanics, can be applied to compute granular mate-

rial mechanical responses on larger (macroscopic) scales and 

capture important behaviors such as wave propagation or 

fracture [14–16]. However, these approaches assume the 

continuity of the matter and cannot explicitly capture the 

interactions between the particles. Therefore, the focus in 

this work would be merely on DEM approach.

One of the most challenging aspects in applying effi-

ciently the DEM numerical approach is choosing the appro-

priate contact models and then finding the right values of 

the input particle parameters involved in any used model. 

As particles introduced in granular materials are consider-

ably small in size, measuring the properties of every single 

particle is considered very costly, challenging and time-

consuming. Yet, some trials using atomic force micros-

copy have been given to measuring the individual particles’ 

yield stress [17], Young’s modulus (Y) [18] and interfacial 

energy [19]. The state-of-the-art approaches for calibration 

of DEM parameters in most cases are based on the trial-

and-error, where the track of the calibration process is lost 

in many cases by the human calibrators, especially when 

many factors are involved [20]. It is often the case that 

the DEM model is calibrated against bulk measurements 

and the input parameters are adjusted until the outputs of 

the model match with the experimental observations [21]. 

Therefore, it is of great interest for researchers to optimize 

the process of calibration. In the literature, different tools 

for DEM parameters calibration, some of which are (semi-)

automatized, can be found. Al-Hashemi et al. [22] presented 

an extensive review related to the angle of repose (AoR), 

methods of measurements, appropriate applications and the 

influencing factors of different parameters. Coetzee [23] dis-

cussed different DEM calibration approaches covered in the 

literature over the last 25 years to assist future researchers to 

improve on the existing ones. Liu et al. [24] investigated the 

impact of particle aspect ratio on the DEM simulation output 

in studying powder flow from hoppers. The authors devel-

oped a modified description of the classic Beverloo equation. 

Zhou et al. [25] studied the influence of particle–particle and 

particle–wall coefficients of friction, i.e., static and sliding 

on the AoR of a sandpile test. They constructed a power-law 

relationship between measured AoR and the input parame-

ters and showed that all friction coefficients followed a posi-

tive dependency, whereas particle size followed a significant 

negative dependency. Yan et al. [26] utilized a multilevel 

statistical analysis approach on hopper flow in DEM to study 

the influence of coefficients of friction and restitution, as 

well as Young’s modulus. Using principal component analy-

sis (PCA), the empirical power-law approach was found to 

agree with a semiempirical, which compared AoR to contact 

model parameter sensitivity matrices. The results in all cases 

showed that the coefficient of static friction was the criti-

cal parameter, which allows the gap to be bridged between 

bulk and interparticle interactions. In addition, it is shown 

that reducing the shear modulus (i.e., from  107 and  1011 Pa) 

proved to have an insignificant effect on the powder flowa-

bility using free-flowing material which was also proven by 

Lommen et al. [27].

Boukouvala et al. [28] used a reduced-order approach to 

assess the importance of DEM parameters where PCA was 

coupled with surrogate models mapping which identified 

key areas of sensitivity. Major principal components enabled 

a reduced and computationally more efficient model to be 

engaged for future simulations. El Kassem et al. [29] cali-

brated the AoR of a pharmaceutical powder by varying coef-

ficients of rolling friction and restitution using DoE, while 

determining the coefficient of static friction using the FT4 

powder rheometer. Souihi et al. [30] used a statistical design 

of experiments (DoE) to provide a more efficient approach 

in investigating roller compaction. Orthogonal partial least 

squares (PLS) regression was used to analyze the results of 

a reduced central composite face-centered design in DoE. 

Wilkinson et al. [31] added that such approach using regres-

sion analysis has not been used so far for DEM simulations, 

but is highly recommended for developing more universal 

models for particle flow in a more efficient way. He proved 

that the Y has a negative impact on flow energy under spe-

cific conditions using a cohesive material. In this work, the 

effect of Y with the combination of varying the particle size 
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in the same design model is studied which was not covered 

by [26] and [31]. To add up, Johnstone [32] used DoE to per-

form different calibration and validation methods based on 

experimental measurements. Benvenuti et al. [33] used arti-

ficial neural network to identify DEM simulation parame-

ters. However, Rackl et al. [34] used a methodical calibration 

approach based on Latin hypercube sampling and Kriging, 

where they showed that different parameter combinations 

might lead to similar results. Wei et al. [35] studied the effect 

of three particle shapes on the AoR and bottom porosity 

distribution of a heap formed by natural piling using DEM. 

They found that the static friction has the major impact on 

the AoR and the porosity followed with the particle shape. 

Moreover, Li et al. [36] investigated the influence of three 

factors, namely moisture content, rice velocity and depth of 

the rice layer on the porosity of the flowing rice layer based 

on mass conservation and the poroelasticity theory. These 

results showed that the latter three factors have a signifi-

cant influence on the porosity. Cheng et al. [37] developed 

a DEM calibration approach of granular soils based on the 

sequential quasi-Monte Carlo (SQMC) filter. They calibrated 

the micromechanical parameters of the contact laws against 

the stress–strain behavior of Toyoura sand in drained triax-

ial compression conditions at different confining pressures. 

Do et al. [38] developed two automated DEM calibration 

approaches using genetic and direct optimization algorithms.

Moreover, in addition to the calibration process, one of 

the existing challenges in DEM is the high computational 

cost needed to perform real industrial-scale simulations 

because of the extremely large number of particles being 

studied simultaneously at every time step. One of the most 

efficient approaches utilized to overcome this “obstacle” is 

to scale up the particle sizes and thus, reduce the total num-

ber of particles in the system according to coarse-graining 

method [39–43]. The most challenging issue in following 

such a method lies in adapting the material properties in 

such a way that compensates for the enlargement of the par-

ticles. In this study, the coarse-graining scheme proposed by 

Bierwisch et al. [42] was applied. The basis of this scheme 

is the preservation of the kinetic and gravitational potential 

energy densities as well as the volume fraction of particles 

as the original system with unscaled particles.

In this study, a novel simplified semiautomated paramet-

ric study and calibration approach is developed using an 

optimized multivariate regression analysis (MVRA). Ini-

tially, experimental powder characterization and AoR tests 

are performed. DoE method, using quadratic D-optimal 

design model, are applied for the sake of minimizing the 

number of simulations in an optimized way that retains 

high significance by recommending suitable possible com-

binations between DEM microscopic input parameters that 

should be tested together. The D-optimal design proved its 

efficiency by building a robust model by saving a lot of time 

and efforts compared to other models that require much 

more data points such as full factorial design. The proposed 

simulation runs from the DoE were performed in a parallel 

manner by implementing a code programming through the 

open-source software  LIGGGHTS® [44]. The studied micro-

scopic input parameters are the coefficients of static and roll-

ing friction, coefficient of restitution, particle size, Young’s 

modulus and cohesion energy density. The effects of these 

input parameters on five macroscopic output responses (tar-

gets), i.e., AoR, porosity, mass flow rate, translational kinetic 

energy and computation time, are studied through MVRA, 

using Cornerstone software, to find out which parameters 

and in what sense do they influence these targets. This sys-

tematic approach was done for a free-flowing powder and a 

cohesive powder, namely SpheroLac 100 and Inhalac 251, 

respectively. This method gives a more robust understand-

ing of the impact of the interparticle input parameters on the 

flowability of the powders at different ranges (low, center 

and high) by tuning them in a methodical way rather than 

trial-and-error. Since it is possible to have the same AoR 

with various DEM input parameter combinations [45, 46], 

the porosity is measured along with the AoR in DEM simu-

lations in order to determine a more reliable and practical 

value for the studied input parameters. Accordingly, a pre-

diction model is built to validate the regression analysis and 

to calibrate our experimental AoR and porosity values by 

selecting one optimized parameter combination.

2  Materials and methods

2.1  Materials

In this study, two pharmaceutical crystalline lactose mono-

hydrate powders, purchased from MEGGLE Wasserburg 

GmbH & Co. KG (Germany), were selected. SpheroLac 100 

was used to model the free-flowing powder, and InhaLac 

251 was utilized to model the cohesive one. They are mainly 

characterized by different particle sizes, which in turn affect 

their flowability. SpheroLac 100 is mainly used in capsule 

filling, blends, premixes, sachets, triturations, whereas 

InhaLac 251 is a dry powder inhaler used in capsule- or 

blister-based formulations.

2.2  Experimental angle of repose (AoR)

The AoR is defined as the slope of a poured conical pile of 

loose uncompacted bulk solid material [18]. It is a charac-

teristic related to the cohesiveness of the powder [47] and 

used as a common method to characterize powders accord-

ing to their flowability [48–51]. It is a common method to 

calibrate DEM simulation parameters, where the angle at 

which a heap of powder settles depends on the strength 
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of the interparticulate friction. This simple test case was 

chosen in order to perform a parametric study of the DEM 

microscopic input parameters. As depicted in Fig. 1, a funnel 

made of 1.4404 stainless steel was placed above a catching 

container made of borosilicate 3.3 glass. Initially, the fun-

nel was loosely filled with 5 g of powder where the lower 

opening of the funnel was closed. Then, the funnel was 

opened to let the powder discharge under gravity forming 

a pile on the bottom of the catching container. The test for 

each powder was repeated five times, and an average of the 

obtained angles was considered as a value for the AoR for 

each powder.

2.3  Discrete element method (DEM)

In DEM, grains, referred to in the following as particles, are 

treated as rigid bodies, which have translational and rota-

tional degrees of freedom assigned to their center of mass. 

In this study, the focus is on the behavior of the free-flowing 

and the dry cohesive powder particles. In the DEM, particle 

interactions are modeled using the well-established New-

ton’s equations of motion, contact laws and overlap relation-

ships. The soft-particle approach, originally developed by 

Cundall and Strack [3], is followed in this work, where the 

particles are allowed to undergo small deformations, i.e., 

overlaps. Thereafter, these deformations are used to calcu-

late the elastic and plastic deformations besides the frictional 

forces between the particles [4]. As two particles i and j 

come in contact with each other, different interactions, i.e., 

forces and torques due to gravity, deformations under col-

lisions, as well as static and rolling frictions, might occur. 

Translational and rotational motion of particle i with mass 

m
i
 and moment of inertia I

i
 are represented by the following 

equations:

where g , v
i
 and �

i
 are the gravity vector, translational veloc-

ity and rotational velocity of particle i, respectively. The 

interaction between particle i and j at a defined time step 

leads to normal and tangential forces, i.e., Fn

ij
 and Ft

ij
 , respec-

tively. R
i
 is the vector between the center of particle i and 

the contact point, where the tangential force Ft

ij
 is applied. 

�
r
ij
 is the torque due to rolling friction between the two 

particles.

2.3.1  Hertz–Mindlin contact model

Hertz–Mindlin [52, 53] contact law is the most common 

applied approach in modeling contacts between particles. 

It is used in calculating the contact forces introduced due 

to the slight considered overlap between particles. The fric-

tional contact force between two granular particles i and j 

comprises normal Fn

ij
 and tangential Ft

ij
 nonlinear contact 

forces given as

Each contact force consists of two terms, where the first 

term stands for the nonlinear elastic Hertz model in the nor-

mal direction (spring force) and the linear elastic Mindlin 

model in the tangential direction (shear force). The second 

term stands for the damping force (modeled as a dashpot), 

where a dissipative term is added for both normal and tan-

gential directions to account for energy dissipation during 

collisions through inelastic deformation and friction. The 

normal and tangential forces between two spheres i and j 

during a collision are given by

where k
n
 and k

t
 are the elastic constants for the normal and 

tangential contact, �n

ij
 is the normal contact overlap, given by 

|�n
ij
| = Ri + Rj − lij , where lij is the distance between the cent-

ers of the two particles, �t

ij
 is the tangential contact overlap 

or displacement vector which is truncated to satisfy a fric-

tional yield criterion, given by the integral of the tangential 

relative velocity through the collision time they are in con-

tact, i.e., 
|
|
|
�

t

ij

|
|
|
=

t

∫
0

|
|
|
v

t
ij

|
|
|
dt , vn

ij
 and vt

ij
 are the normal and tan-

gential components of the relative velocity of the two parti-

cles at the contact, �
n
 and �

t
 are the viscoelastic damping 

(1)mi

dvi

dt
=

∑

(

Fn

ij
+ Ft

ij

)

+ mig,

(2)Ii

d�i

dt
=

∑

(

Ri × F
t

ij
− �

r
ij

)

,

(3)F = F
n

ij
+ F

t

ij
.

(4)F
n
ij
= kn�

n
ij
− �nv

n
ij
,

(5)F
t
ij
= kt�

t
ij
− �tv

t
ij
,

Fig. 1  AoR test in two-dimensional CAD view (a) and initial labora-

tory equipment setting (b)



91Computational Particle Mechanics (2021) 8:87–111 

1 3

constant for normal and tangential contact. Figure 2 illus-

trates the mechanical system of the interactions of particles 

in the Hertz–Mindlin contact model.

Under sufficient tangential forces, particles will slip rela-

tive to each other or relative to surfaces they are in contact 

with. For noncohesive particles subjected to a constant nor-

mal force, the extent of slippage under tangential force is 

determined by

where �
ss

 , represented by a shear slider, is the static friction 

coefficient between the two particles in the tangential direc-

tion. Thus, the tangential force described by a spring and a 

damper is limited to the Coulomb friction.

Consequently, based on Eqs. (4) and (5), the normal and 

tangential forces, Fn

ij
 and Ft

ij
 can be expressed in detail as

where Y∗ is the equivalent Young’s modulus of the two col-

liding particles. This is defined by 
1

Y∗
=

1−v2

i

Yi

+
1−v2

j

Yj

 , where 

v
i
 and vj are Poisson’s ratios, R∗ is the equivalent radius, 

defined by 
1

R∗
=

1

Ri

+
1

Rj

 , and m∗ is the equivalent mass, 

defined by 
1

m∗
=

1

mi

+
1

mj

 . Moreover, Sn = 2Y∗

√

R∗�
n

ij
 and 

St = 8G∗

√

R∗�
n

ij
 are the normal and tangential contact stiff-

ness with G∗ being the equivalent shear modulus, defined as 
1

G∗
=

2(2−vi)(1+vi)
Yi

+
2(2−vj)(1+vj)

Yj

 . Besides, � is the damping 

ratio coefficient, which is a function of the coefficient of 

restitution, e , and given by � = ln (e)∕
√

ln
2 (e) + �2 . The 

coefficient of restitution e is the ratio of relative velocity 

after collision to the relative velocity before collision. A 

value of e = 1 refers to a perfectly elastic collision, whereas 

e = 0 would mostly be an inelastic collision.

(6)F
t

ij
< 𝜇

ss
|Fn

ij
|,

(7)F
n

ij
= −

4

3
Y∗

�

R∗�
n

ij
�

n

ij
− 2

�

5

6
�
√

Snm∗v
n
ij
,

(8)F
t

ij
= −8G∗

�

R∗�
n

ij
�

t

ij
− 2

�

5

6
�
√

Stm
∗v

t
ij
,

2.3.2  Rolling friction model

In addition to sliding friction, rolling friction is present as a 

contact-dependent force [55]. Rolling friction is a major 

parameter that serves as a correction factor by compensating 

for the use of spherical particle shapes in DEM [56], instead 

of representing their actual shapes in reality. In the literature, 

different rolling resistance models have been developed and 

reviewed [56]. In this work, the alternative elastic–plastic 

spring-dashpot (EPSD2) rolling resistance model [57], 

implemented in LIGGGHTS open-source code, is applied 

to calculate the torque �r
ij,t+Δt

 at an incremental time step as

where �
r
 is the rolling coefficient. In this model, the damp-

ing torque is disabled for simplicity.

2.3.3  Cohesion model

The modified simplified Johnson–Kendall–Roberts cohe-

sion model (SJKR), implemented in LIGGGHTS, is used 

to model the cohesion of particles. This model originates 

from the JKR model [58], where it represents the influence 

of various cohesive forces, such as Van der Waals within the 

contact zone. It can model high adhesive systems, such as 

fine and dry powders or wet materials. It adds an additional 

normal force component F
coh

 to the Hertzian contact law 

tending to maintain a larger contact area (Fig. 3), i.e.

where C is the cohesion energy density in J m−3 and a is the 

particle contact area, given as

where R
i
 and Rj are the radii of sphere i and j, respectively, 

and lij is the distance between the particle centers.

(9)
|
|
|
�

r
ij,t+Δt

|
|
|
≤ �rR

∗|
|
|
F

n

ij

|
|
|
,

(10)Fcoh = Ca,

(11)

a =
�

4

(

lij − Ri − Rj

)

∗

(

lij + Ri − Rj

)

∗

(

lij − Ri + Rj

)

∗

(

lij + Ri + Rj

)

lij ∗ lij

Fig. 2  Schematic representation of the Hertz–Mindlin contact model 

between particle i and j [54]

Fig. 3  Schematic representation of the contact area for the JKR 

model, compared to that of the Hertz model [58]
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2.3.4  Noncontact force

In addition to the contact forces, the gravitational accelera-

tion g in the z-direction (with ẑ as the unit vector) yields 

the gravitational force of particle i, F
grav

i
 , which can be 

expressed as

2.3.5  Time step in DEM simulation

In the DEM simulations of particles flow in this work, the 

time step (Δt) has been selected to be less than 20% of the 

critical time step (Rayleigh time) T
R
 in order to ensure the 

stability of the integration scheme. T
R
 is calculated based on 

the Rayleigh wave propagation, which represents the elas-

tic wave propagation along the surface of one particle to 

the adjacent contacting particle according to the following 

equation [59]:

where ρ is the particle density, G is the shear modulus and � 

is the Poisson’s ratio.

2.4  Experimental material characterization

This section briefly describes the experimental methods used 

to find out some material parameters utilized in the DEM 

simulations. The parameters are divided into two categories: 

material parameters and interaction parameters [60]. The 

material parameters include the shape, size, density, elastic 

and shear modulus as well as Poisson’s ratio, whereas the 

interaction properties are coefficients of restitution, static 

and rolling frictions and adhesion.

2.4.1  Particle size and shape characterization

Camsizer XT from Retsch Technology GmbH (Germany) 

was used to measure the volume moment mean (D [3, 4]), 

which is also called De Brouckere Mean Diameter, and 

shape of particles via dynamic image analysis. The D [3, 4] 

indicates around which central point (center of gravity) of 

the frequency the volume/mass distribution would rotate. 

The advantage of this method over other particle sizes cal-

culation methods is that it does not require the number of 

particles in its calculation.

The Camsizer XT helps in approximating the particle 

shape, where the particles are described in two-dimensional 

images in terms of the minimum and maximum Feret diam-

eters  (Femin,  Femax).  Femin is the length of the minor axis 

(12)F
grav

i
= −migẑ.

(13)
Δt < TR =

𝜋R

√

𝜌

G

0.1631𝜈 + 0.8766
,

and  Femax is the length of the major axis. The ratio of  Femin 

to  Femax is called the aspect ratio (ASR). In this, the aspect 

ratio with values between 0 and 1 reflects the elongation of a 

particle and deviation from a sphere where small values cor-

respond to elongated particles and higher values correspond 

to spherical particles:

According to Li et al. [61], a shape factor called circular-

ity or roundness (Ro) is an additional factor that indicates to 

what extent a particle has a spherical shape. It is based on 

the projected area (A) of the particle and the overall perime-

ter of the projection (P) according to the following equation:

2.4.2  Density and porosity

The bulk density (BD) and the tapped density (TD) were analyzed 

via the jolting volumeter (Jel STAV II) from J. Engelsmann AG 

(Germany). A certain mass of powder was filled into a graduated 

cylinder, and the volume and mass were then recorded. The test was 

repeated five times to insure accuracy and repeatability where then 

an average value was considered. The bulk density represents the 

average density of the powder sample, where the bulk volume con-

tains voids between individual particles. Therefore, the bulk density 

of a powder depends on both the material density of the particles 

and their spatial arrangement. The volume of a bulk solid depends 

on the size and the shape of the particles. Besides, the tapped density 

was attained after mechanically compacting the powder sample by 

up to 1250 taps.

The particle (true) density (ρp) was obtained using the 

Ultrapyc 1200e, Automatic Density Analyzer from Quan-

tachrome Instruments (USA). It is a pycnometer that meas-

ures the true density of powder samples using an inert gas 

(helium) to measure its volume by applying Archimedes’ 

principle of displacement and the technique of gas expansion 

(Boyle’s law). Consequently, the powder bed porosity (ε) is 

calculated as described in the following equation:

2.4.3  Carr’s index

Based on the BD and TD, powder flowability of bulk solid 

could be characterized by the Carr’s index (CI), or Carr’s 

compressibility index [18]. CI is an indication of the com-

pressibility of a powder, where larger changes indicate poor 

(14)ASR =

Femin

Femax

.

(15)R
o
=

4 × � × A

P2
.

(16)� = 1 −
BD

�p

× 100%.
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flowability [62]. It is a measurement of the relative differ-

ence between tapped volume and untapped volume of the 

powder [47], i.e.

Powders with CI < 15% have good flowability, whereas a 

poor flowability corresponds to CI > 25%.

2.4.4  Cohesion and flow function coefficient

FT4 powder rheometer from Freeman Technology Ltd (UK) 

was used to find out the cohesion (C) and flowing factor ( ff
c
 ) 

values. A commonly applied approach is the Mohr–Cou-

lomb model that fits the Mohr stress circles to the yield locus 

that in turns identifies the major principal stress ( MPS ) and 

unconfined yield strength ( UYS ). In this, UYS is related to 

MPS via the material flow function coefficient ff
c
 as

Flow function ff
c
 is commonly used to describe the flowa-

bility of a bulk solid. In addition, the cohesion value is iden-

tified by the shear cell test [63]. This value is the shear stress 

at which the normal stress is equal to zero for the best fit of 

the shear and applied normal stress plot [64]. Generally, a 

cohesive powder will have higher values for cohesion and 

UYS and consequently a low ff
c
 . In particular, ff

c
 values 

below 4 denote a very cohesive powder behavior (poor flow-

ing), between 4 and 10 easy-flowing powder and above 10 

free-flowing powder.

2.4.5  Static friction

The shear cell test in the FT4 powder rheometer was exe-

cuted to find out an approximation of the angle of internal 

friction (AIF) between particles based on the linearized yield 

locus of the material. It is the angle between the axis of nor-

mal stress (abscissa) and the tangent to the yield locus [65]. 

It measures the shear stress for various normal stresses to 

describe the magnitude of the shear stress that powder can 

sustain [65]. From this angle, the interparticle static friction 

coefficient, denoted by µs,pp, indicates the resistance between 

two contacting particles while being sheared [2]. This can 

be calculated as

2.4.6  Wall friction

The wall friction test, using the FT4 powder rheometer, 

provides a measurement of the sliding resistance between 

(17)CI =
TD − BD

TD
× 100%,

(18)ff
c
=

MPS

UYS
.

(19)�
s,pp

= tan(AIF).

the powder and the surface of the process equipment [66]. 

This test is important for understanding the discharge behav-

ior from a container, especially when using an auger. The 

measurement principle of a wall friction test is very similar 

to the shear cell test, where the powder is sheared against a 

material resembling process equipment wall and not against 

the powder. The process equipment wall used in this study 

is a rounded stainless steel disk with 0.05 µm surface rough-

ness. The data from the test are represented as a plot of shear 

stress against normal stress, allowing to determine the wall 

friction angle (WFA). It is the arctan of the ratio of the wall 

shear stress to the wall normal stress [65]. The greater is the 

wall friction angle, the higher is the resistance between the 

powder and wall.

Similarly, the coefficient of static friction between a par-

ticle and wall (µs,pw) can be calculated from the wall friction 

angle as

2.4.7  Moisture content

According to Schulze [18], the holding forces or adhesive 

forces with the presence of liquid bridges (capillary force) 

are higher than any other holding forces in bulk materials, as 

long as the contact distance is very low. The content of mois-

ture sheds the light on some characteristics such as cohesion 

or agglomeration tendency and can help to describe the flow 

behavior. The moisture content (MC) was experimentally 

determined by the halogen drying method using the Halogen 

Moisture Analyzer type HR73 from Mettler Toledo (USA). 

A sample amount was heated by a halogen lamp, and thus 

the moisture is extracted from the powder. Due to this drying 

process, the bulk loses some weight, and thus the moisture 

loss is calculated from the difference between the initial and 

final weights. This moisture loss corresponds to the moisture 

content of the powder in the initial state.

2.5  Coarse‑graining method

To find a trade-off between computational time and accu-

racy, it is reasonable to limit the number of particles in 

the DEM simulation. According to Bierwisch et al. [42], 

coarse-graining (CG) method is a good approach to save 

significant computational time but DEM simulations with 

good accuracy are performed in comparison with real tests. 

In the coarse-graining technique, the original particles with 

radius R are substituted by larger grains with radius R′ . The 

scaled-up radius R′ can be represented as a multiplication of 

the original grain radius R and a scaling factor Sf. Moreover, 

CG method is based on an appropriate adjustment of interac-

tion laws and equations of motion according to scaling rules 

(20)�s,pw = tan(WFA).



94 Computational Particle Mechanics (2021) 8:87–111

1 3

for the material parameters in such a way that the energy 

densities, i.e., gravitational potential and kinetic energy, 

are preserved in the scaled-up system as the original one. 

As the potential density does not depend on the particle’s 

radius while maintaining a constant volume fraction and par-

ticle’s density, the particle’s density is ought to be fixed upon 

applying the CG method. According to the coarse-graining 

proposed by Bierwisch et al. [42], the volume fraction is not 

affected and, therefore, the potential energy of the scaled 

system is comparable to the original system. Consequently, 

the mass of each particle introduced in the system is scaled 

up by a factor of Sf
3 according to Eq. (21), but as the total 

number of particles is decreased also by the same factor, the 

total mass of the particles is conserved:

Bierwisch et al. [42] also proved that the energy dissipa-

tion per volume and time is preserved if the coefficient of 

restitution remains the same after applying the coarse-grain-

ing method. Thus, the kinetic energy density is preserved 

because the scaling does not affect particle velocities. In 

connection with the applied test in this study, i.e., AoR, it 

is shown that coarse graining has no considerable effect on 

the resulting angles. In addition, it was observed that the 

shape of the heap is changing with increasing the particles 

sizes, where a noticeable tail of the ground heap and a more 

procumbent peak could be seen for larger particles. Thus, 

although the CG method leads to highly acceptable results 

in terms of bulk properties, it is hard to get exactly the same 

shape of the heap in the DEM simulation after applying the 

CG method.

2.6  Design of experiment

Design of experiments (DoE) is a systematic technique 

of planning experiments that is used to determine the 

cause–effect relationship between factors affecting a pro-

cess and its responses [67]. It can help in identifying the 

best combinations of parameters that yield to the desired 

results and, thus, optimizing the output [32]. The design 

space of the experiments, in our case simulations, is identi-

fied according to the design model used by efficiently select-

ing the suitable factors combinations to be tested. The DoE 

method is used to investigate the effects and interactions of 

DEM input parameters on the output responses, which in 

turn will facilitate the calibration process. Quadratic D-opti-

mal design model was used to obtain the largest amount 

of information from the smallest number of simulations 

using Cornerstone 6.1.1.1 software from camLine GmbH 

(Germany). The mathematics behind D-optimal design 

is closely related to the Least Squares method to find the 

(21)m�
=

4

3
�R�3

�
�
= S3

f
m.

concrete model equation on the basis of the design and the 

response data.

2.7  Multivariate regression analysis

Multivariate regression analysis (MVRA) is a statistical 

technique applied to analyze the variation of more than one 

outcome variable and thus estimates a regression model. 

This technique was utilized to observe and analyze the vari-

ation and impact of different DEM input parameters on the 

output parameters. Cornerstone software was used, where 

the inserted data values are standardized; that is, the origi-

nal variables are scaled to have a mean of 0 and a variance 

of 1 as each attribute has a different unit of measurement. 

The goodness-of-fit of the statistical model was described 

by the adjusted R2 (coefficient of determination). R2 repre-

sents the proportion of the variability of the data explained 

by the model which is adjusted for the number of factors in 

the model. The confidence level used in the DoE analysis 

was ± 95%. An adjusted response graph was used to show 

the effect of each input parameter on the responses besides 

showing all data points of the simulation runs, which are not 

the real measured values but the adjusted ones. The response 

values are adjusted to average out the effects of the other 

input parameters. An additional tool in Cornerstone soft-

ware is the Pareto graph. It expresses the relative size of the 

effect of each DEM input parameter studied in the model. 

It shows the orthogonal scaled effects of the factors on the 

studied responses. To add up, two prediction models based 

on the regression analysis were built for the sake of predict-

ing an approximate value of the AoR in the free-flowing and 

cohesive powders.

3  DEM simulations

3.1  Simulation setup

The DEM simulations were performed using the open-

source software  LIGGGHTS®-Premium 4.X from DCS 

Computing GmbH (Linz, Austria). The simulations were 

carried out on an eight-node high-performance cluster using 

32 CPUs (Intel Xeon 2.60 GHz). The postprocessing of the 

simulations was performed using ParaView, version 5.4.1 

64-bit from Kitware Inc. (New York, NY, USA). The three-

dimensional CAD models used in the DEM simulations 

were modeled in SolidWorks version Premium 2016 from 

Dassault Systèmes (Vélizy-Villacoublay, France). After that, 

the three-dimensional models were meshed using Gmsh, 

version 3.0.6 [68].
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3.2  DEM input parameters

3.2.1  Fixed parameters through the studies

In the DEM simulations, the Hertz–Mindlin contact model 

and the rolling friction model (EPSD2) were applied for both 

the free-flowing and the dry cohesive studies. The adhesion 

contact model (SJKR) was added to the cohesive study. The 

values of Young’s modulus (Y) and the Poisson’s ratio (ν) for 

the funnel and the catching container were selected from the 

literature [69]. The boundary conditions such as restitution 

and friction between particle and walls (funnel and glass in 

this case) were kept constant to reduce the number of simu-

lations in the DoE. Table 1 lists the input parameters in the 

applied two DEM AoR studies.

3.2.2  Parameters varied in the design of experiments

In the free-flowing study, five particle properties were varied 

as part of the DoE which were as follows: particle’s Young’s 

modulus (Y), particle size (d), coefficient of restitution (epp), 

coefficient of static friction (µs,pp) and coefficient of roll-

ing friction (µr,pp). In addition to these parameters, cohesion 

energy density (Cpp) was varied in the dry cohesion study. 

The latter four parameters are related to the particle-to-par-

ticle interactions.

In the calibration process, the variation study of the 

parameters aimed to give the best fit between the DEM 

simulation and the corresponding reference data. To this 

end, the µs,pp was determined using the FT4 powder rheom-

eter, but because of reducing the Y parameter due to com-

putational limitations, this coefficient was calibrated to get 

the same bulk solid behavior [45, 70]. epp and µr,pp were 

also tuned because they are difficult to be determined for 

microscale powders. When using spherical particle shape, 

the rolling resistance is considered to be less dominant above 

the static friction as the contact area is smaller. The range 

value of the cohesion energy density was roughly estimated 

by performing presimulation runs or so-called initial screen-

ing investigations.

Table 2 lists the values of the six particle properties that 

were varied in our studies. Three values, which consti-

tute a low, center and high levels for each parameter, were 

selected. The center values of epp, µs,pp, µr,pp and Cpp are 

linearly spaced between low and high values, whereas for Y, 

the center value is spaced on a logarithmic scale. The values 

of Y in the DoE are logarithmic where the simulation values 

0.026, 0.26 and 2.6 GPa are set to 7.41, 8.41 and 9.41 log 

GPa to ensure a center point in the analysis.

Three-level design was used where each factor was con-

sidered at three levels. For the free-flowing powder, 40 

simulation runs were executed whereas 53 runs for the dry 

cohesive one.

Table 1  DEM input parameters 

considered throughout the two 

studies

1 [69]
2 Set for the cohesion study

Material parameter/contact model Symbol Unit Value

Contact model Hertz–Mindlin

Rolling friction model EPSD2 Alternative 

elastic–plastic 

spring-dashpot 

model

Cohesion contact  model2 SJKR Modified simpli-

fied Johnson–

Kendall–Rob-

erts model

Young’s modulus  funnel1 YF GPa 200

Young’s modulus catching  container1 YC GPa 67.8

Poisson’s ratio  funnel1 ν 0.28

Poisson’s ratio catching  container1 ν 0.21

Poisson’s ratio particle ν 0.3

Coefficient of restitution particle–wall epw 0.2

Coefficient of rolling friction particle–wall µr,pw 0.2

Coefficients of restitution and friction wall–wall 0.2

Acceleration due to gravity g m/s2 9.81

Cohesion energy density particle–wall2 Cpw J/m3 1000

Cohesion energy density wall–wall2 Cww J/m3 100
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3.3  DEM studied responses

In preparation of the mesh for the simulations, all the faces 

that have no contact with the particles were deleted in Solid-

Works in order to optimize the computation time. Figure 4 

shows the modified mesh file of the funnel in ParaView filled 

with spherical particles as an initial state before removing 

the stopper and allowing the particles to flow out.

Five macroscopic output responses, namely AoR, poros-

ity (ε), mass flow rate ( ṁ ), overall translational kinetic 

energy (TKE) and the computation time (CT), on the two 

powders were studied. The porosity was measured in the 

funnel due to the simplicity in defining a common volume 

since no heap (zero AoR) was formed in some simulations. 

The ṁ at the discharge of the funnel was studied, where 

the mass values were measured every 25 ms. The overall 

translational kinetic energy (TKE) of the system was calcu-

lated over time to check how the dissipation of energy varies 

according to different simulation input combinations. The 

average of the TKE, after opening the funnel, was calculated 

and then normalized (NA-TKE) with the total discharge time 

of the particles. Table 3 reports the DoE followed and its 

simulation results of five output responses under the vari-

ation in five input parameters for the free-flowing powder.

Table  4 shows the DoE used and the corresponding 

results of five output responses under the variation in six 

input parameters for the cohesive powder.

4  Results and discussion

4.1  Material characterization

Table 5 presents the results of the particle size and shape, 

as well as the bulk properties of the two powders. Based on 

these material characterization results, the spherical form 

was selected to represent the particle’s shape in LIGGGHTS 

because both powders have high ASR and Ro values. The 

values of the ρp were used in the DEM setup. The low values 

of MC in the table prove that both powders are almost dry.

Table 6 lists the flowability values according to Carr’s 

index as well as the shear properties of the two studied pow-

ders. The results illustrate how SpheroLac 100 is considered 

a free-flowing powder because it has low CI, low C and high 

ff
c
 . Conversely, InhaLac 251 has high CI, high C and low ff

c
 

values and thus it is considered as a cohesive powder. The 

values of µs,pp were just set as reference values, whereas the 

values of µs,pw were used in the simulation setup.

4.2  Angle of repose experiment

The AoR for each experiment was calculated by taking the 

average value between the left and right angles, θ1 and θ2, 

respectively. The obtained results of the AoR for both pow-

ders were set as reference values in the validation of the 

regression analysis in the prediction model and thus in the 

calibration approach. Figure 5 shows the heap formed by the 

AoR test of the free-flowing powder (SpheroLac 100) in the 

glass-catching container where the average angle was 33°.

On the contrary, the average AoR of the cohesive powder 

(InhaLac 251) was 40° where Fig. 6 shows the heap formed 

in the experiment.

Table 2  List of DEM particle 

input parameters varied in the 

DoE of the two studies

2 Set for the cohesion study

Material parameter Symbol Unit Value

Young’s modulus of particles Y GPa 0.026, 0.26, 2.6

Particle diameter of SpheroLac 100 dS µm 460, 575, 690

Particle diameter of InhaLac 251 dI µm 480.6, 587.4, 694.2

Coefficient of restitution particle–particle epp 0.051, 0.3255, 0.6

Coefficient of restitution particle–particle2 epp 0.051, 0.2755, 0.5

Coefficient of static friction particle–particle µs,pp 0.1, 0.48, 0.85

Coefficient of static friction particle–particle2 µs,pp 0.2, 0.5, 0.8

Coefficient of rolling friction particle–particle µr,pp 0.05, 0.4, 0.75

Coefficient of rolling friction particle–particle2 µr,pp 0.1, 0.4, 0.7

Cohesion energy density particle–particle2 Cpp J/m3 30,000, 50,000, 70,000

Fig. 4  Initial state of particles filled inside the modified mesh funnel 

in ParaView software
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4.3  Parametric study

4.3.1  Factors affecting angle of repose

• Free-flowing

The average AoR for each simulation test was calculated. 

The values of AoR ranged between 0° and 39°, where in 

eight cases the AoR was equal to zero due to low µs,pp as 

listed in Table 3. Figure 7 presents numerical examples 

of six AoR DEM simulations for the free-flowing powder 

formed in the catching container.

The model of the AoR for the free-flowing powder 

showed an adjusted R2 = 0.954, indicating a very good fit 

to the data points. Figure 8a shows the adjusted response 

graph for the AoR. Each of the presented sections (column-

wise) corresponds to an input parameter. In each section, 

Table 3  Measurements of the five responses, namely AoR, ε, ṁ , NA-TKE and CT, from the free-flowing DEM simulations

Run µr,pp µs,pp epp Y (log GPa) dS (µm) AoR (°) ε (%) ṁ (g/25 ms) NA-TKE (mJ/s) CT (hr)

1 0.05 0.1 0.051 7.41 460 15.7 43.37 0.1562 0.28395 3.417

2 0.75 0.1 0.051 7.41 460 18.3 43.65 0.1562 0.27038 3.633

3 0.05 0.85 0.051 7.41 460 17.9 47.47 0.1282 0.19147 3.083

4 0.4 0.48 0.3255 7.41 460 34.2 48.61 0.119 0.15499 3.067

5 0.75 0.1 0.6 7.41 460 0 43.56 0.1562 0.27767 3.117

6 0.05 0.85 0.6 7.41 460 25.5 46.25 0.1316 0.20199 2.486

7 0.75 0.85 0.6 7.41 460 30 49.83 0.1111 0.13257 3.1

8 0.75 0.85 0.051 8.41 460 37.8 52.31 0.1 0.10730 9.717

9 0.05 0.1 0.6 8.41 460 0 43.19 0.1562 0.28704 6.967

10 0.75 0.1 0.051 9.41 460 18 44.32 0.1515 0.26398 21.9

11 0.05 0.85 0.051 9.41 460 18.8 46.99 0.1282 0.18970 31.483

12 0.75 0.85 0.051 9.41 460 37.3 52.35 0.1 0.10924 31.883

13 0.05 0.1 0.3255 9.41 460 11.3 43.42 0.1562 0.28595 27.05

14 0.4 0.1 0.6 9.41 460 0 43.88 0.1562 0.27757 30.367

15 0.75 0.48 0.6 9.41 460 32.8 48.97 0.1163 0.15102 22.583

16 0.05 0.85 0.6 9.41 460 24 46.64 0.1316 0.20092 26.786

17 0.75 0.48 0.051 7.41 575 39 50.99 0.102 0.11446 1.017

18 0.4 0.85 0.3255 7.41 575 35 50.42 0.1064 0.12612 1.05

19 0.4 0.1 0.6 7.41 575 0 44.01 0.1471 0.24504 1.167

20 0.05 0.48 0.3255 8.41 575 24.5 46.65 0.1282 0.18215 4.333

21 0.75 0.1 0.6 8.41 575 0 44.03 0.1471 0.24895 3.53

22 0.05 0.1 0.051 9.41 575 17 44.36 0.147 0.24747 14.733

23 0.75 0.85 0.6 9.41 575 30.2 50.61 0.1064 0.12360 12.983

24 0.05 0.1 0.051 7.41 690 15.8 44.43 0.1429 0.22569 0.645

25 0.05 0.85 0.051 7.41 690 26.5 48.02 0.1163 0.14866 0.65

26 0.75 0.85 0.051 7.41 690 37.5 53.53 0.0887 0.08506 0.883

27 0.75 0.1 0.3255 7.41 690 17 44.39 0.1389 0.22449 0.633

28 0.05 0.1 0.6 7.41 690 0 44.29 0.1429 0.23232 0.486

29 0.75 0.48 0.6 7.41 690 33.5 48.25 0.1064 0.12525 0.5

30 0.05 0.85 0.6 7.41 690 27 46.70 0.119 0.15992 0.65

31 0.75 0.85 0.6 7.41 690 32.3 49.95 0.1 0.10861 0.533

32 0.4 0.1 0.051 8.41 690 18 45.24 0.1776 0.27474 2.283

33 0.4 0.85 0.6 8.41 690 33 50 0.1346 0.15721 2.5

34 0.75 0.1 0.051 9.41 690 18.5 45.42 0.1351 0.20840 5.817

35 0.4 0.48 0.051 9.41 690 34.3 50.47 0.102 0.11600 7.083

36 0.05 0.85 0.051 9.41 690 27.5 48.96 0.1163 0.14799 6.3

37 0.75 0.85 0.3255 9.41 690 35.8 52.59 0.0926 0.09369 5.483

38 0.05 0.1 0.6 9.41 690 0 44.39 0.1388 0.22906 4.967

39 0.75 0.1 0.6 9.41 690 0 45 0.1388 0.22104 5.733

40 0.05 0.85 0.6 9.41 690 25.5 47.40 0.119 0.15692 5.367
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Table 4  Measurements of the five responses, namely AoR, ε, ṁ , NA-TKE and CT, from the cohesive DEM simulations

Run µr,pp µs,pp epp Y (log GPa) dI (µm) Cpp (J/m
3) AoR (°) ε (%) ṁ (g/25 ms) NA-TKE (mJ/s) CT (hr)

1 0.7 0.2 0.051 7.41 480.6 70,000 46.7 52.91 0.1263 0.17687 2.483

2 0.1 0.5 0.051 7.41 480.6 70,000 33 53.97 0.1174 0.15372 2.317

3 0.1 0.8 0.051 7.41 480.6 30,000 33.5 53.67 0.1202 0.16813 3.133

4 0.4 0.8 0.2755 7.41 480.6 70,000 43 57.05 0.0965 0.10367 3.133

5 0.7 0.8 0.2755 7.41 480.6 30,000 44 56.79 0.0964 0.10436 3.083

6 0.1 0.2 0.5 7.41 480.6 70,000 35.8 51.20 0.1264 0.18173 3.233

7 0.7 0.2 0.5 7.41 480.6 30,000 41 51 0.1263 0.18733 2.483

8 0.1 0.2 0.051 8.41 480.6 30,000 24.7 50.43 0.1429 0.22378 8.542

9 0.7 0.8 0.051 8.41 480.6 50,000 41.5 57 0.1 0.10710 8.633

10 0.4 0.2 0.5 8.41 480.6 50,000 29.8 50.95 0.1351 0.20982 7.317

11 0.7 0.5 0.5 8.41 480.6 70,000 39 54.51 0.1111 0.13691 7.231

12 0.1 0.8 0.5 8.41 480.6 30,000 31 52.50 0.1282 0.18427 8.455

13 0.1 0.2 0.051 9.41 480.6 70,000 23.5 51.21 0.1413 0.22382 21.85

14 0.7 0.2 0.051 9.41 480.6 30,000 35 51.72 0.1299 0.19235 21.985

15 0.1 0.5 0.051 9.41 480.6 50,000 29.5 52.43 0.1266 0.18295 23.1

16 0.7 0.8 0.051 9.41 480.6 70,000 39 57.06 0.0985 0.10935 22.95

17 0.1 0.8 0.2755 9.41 480.6 30,000 29.2 52.68 0.1267 0.17971 23.217

18 0.1 0.2 0.5 9.41 480.6 30,000 21.7 50.08 0.1412 0.23540 22.833

19 0.7 0.2 0.5 9.41 480.6 70,000 31.5 50.85 0.1232 0.20773 27.05

20 0.1 0.8 0.5 9.41 480.6 70,000 30.5 52.22 0.1266 0.18538 23.35

21 0.7 0.8 0.5 9.41 480.6 30,000 40.5 55.24 0.1072 0.12701 23.12

22 0.7 0.2 0.051 7.41 587.4 30,000 41.5 52.57 0.119 0.15362 1.433

23 0.1 0.5 0.5 7.41 587.4 30,000 31 52.66 0.1219 0.16557 1.1

24 0.4 0.8 0.5 7.41 587.4 50,000 40 56.08 0.1 0.11196 1.267

25 0.7 0.8 0.5 7.41 587.4 70,000 Blocked – – – –

26 0.7 0.8 0.5 7.41 587.4 30,000 38 56.57 0.098 0.10267 1.283

27 0.1 0.8 0.051 8.41 587.4 70,000 30.8 53.64 0.119 0.15489 3.514

28 0.1 0.2 0.2755 8.41 587.4 70,000 26 51.29 0.1351 0.20434 3.717

29 0.4 0.8 0.051 9.41 587.4 30,000 40 56.50 0.1064 0.12147 14.217

30 0.7 0.5 0.2755 9.41 587.4 50,000 41.5 55.99 0.1042 0.11988 15.767

31 0.1 0.2 0.051 7.41 694.2 50,000 37.5 52.30 0.119 0.15714 0.633

32 0.4 0.5 0.051 7.41 694.2 30,000 40.3 56.53 0.098 0.10468 0.717

33 0.1 0.8 0.051 7.41 694.2 50,000 39.3 54.62 0.1087 0.12998 0.6

34 0.1 0.2 0.051 7.41 694.2 30,000 30 51.62 0.125 0.15372 0.717

35 0.7 0.8 0.051 7.41 694.2 70,000 Blocked – – – –

36 0.7 0.8 0.051 7.41 694.2 30,000 42 58.89 0.0847 0.07738 0.767

37 0.1 0.2 0.5 7.41 694.2 30,000 27.5 51.05 0.125 0.18082 0.7

38 0.7 0.2 0.5 7.41 694.2 70,000 46 52.35 0.1042 0.11591 0.75

39 0.1 0.8 0.5 7.41 694.2 70,000 36.8 54.01 0.1087 0.13338 0.767

40 0.4 0.2 0.051 8.41 694.2 70,000 34.5 52.66 0.119 0.15716 1.95

41 0.7 0.2 0.2755 8.41 694.2 30,000 37.5 51.50 0.1219 0.16729 1.933

42 0.1 0.8 0.2755 8.41 694.2 30,000 31.5 53.36 0.1136 0.14516 1.967

43 0.1 0.5 0.5 8.41 694.2 70,000 29 52.86 0.119 0.15604 2.03

44 0.7 0.8 0.5 8.41 694.2 30,000 38 55.98 0.0962 0.10210 2.117

45 0.1 0.2 0.051 9.41 694.2 30,000 27 51.40 0.1282 0.17994 8.383

46 0.7 0.2 0.051 9.41 694.2 70,000 32.7 52.51 0.119 0.15717 4.7

47 0.1 0.8 0.051 9.41 694.2 70,000 30.5 54.06 0.1136 0.14289 6.617

48 0.7 0.8 0.051 9.41 694.2 30,000 41 57.84 0.0909 0.09058 5.9

49 0.4 0.5 0.2755 9.41 694.2 70,000 37 54.82 0.1064 0.12178 6.633

50 0.1 0.2 0.5 9.41 694.2 70,000 22.5 51 0.1316 0.19333 6.65
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all the data points obtained from simulations are presented 

in addition to the effect drawn from these points. For a data 

point, the effects of the other factors included in the model 

were averaged; therefore, the data points were adjusted in 

such a way that the effect of the corresponding factor on the 

response is only presented (adjusted response graph). As the 

data points were recalculated, it can be seen that the actual 

values of the responses listed in Table 3 do not match with 

the adjusted values, yet the effect of each parameter can still 

be modeled. Finally, scattering points signify data points that 

cannot be described by the model due to some noise effects.

From Fig.  8a, the following trends can be observed 

regarding AoR: Y and dS have no significant effects on the 

AoR, epp and µr,pp have a slight effect and µs,pp has the major 

effect. The absence of dS as an effective factor to the AoR 

ensures the correct implementation of the coarse-graining 

scheme proposed by Bierwisch in our system. Moreover, 

our results contradict many studies which proved that the 

particle size has an impact on the AoR [22, 25, 47].

Figure 9 illustrates the Pareto graph of effects on the AoR 

of the free-flowing powder where the largest positive effects 

are shown on the left and the largest negative effects on the 

right, with factors of smaller estimated effects in the middle 

of the graph. It can be seen that µs,pp has the highest positive 

effect (proportional) on the AoR, where, as µs,pp increases, 

the AoR increases as well. The rest of the affecting factors, 

i.e., µr,pp and epp, interactions (e.g., µs,pp * µr,pp), and quadratic 

terms (e.g., e2
pp) have lower effect compared to that of µs,pp. 

To be stated, as epp increases, the AoR decreases, which is 

previously confirmed by Wei et al. [35]. As epp is the ratio 

of the relative velocity after collision to the relative velocity 

before collision of an object with a surface, the results can 

be explained by the fact that due to the high elasticity of the 

spherical particles, they can more likely bounce than to settle 

down along a free surface.

• Cohesive

Figure 10 illustrates numerical examples of six AoR 

DEM simulations for the cohesive powder formed in the 

catching container.

The adjusted R2 of the AoR of the cohesive powder 

model has a very good value of 0.915. Figure 11a shows the 

adjusted response graph for the AoR. It indicates that the 

introduction of cohesion in the system through the SJKR 

model added a new affecting parameter on the AoR, which 

is Y. Unlike the free-flowing case, it is proved that Y has a 

significant negative effect on AoR when Cpp is involved. 

This ensures the importance of such a parametric study, 

where Y is not included in many other calibration processes 

Table 4  (continued)

Run µr,pp µs,pp epp Y (log GPa) dI (µm) Cpp (J/m
3) AoR (°) ε (%) ṁ (g/25 ms) NA-TKE (mJ/s) CT (hr)

51 0.7 0.2 0.5 9.41 694.2 30,000 32.5 51.85 0.125 0.17160 6.883

52 0.1 0.8 0.5 9.41 694.2 30,000 29.5 53.26 0.1163 0.15217 4.983

53 0.7 0.8 0.5 9.41 694.2 70,000 37.5 55.83 0.1 0.10724 6.85

Table 5  Particle size, shape and 

bulk properties
D [3, 4] (µm) ASR Ro BD (kg/m3) TD (kg/m3) ρp (kg/m3) ε (%) MC (%)

SpheroLac 100 115 0.746 0.891 758 850 1536.1 50.65 0.08

InhaLac 251 53.4 0.726 0.878 640 891 1539.5 58.43 0.082

Table 6  Flowability and shear 

properties
CI (%) C (kPa) at 6 kPa ff

c
 at 6 kPa AIF (°) µs,pp WFA (°) µs,pw

SpheroLac 100 10.82 0.12 20.83 31.38 0.61 6.58 0.115

InhaLac 251 28.18 0.35 7.9 32.68 0.64 6.7 0.117

Fig. 5  Experimental AoR of SpheroLac 100

Fig. 6  Experimental AoR of InhaLac 251
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due to its computational cost impact, though it has influ-

ence. From Fig. 11a, it can be seen that the angle of repose 

increases with an increase in the sliding and rolling friction 

coefficients, which is proven in other studies as well [25, 

46, 71–74]. This positive correlation is similar in both free-

flowing and cohesive powders.

Figure 12 demonstrates the Pareto graph of effects on 

the AoR of the cohesive powder. It shows that µr,pp has the 

Fig. 7  Illustration of AoR of six different DEM run conditions of the free-flowing powder

Fig. 8  Adjusted response graph of the a AoR, b ε, c ṁ , d NA-TKE and e CT for the free-flowing as in relation to the five varied DEM input 

parameters
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highest positive effect on the AoR, which is contrary to most 

of the studies that proved the superiority of µs,pp in terms of 

effectivity. Therefore, it is very critical to always relate the 

effectiveness of the parameters to the circumference of the 

case study. Moreover, Y has a bigger impact on the AoR 

than µs,pp.

4.3.2  Factors affecting porosity

• Free-flowing

The regression analysis of the ε of the free-flowing pow-

der resulted in a very good adjusted R2 value of 0.981. The 

adjusted response graph of ε in Fig. 8b demonstrates the 

high significance positive correlation of µs,pp on ε followed 

with µr,pp, which was also proven by Wei et al. [35]. The 

other studied microscopic parameters indicated less signifi-

cance, where the relative size of effects of these parameters 

is presented in Fig. 13.

• Cohesive

The adjusted R2 of the ε of the cohesive powder was very 

good as well with a value of 0.983. Similarly to the free-

flowing powder, µs,pp had the highest positive influence on 

ε followed with µr,pp as revealed in Fig. 11b. In addition, 

the Pareto graph of effect in Fig. 14 shows the superiority 

positive relative effect of µs,pp on ε compared to the other 

parameters.

4.3.3  Factors affecting mass flow rate

• Free-flowing

The adjusted R2 of the ṁ model of the free-flowing pow-

der was recorded to be 0.95. The adjusted response graph 

for the ṁ is shown in Fig. 8c. As observed, all the studied 

parameters affect the ṁ , but each in a different way which 

is also presented in the Pareto graph (Fig. 15). The Pareto 

graph shows that µs,pp has the highest negative effect on the 

ṁ . This indicates that as µs,pp increases, the particles’ flow 

out of the funnel gets delayed due to the sliding friction 

Fig. 9  Pareto graph of effects of the model factors on the AoR of the 

free-flowing powder

Fig. 10  Illustration of AoR of six different DEM run conditions of the cohesive powder
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between the particles. The same holds for µr,pp and dS. Unlike 

epp, as it increases, ṁ increases slightly.

Following this, the mass and ṁ of the six example simula-

tions shown in Fig. 10 were plotted over time in one graph 

(Fig. 16) to compare them with each other. The parameter 

combinations and the mean ṁ values of each run are pre-

sented in Table 3.

Figure 16 shows that the slopes of mass graphs M_1 and 

M_9, corresponding to the first and ninth DEM simulations, 

have the highest ṁ while having the lowest values of µs,pp 

(0.1). M_8 is showing the lowest slope ( ṁ ) with the assign-

ment of having a high value of µs,pp (0.85).

• Cohesive

The model fit of the ṁ in the cohesive study was very 

good with an adjusted R2 = 0.957. Figure  11c presents 

the adjusted response graph for the ṁ , and the Pareto 

graph (Fig. 17) shows the weight value effect of the input 

Fig. 11  Adjusted response graph of the a AoR, b ε, c ṁ , d NA-TKE and e CT for the cohesive as in a relation to the six varied DEM input 

parameters

Fig. 12  Pareto graph of effects of the model factors on the AoR of the 

cohesive powder
Fig. 13  Pareto graph of effects of the model factors on the ε of the 

free-flowing powder
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parameters on the ṁ . It is apparently shown that ṁ has been 

highly negatively affected by µs,pp, µr,pp and dI in decreasing 

order of effectivity. A lower but significant positive effect 

has been witnessed for Y. This is due to the fact that parti-

cles with high stiffness tend to flow easier under the effect 

of gravity.

More clear visualization of how ṁ is varying with respect 

to the parameters can be seen in Fig. 18, which shows an 

example of the mass and ṁ of six simulation cases plotted 

over time. The varied input parameters and the mean ṁ val-

ues of each run are presented in Table 4.

4.3.4  Factors affecting kinetic energy

• Free-flowing

The overall translational kinetic energy (TKE) was 

recorded every 1 ms starting from the moment of particle 

insertion inside the funnel till the discharge of the last par-

ticle inside the catching container. The results showed that 

µs,pp has a negative impact on the TKE as illustrated in an 

example of three runs in Fig. 19.

From 0 to 1 s, the particles were inserted inside the fun-

nel, and then there was 0.3 s settlement time for the particles 

before removing the stopper at 1.3 s. This resulted in having 

an almost identical character of variation of TKE from 0 to 

1.3 s. The rapid increase in TKE within 0–0.1 s is explained 

by the falling (insertion) of the particles into the funnel. 

Fig. 14  Pareto graph of effects of the model factors on the ε of the 

cohesive powder

Fig. 15  Pareto graph of effects of the model factors on the ṁ of the 

free-flowing powder
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Fig. 17  Pareto graph of effects of the model factors on the ṁ of the 

cohesive powder
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Within 0.1–1 s, the distance between the insertion region 

and the first contact of the particles in the vertical direction 

decreased as the funnel was being filled with particles. Then, 

as the particles were settling down, the TKE started decreas-

ing. In the time between 1 and 1.3 s, a rapid decrease in the 

TKE was observed as no more particles are inserted and 

most of the particles are got in rest (settled down). It can be 

seen that upon removing the stopper, the peak of Ekin_7 was 

smaller than that of Ekin_5 and then Ekin_7 remained smaller 

and the total time for full discharge was longer compared to 

Ekin_5. The only difference between these two runs is the 

value of the µs,pp where it was 0.1 in run 5 and 0.85 in run 

7. So, the high value of µs,pp decreases the overall TKE of 

the system.

On the other hand, Ekin_2 has a smaller epp than Ekin_5 

which showed a minimal difference in a small interval of 

time during the discharge of the particles. Thus, epp has no 

significant influence on the overall TKE when µs,pp is low. 

On the contrary, epp has a significant influence on the overall 

TKE when µs,pp and µr,pp are both high as shown in Fig. 20.

Moreover, the particle size dS has a major influence on 

the overall TKE. Figure 21 plots the overall TKE graphs of 

simulation cases 1 and 24 where the dS in run 1 is 460 µm 

and the dS in run 24 is 690 µm.

The graph plot shows that both runs have similar overall 

TKE during the insertion time. After removing the stopper, 

the overall TKE of run 1 with lower dS (460 µm) is higher 

and reaches full discharge faster than run 24 with higher dS 

(690 µm). This can be explained by that the number of par-

ticles decreases with the increase in radii keeping the same 

mass; therefore, the number of collisions decreases and thus 

leads to a decrease in the TKE.

For a better understanding of the relative level of effec-

tivity of these parameters, the adjusted response graph 

and Pareto chart are also designed for this response. The 

adjusted R2 of the NA-TKE model of the free-flowing pow-

der was 0.981. In Fig. 8d, the adjusted response graph for 

the NA-TKE is illustrated. The Pareto graph of effects on the 

NA-TKE of the free-flowing powder is shown in Fig. 22. It 

shows that the quadratic term of µs,pp has the highest positive 

effect and µs,pp has the highest negative effect on the NA-

TKE, followed by µr,pp. This result harmonizes perfectly with 

the definitions of these two factors, as they represent, more 

or less, the extent of resistance of a particle to remain in its 

position upon being exposed to a certain force. Therefore, as 

they increase, the particles are more hindered, and therefore 

the TKE decreases. And since the particles in our system do 

not tend to move in the rotational direction as in the trans-

lational direction, the µr,pp is showing less effect than µs,pp.

• Cohesive

The model fit of the NA-TKE of the cohesive powder was 

very good with an adjusted R2 = 0.97. The adjusted response 

graph for the NA-TKE is shown in Fig. 11d. The Pareto 

graph of effects on the NA-TKE (Fig. 23) shows that Y has 

the highest positive effect and µs,pp has the highest negative 

effect on the NA-TKE. As seen, a new factor, namely Y, 

compared to the free-flowing case, has been introduced as 

a significant parameter. The reason for that is the existence 

of the Cpp in the system representing an additional normal 

contact force tending to stick the particles more to each 

other. As Y denotes the stiffness of the particles, exerting an 
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additional force on them along with less tendency to deform 

leads to some repulsion causing the higher velocity of the 

particles. This interactive effect of these two parameters can 

be seen also by the term Cpp * Y having a positive impact on 

the NA-TKE. On the contrary, maintaining the same value 

of Y with increasing the Cpp, decreases the NA-TKE, because 

the additional normal contact force ought to keep the parti-

cles in contact. It can be also observed that the particle size 

has a higher significant effect than in the free-flowing case. 

In fact, this can be justified by the increase in contact area 

along with the increase in normal contact force, the thing 

that would cause an increase in the frictional force in order 

to maintain a constant µs,pp.

In Fig. 24, the overall behavior of the TKE of the sys-

tem in the cohesive case generally looks similar to the free-

flowing case. Some phenomena discussed earlier regarding 

the effects of some parameters can be seen.

4.3.5  Factors affecting computation time

• Free-flowing

The CT model of the free-flowing powder had a very high 

adjusted R2 value of 0.987. It is clearly shown in Table 3 how 

the CT is varying through the different simulation runs. The 

adjusted response graph for the CT is illustrated in Fig. 8e. 

In addition, Fig. 25 demonstrates the Pareto graph of effects 

on the CT of the free-flowing powder. It is indicated that Y 

has a big positive impact on CT, whereas dS has a smaller 

negative effect on it. In other words, as the Y becomes big-

ger, the CT increases and as dS increases, the CT decreases. 

Although epp has much less effect on CT compared to Y and 

dS, yet it is important to notice that epp has a negative effect 

which might be used in another applications needing rela-

tively high computation time.

• Cohesive

The adjusted R2 of the CT model of the cohesive pow-

der was very high as well (0.991). Figure 11e illustrates the 

adjusted response graph for the CT, and Fig. 26 presents the 

Pareto graph of effects on the CT of the cohesive powder. 

Similarly, the results showed that Y and dI are the almost 

Fig. 22  Pareto graph of effects of the model factors on the NA-TKE 

of the free-flowing powder

Fig. 23  Pareto graph of effects of the model factors on the NA-TKE 

of the cohesive powder
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only two parameters affecting the CT as in the free-flowing 

study. In that, using a small Y and bigger d, via coarse-grain-

ing method, would save a lot of computational costs.

To add up, the count of particles for the free-flowing 

powder was 18,923, 32,700 and 63,864 when using particle 

size values of 690 µm, 575 µm and 460 µm, respectively, 

after applying CG. On the other side, the number of parti-

cles for the cohesive powder was 18,540, 30,604 and 55,877 

when using particle size values of 694.2 µm, 587.4 µm and 

480.6 µm, respectively.

Table 7 sums up the adjusted R2 values of the regression 

models of the five responses on the free-flowing and cohe-

sive powders.

4.4  Prediction model and experimental validation

The main aim of this section is to validate the regression 

models of the parametric studies obtained above and to 

validate the numerical model based on experimental data. 

Therefore, the reference values of the AoR and ε determined 

from the experiments will be our targets in the following 

prediction simulations.

4.4.1  Free‑flowing

Based on the results obtained, a prediction model was built 

to estimate the AoR and ε upon using an optimized com-

bination between them. The predicted AoR and ε for the 

free-flowing powder are calculated according to Eqs. (22) 

and (23), respectively, as follows:

(22)

AoRS = � + �1 ⋅ epp + �2 ⋅ �s,pp + �3 ⋅ �r,pp

+ �4 ⋅ �r,pp ⋅ �s,pp + �5 ⋅ �r,pp ⋅ epp

+ �6 ⋅ �s,pp ⋅ epp + �7 ⋅ �
2
s,pp

+ �8 ⋅ e
2
pp

,

Fig. 26  Pareto graph of effects of the model factors on the CT of the 

cohesive powder

Table 7  Summary of the 

adjusted R2 values of the ten 

regression models

Free-flowing Cohesive

AoR ε ṁ NA-TKE CT AoR ε ṁ NA-TKE CT

Adjusted R2 0.954 0.981 0.95 0.981 0.987 0.915 0.983 0.957 0.97 0.991

Table 8  Factors of the 

prediction model equations of 

the AoR and the ε for the free-

flowing and cohesive powders

Variable Factors of AoR 

(free-flowing)

Factors of ε 

(free-flowing)

Factors of AoR (cohesive) Factors of ε (cohesive)

� 6.7266 37.9127 202.481 73.8381

�
1

− 5.9508 0.0041 30.4258 8.1474

�
2

87.8684 0.2037 − 34.8184 17.7210

�
3

6.0857 0.4985 13.1172 − 0.5760

�
4

15.6309 16.2729 − 43.4370 − 7.4100

�
5

− 11.8716 5.3753 0.0010 0.0058

�
6

39.7847 7.38747 4.9399 0.0001

�
7

− 83.8815 − 2.6774 − 7.1505e−05 7.5073

�
8

− 36.3797 − 3.4024 − 17.5265 − 2.4609

�
9

– − 5.6972 − 30.8083 − 1.5762

�
10

– − 11.4497 2.4489 − 0.4159

�
11

– – − 4.4295e−09 − 8.7405e−06

�
12

– – – − 5.2809e−08

�
13

– – – − 9.3584

�
14

– – – − 10.4861

�
15

– – – 0.4565
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The constants in both equations are presented in Table 8.

As the value 0.61, which represents the experimental 

value of µs,pp of the free-flowing powder using the FT4 

rheometer, is within the tested range of µs,pp, it was fixed in 

the prediction model. In addition, according to the obtained 

results, Y was set to minimum and dS was set to maximum 

to reduce the CT. Using an integrated optimization feature 

algorithm in Cornerstone software, an optimized DEM 

parameter combination of µr,pp and epp, which aims to match 

our studied bulk responses (AoR and ε) with the experi-

mental reference values with minimum deviation errors, is 

selected. Table 9 shows the combination of the DEM input 

parameters used in validating the prediction model and thus 

calibrating SpheroLac 100 (the free-flowing) with its experi-

mental AoR and ε values. The values to be predicted were 

set as our experimental reference values.

The results in Table 9 validate the robustness of our 

regression model, and thus our powder was calibrated. On 

this occasion, Fig. 27 shows the numerical AoR of run 41 

validated with the experimental AoR of the free-flowing 

powder.

4.4.2  Cohesive

Similarly, Eqs. (24) and (25) represent the prediction equa-

tions for the AoR and ε for the cohesive powder, respec-

tively, as follows:

The constants of these latter equations are listed in 

Table 8 as well. To be stated, the prediction equations for 

both free-flowing and cohesive powders showed a nonlinear 

relation between the parameters, unlike the study conducted 

by Boikov [75]. He had no ambiguity in his sought responses 

as he assumed that the parameters are linearly dependent. It 

(23)

�S = � + �1 ⋅ dS + �2 ⋅ Y + �3 ⋅ epp + �4 ⋅ �s,pp

+ �5 ⋅ �r,pp + �6 ⋅ �r,pp ⋅ �s,pp + �7 ⋅ �r,pp ⋅ epp

+ �8 ⋅ �s,pp ⋅ epp + �9 ⋅ �
2
r,pp

+ �10 ⋅ �
2
s,pp

(24)

AoRI = � + �1 ⋅ �r,pp + �2 ⋅ �s,pp + �3 ⋅ epp

+ �4 ⋅ Y + �5 ⋅ Cpp + �6 ⋅ �s,pp ⋅ Y

+ �7 ⋅ Cpp ⋅ Y + �8 ⋅ �
2
r,pp

+ �9 ⋅ e
2
pp

+ �10 ⋅ Y
2
+ �11 ⋅ C

2
pp

,

(25)

�I = � + �1 ⋅ �r,pp + �2 ⋅ �s,pp + �3 ⋅ epp + �4 ⋅ Y + �5 ⋅ dI

+ �6 ⋅ Cpp + �7 ⋅ �r,pp ⋅ �s,pp + �8 ⋅ �r,pp ⋅ epp

+ �9 ⋅ �s,pp ⋅ epp + �10 ⋅ �s,pp ⋅ Y + �11 ⋅ Cpp ⋅ Y

+ �12 ⋅ Cpp ⋅ dI + �13 ⋅ �
2
r,pp

+ �14 ⋅ �
2
s,pp

+ �15 ⋅ Y
2.
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can be seen in this study that this depends on the application 

and not only on the type of powder being used.

The prediction model of the cohesive powder was val-

idated by running a new simulation having µs,pp equal to 

the experimental value. Based on selecting the optimized 

parameter combination, Table 10 lists the results of the pre-

diction run simulation of the AoR and ε compared and vali-

dated with the experimental data.

The very low deviation errors confirm the validity of our 

study approach, and thus InhaLac 251 (the cohesive powder) 

was calibrated as well. Moreover, Fig. 28 shows the AoR of 

run 54 compared with the experimental AoR of the cohesive 

powder.

5  Summary and conclusions

In the presented work, a semiautomated calibration approach 

was introduced in which two different powders, i.e., free-

flowing and cohesive, were systematically studied and their 

parameters numerically calibrated using a DEM—experi-

mental data and following regression analysis. The work 

aimed, firstly, to perform a systematic statistical para-

metric study to understand the impact of six interparticle 

DEM microscopic input parameters on four macroscopic 

bulk responses and on the computational time. Secondly, 

numerical validation of the experimental angle of repose 

and porosity values using a statistical prediction model was 

performed. The examined microscopic parameters were 

Young’s modulus, particle size, particle–particle coeffi-

cient of restitution, static and rolling friction coefficients and 

cohesion energy density. Interaction properties between par-

ticle and wall and between wall and wall were set constant, 

whereas particle–particle properties were extensively stud-

ied. Some of the highlights can be summarized as follows:

• Applying powder characterization using measurement 

devices decreased the number of needed parameters to be 

calibrated, which improves the robustness of parameter 

tuning.

• DoE proved to be an efficient tool in the calibration 

approach, whereas the regression analysis served in bet-

ter understanding the impact of different DEM input 

parameters on the observed responses.

Fig. 27  DEM AoR from the prediction model validated with the experimental AoR of the free-flowing powder

Table 10  Executed simulation run for the validation of the process model of the AoR and the ε of the cohesive powder

Run µr,pp µs,pp epp Y (log 

GPa)

dS 

(µm)

Cpp (J/

m3)

Predicted 

AoR (°)

DEM 

AoR (°)

Deviation error 

of AoR (%)

Predicted 

ε (%)

DEM ε 

(%)

Deviation 

error of ε (%)

54 0.244 0.64 0.051 7.41 694.2 50,000 40 40.8 + 2 56.23 54.84 − 2.47

Fig. 28  DEM AoR from the prediction model validated with the experimental AoR of the cohesive powder
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• The quadratic D-optimal design model ascertained its 

efficiency and reliability in saving computational time by 

setting up a small optimized number of simulations to be 

run.

• For the free-flowing study, it was shown that the static 

friction coefficient has the most significant impact on 

almost all the output responses. The particle size and 

stiffness, however, had the highest impact on the com-

putation costs.

• Regarding the cohesive study, the results were in many 

cases similar to those of the free-flowing study except 

that the particle stiffness had a negative impact on the 

angle of repose, and the cohesion energy density had 

some impact on all the responses. It has been proven in 

this study that the involvement of cohesion increases the 

influence of the particle stiffness on some responses, e.g., 

the angle of repose.

• Scaling up the particle size using the coarse-graining 

method proved to have no effect on the angle of repose 

in both studies.

• The built statistical prediction model yielded a good 

quantitative agreement between the DEM simulation and 

the experimental result values.

Based on these results, future work will focus on addi-

tional numerical and experimental studies under different 

conditions to determine the validation scope of the selected 

parameters. One application would be running auger dosing 

experiments and studying the mass flow rate. This would 

allow to validate the DEM model using a real-scale machine, 

subjected to controlled initial and boundary conditions.
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