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To monitor a multivariate process, a classical Hotelling’s T 2 control chart is often used. However, it

is well known that such control charts are very sensitive to the presence of outlying observations in the

historical Phase I data used to set the control limit. In this paper, we propose a robust Hotelling’s T 2-

type control chart for individual observations based on highly robust and efficient estimators of the mean

vector and covariance matrix known as reweighted minimum covariance determinant (RMCD) estimators.

We illustrate how to set the control limit for the proposed control chart, study its performance using

simulations, and illustrate implementation in a real-world example.
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M
ONITORING a process/product over time using a
control chart allows quick detection (and cor-

rection) of unusual conditions. Control charts are im-
plemented in two phases. In Phase I, some historical
process data, assumed to come from an in-control
process, are used to set the control limit(s). In Phase
II, the process is monitored on an ongoing basis using
the control limit(s) from Phase I. In Phase II, obser-
vations falling outside the control limit(s) or unusual
patterns of observations signal that the process has
shifted from the in-control process settings. Such sig-
nals trigger a search for an assignable cause and, if
the cause is found, lead to corrective action to pre-
vent its recurrence.

For many products or processes, overall quality is
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defined simultaneously by a number of quality char-
acteristics. To monitor a multivariate process in a
way that takes into account the correlations among
the variates, we may use a Hotelling’s T 2 control
chart (Hotelling (1947), Tracy et al. (1992)). To im-
plement the Hotelling’s T 2 control chart in Phase I
with n observations, for each individual observation
j we calculate

T 2(j) = (xj − x)′C−1(xj − x), (1)

where xj = (xj1, . . . , xjp)
′, j = 1, . . . , n, are the n

p−variate Phase I observations with sample mean
x = n−1

∑n
i=1 xi and covariance matrix C = (n −

1)−1
∑n

i=1(xi−x)(xi−x)′. For each individual obser-
vation, we compare T 2(j) with a control limit usually
derived by assuming the xj ’s are independent multi-
variate normal, i.e., MVNp(µ,Σ), with mean µ and
covariance matrix Σ. Note that, in this paper, we
do not consider the situation where observations are
correlated over time. Under these normality and in-
dependence assumptions, the control limit for Phase
I data is based on a Beta distribution and an F distri-
bution for a Phase II observation that is independent
of the Phase I data (see Tracy et al. (1992)). A large
value of T 2(j) indicates that the process has shifted
in some way.
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To motivate and illustrate this work, consider the
final assembly of automobiles. A critical character-
istic of each automobile, which can influence cus-
tomer perception of quality, is alignment. One mea-
sure of alignment depends on four angles, namely
front-right, and front-left wheel camber and caster.
In this example, large volumes of data are collected
because final 100% inspection includes measurement
of the four camber and caster angles. Automobiles
with any of the characteristics out of specification
are reworked before shipment. To monitor the align-
ment process, we can use a multivariate control chart,
such as a Hotelling’s T 2 chart. However, the process
produces the occasional outlier or flyer (that are re-
worked before shipment). As a result, it would be
useful to have a control-chart setup procedure that
is robust to outliers.

As in the alignment example, the assumption that
the Phase I data comes from an in-control process is
not always valid. Unusual observations in Phase I can
lead to inflated control limits and reduced power to
detect process changes in Phase II. For this reason,
part of Phase I consists of the retrospective applica-
tion of the control chart with the determined control
limit(s) to the Phase I process data. Any Phase I
observations outside the control limit(s) are investi-
gated. If found to be due to an identified assignable
cause that can be removed, the observation is elim-
inated and the control limit(s) recalculated. This it-
erative re-estimation procedure in Phase I can elim-
inate the effect of a small number of very extreme
observations but will fail to detect more moderate
outliers. For this reason, in Phase I, we propose to
use robust estimators of the mean vector and covari-
ance matrix in order to determine an appropriate
control limit for Phase II data.

As shown in Equation (1), Hotelling’s T 2 uses the
classical sample mean and sample covariance matrix
to estimate the population mean vector and covari-
ance matrix. However, the sample mean vector and
covariance matrix estimators are very sensitive to
outliers in the Phase I data. Thus, Hotelling’s T 2

suffers from a masking effect, where multiple out-
liers in the Phase I data yield T 2 values that are
not large or unusual (Rousseeuw and van Zomeren
(1990)). Sullivan and Woodall (1996, 1998) showed
that, in certain situations, the T 2 statistic with the
sample covariance matrix estimator is not effective
in detecting shifts in the process mean vector. They
proposed several different estimators of the covari-
ance matrix and concluded that an estimator based

on successive differences is more effective in detecting
the process shift when certain conditions apply.

Vargas (2003) introduced robust control charts for
identifying outliers in Phase I multivariate individ-
ual observations based on two robust estimates of
mean vector and covariance matrix, namely, the min-
imum covariance determinant (MCD) and the min-
imum volume ellipsoid (MVE). The exact distribu-
tion of T 2 with robust estimators based on MVE and
MCD is not available, so control limits for Phase I
data need to be obtained empirically. Vargas (2003)
and Jensen et al. (2007) estimated the control lim-
its for the robust T 2 charts for Phase I data based
on simulations. Jensen et al. (2007) tabulated these
estimates for sample sizes of n = 10, . . . 100, dimen-
sions p = 2, . . . 10, and an overall confidence level of
1−α = 0.95 for any out-of-control points in Phase I.
The performance of these robust control charts was
assessed in terms of the probability of a signal (i.e.,
detecting an outlier) in Phase I only.

Our approach to the problem of monitoring the
multivariate observations differs in two ways from
Vargas (2003) and Jensen et al. (2007). We pro-
pose using robust estimators of the mean vector
and the covariance matrix based on the reweighted
MCD (Rousseeuw and Van Zomeren (1990), Lop-
uhaä and Rousseeuw (1991), Willems et al. (2002)).
Reweighted MCD estimators inherit the nice proper-
ties of initial MCD estimators, such as affine equiv-
ariance, robustness, and asymptotic normality, while
achieving a higher efficiency. Reweighted MCD esti-
mates are not unduly influenced by the outliers and
thus there is no need to identify outliers in the Phase
I data, which is reflected in our simulations results.
Second, we propose robust control charts for Phase
II data based on the reweighted MCD estimates of
the mean vector and covariance matrix from Phase
I. Our simulation studies show that the robust con-
trol chart based on the reweighted MCD estimates
has better performance than other existing control
charts under certain conditions.

Organization of the remaining part of the paper
is as follows. In the next section, we discuss the ex-
isting robust estimation methods. Following that, we
formally introduce a robust control chart based on
the reweighted MCD. The estimation of distribution
quantiles using Monte Carlo methods needed to set
the control limit is then presented. Following that,
we compare the performance of reweighted MCD and
other previously proposed robust control charts using
simulations. Then the reweighted MCD control chart
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is applied to the alignment example. A discussion
and final conclusions are given in the last section.

Some Background on
Robust Estimation

Consider the problem of estimating the parame-
ters µ and Σ based on a random sample x1, . . . ,xn

from a p-variate normal MVNp(µ,Σ) distribution. It
is desirable that the estimators are independent of
the choice of coordinate system. More formally, the
estimators tn and Cn of µ and Σ, respectively, are
called affine equivariant if, for any nonsingular p× p
matrix A and vector b ∈ R

p,

tn(Ax1 + b, . . . ,Axn + b) = Atn(x1, . . . ,xn) + b

Cn(Ax1 + b, . . . ,Axn + b) = ACn(x1, . . . ,xn)A′.

(2)

The finite sample breakdown point, introduced by
Donoho and Huber (1983), is a very popular global
measure of robustness. Intuitively, it is the smallest
amount of contamination necessary to upset an es-
timator entirely. Formally, let X

(o) = {x1, . . . ,xn}

be a random sample of n observations and tn(X(o))
the corresponding estimator. Imagine replacing m ar-
bitrary points in X

(o) by arbitrary values. Let the
new data be represented by X

(m). The finite sample
breakdown point of the estimator tn for sample X

(o)

is

ǫ∗n(tn, X(o))

= min

{
m

n
; sup

X(m)

‖tn(X(m)) − tn(X(o))‖ = ∞

}
,

(3)

where ‖ · ‖ is the Euclidean norm.

If ǫ∗n(tn, X(o)) is independent of the initial sample

X
(o), we say the estimator tn has the universal finite

sample breakdown point ǫ∗n(tn). In this case, we can
calculate the limit ǫ∗ = limn→∞ ǫ∗n(tn), which is of-
ten called the breakdown point or, sometimes, the
asymptotic breakdown point. A higher breakdown
point implies a more robust estimator. For example,
for univariate data,

• The mean x has ǫ∗n(x) = 1/n and hence break-
down point ǫ∗ = 0.

• For odd sample sizes n, the median x̃ =
x((n+1)/2) has ǫ∗n(x̃) = (n + 1)/2n and hence
breakdown point ǫ∗ = 1/2.

Relaxing the affine equivariance condition of estima-
tors to invariance under the orthogonal transforma-

tion makes it easy to find an estimator with the high-
est possible breakdown point 1/2. But, if we are inter-
ested in finding an affine equivariant estimator and,
at the same time, a robust one, things get compli-
cated. The combination of affine equivariance and
high breakdown is rare. Davies (1987) showed that
the largest attainable finite sample breakdown point
of any affine equivariant estimator of the location and
scatter matrix is ⌊(n − p + 1)/2⌋/n.

Classical estimators of µ and Σ, i.e., the sample-
mean vector and covariance matrix, are affine equiv-
ariant but their finite sample breakdown point is
1/n. This means that only one outlier can cor-
rupt the estimators. Several multivariate robust
estimators of µ and Σ have been proposed in
the literature. Examples include the M-estimators
(Maronna (1976)), the Stahel–Donoho estimators
(Stahel (1981), Donoho (1982)), the S-estimators
(Rousseeuw and Yohai (1984), Davies (1987), Lop-
uhaä, (1989)), the minimum volume ellipsoid (MVE)
and minimum covariance determinant (MCD) esti-
mators (Rousseeuw (1985)). The M-estimators are
computationally cheap, but their breakdown point,
under some general conditions, cannot exceed 1/(p+
1) (Maronna (1976), Huber (1981)). This upper
bound is disappointingly low in high dimension.

The Stahel–Donoho estimators are projection
based, are reasonably efficient, and have finite sample
breakdown point ⌊(n−2p+2)/2⌋/n (Donoho (1982)).
They are the first affine equivariant estimators with
the highest possible breakdown point, ǫ∗ = 1/2. One
major trouble with Stahel–Donoho estimators is that
they are computationally expensive.

The S-estimators can attain a finite sample break-
down point of ⌊(n − p + 1)/2⌋/n, with ǫ∗ = 1/2,
under suitable conditions (Lopuhaä and Rousseeuw
(1991)). However, these estimators are also very ex-
pensive to compute.

The MVE and MCD are two affine equivari-
ant estimators introduced by Rousseeuw (1985) that
have finite sample and asymptotic breakdown points
⌊(n − p + 1)/2⌋/n and 1/2, respectively. The MVE
location estimator has a slow, n−1/3, rate of con-
vergence and a nonnormal asymptotic distribution
(Davies (1992)). In addition, there is no existing
fast algorithm to compute the MVE estimators. The
MCD location and scatter estimators have a n−1/2

rate of convergence, and the former has an asymp-
totic normal distribution (Butler et al. (1993)). A fast
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algorithm is available in standard software packages
to compute MCD estimators in high dimensions.

In this paper, we consider a modified and more
efficient version of the MCD estimators of location
and scatter. To begin, we formally define the MCD
estimators. Let x1, . . . ,xn be a random sample taken
from an absolutely continuous distribution F in R

p.
The MCD estimators of location and scatter of the
distribution are determined by the subset of size
h = ⌊nγ⌋ (where 0.5 ≤ γ ≤ 1), the covariance ma-
trix of which has the smallest possible determinant.
The MCD location estimate xMCD is defined as the
average of this subset of h points, and the MCD scat-
ter estimate is given by SMCD = an

γ,pCMCD, where
CMCD is the covariance matrix of the subset; the con-
stant an

γ,p is cγ,p × bn
γ,p, where cγ,p is a consistency

factor (see Croux and Haesbroeck (1999)); and bn
γ,p

is a finite sample correction factor (see Pison et al.
(2002)). Here 1−γ represents the (asymptotic) break-
down point of the MCD estimators, i.e., ǫ∗ = 1 − γ.

The MCD estimator has its highest possible finite-
sample breakdown point when h = ⌊(n + p +
1)/2⌋ (see Rousseeuw and Leroy (1987)). Comput-
ing the exact MCD estimators (xMCD,SMCD) is
very expensive or even impossible for large sample
sizes in high dimensions (see Woodruff and Rocke
(1994)). However, various algorithms have been sug-
gested for approximating the MCD. A fast algorithm
was proposed independently by Hawkins and Olive
(1999) and Rousseeuw and Van Driessen (1999). For
small datasets, the algorithm of Rousseeuw and Van
Driessen (1999), known as FAST-MCD, typically
finds the exact MCD, whereas, for larger datasets,
it is an approximation. The FAST-MCD is imple-
mented in standard statistical softwares such as
SPLUS, R, SAS, and Matlab.

For the multivariate normal distribution

MVNp(µ,Σ),

the MCD estimator (xMCD,SMCD) with

cγ,p = γ/P (χ2
(p+2) ≤ qγ)

is consistent for (µ,Σ), where χ2
(r) represents a chi-

square random variable with r degrees of freedom
and qγ is the γth quantile of χ2

(r).

In addition to being highly robust against out-
liers, if robust multivariate estimators are going to
be of use in statistical inference, they should offer
reasonable efficiency under the multivariate normal
distribution. There is usually a tradeoff between ef-
ficiency and robustness, but if one is interested in

having both efficiency and robustness, the best pro-
posal seems to be two-stage or reweighted estima-
tors (Rousseeuw and van Zomeren (1990), Woodruff
and Rocke (1994)). In this paper, we propose using
reweighted MCD estimators as commonly defined in
the literature (Willems et al. (2002)). This is because
the reweighted MCDs are affine equivariant estima-
tors with a high breakdown point, an n−1/2 rate of
convergence, high efficiency, and there exists a fast
and good approximate algorithm for computational
purposes. The reweighted MCD estimators of µ and
Σ are the weighted-mean vector,

xRMCD =

(
n∑

i=1

wixi

)/ (
n∑

i=1

wi

)
, (4)

and covariance matrix,

SRMCD

= cη,pd
n,p
γ,η

n∑

i=1

wi(xi − xRMCD)(xi − xRMCD)′

n∑

i=1

wi

,

(5)

where the weights are based on the robust distances

D(xi) =
√

(xi − xMCD)′S−1
MCD(xi − xMCD). (6)

Observations with D(xi) below the cutoff value qη,
where qη is the ηth quantile of the chi-square distri-
bution with p degrees of freedom, are assigned weight
1, while all other observations are given weight 0, i.e.,

wi =
{

1 if D(xi) ≤ qη

0 otherwise.
(7)

We use the value η = 0.975, which was advocated and
used by Rousseeuw and Van Driessen (1999). Using
cη,p = η/P (χ2

(p+2) ≤ qη) makes SRMCD consistent
under the multivariate normal distribution. The fac-
tor dn,p

γ,η is a finite sample correction given by Pison
et al. (2002).

The reweighted MCD estimators preserve the fi-
nite sample breakdown point of the MCD estima-
tors (Lopuhaä and Rousseeuw (1991)). Because the
MCD estimators are affine equivariant and the robust
distance D(xi) is invariant under an affine transfor-
mation of xi, the reweighted MCD estimators are
affine equivariant. In addition, the reweighted MCD
estimators have bounded influence functions and are
asymptotically normal, just like the MCDs. In sum-
mary, the reweighted MCD estimators inherit the
nice properties of the initial MCD estimators, such as
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affine equivariance, robustness, and asymptotic nor-
mality while achieving a higher efficiency. The choice
of γ = 0.5 yields the maximum asymptotic break-
down point for the MCD and reweighted MCD esti-
mators, i.e., ǫ∗ = 1 − γ = 0.5.

A Robust Control Chart

Let {x1, . . . ,xn} be a p-variate random sample of
size n from MVNp(µ,Σ) that is considered the Phase
I data in what follows. It is well known (see Wilks
(1963), p. 263) that, for a Phase II observation xf /∈
{x1, . . . ,xn}, we have

T 2(f) ∼

[
p(n + 1)(n − 1)

n(n − p)

]
F (p, n − p), (8)

where T 2(f) is as defined in Equation (1) and
F (r1, r2) is F distribution with r1 and r2 degrees
of freedom. To robustify the T 2 control chart based
on Phase I data, we propose to replace x and S, the
classical estimators of µ and Σ, by the reweighted
MCD estimators. Suppose xRMCD and SRMCD rep-
resent the reweighted MCD mean vector and covari-
ance matrix estimators, respectively. We define a ro-
bust Hotelling’s T 2 for xf based on these RMCD
estimates by

T 2
RMCD(f) = (xf − xRMCD)′S−1

RMCD(xf − xRMCD),
(9)

where f = n + 1, n + 2, . . .. The finite sample dis-
tributions of the MCD and reweighted MCD esti-
mators and thus T 2

MCD(f) and T 2
RMCD(f) are un-

known. Asymptotic properties of these estimators
have been investigated in Butler et al. (1993), Croux,
and Haesbroeck (1999), and Lopuhaä (1999). To
find the asymptotic distribution of T 2

RMCD(f), we
first note that xRMCD and SRMCD are consistent
estimators of µ and Σ, respectively. Furthermore,
xf ∼ MVNp(µ,Σ), thus applying the Slutsky the-
orem (see Serfling (1980)), as n → ∞

(xf − xRMCD)′S−1
RMCD(xf − xRMCD)

D
→ (xf − µ)′Σ−1(xf − µ) ∼ χ2

(p), (10)

i.e., T 2
RMCD(f) has an asymptotic χ2

(p) distribution.
However, this asymptotic distribution only works for
large sample sizes. In the next section, we apply
Monte Carlo simulations to estimate quantiles of the
distribution of T 2

RMCD(f) for several combinations of
sample size and dimension. For each dimension, we
further fit a smooth curve between the sample size
and quantiles of T 2

RMCD(f). These fits can be used
to estimate appropriate quantiles of T 2

RMCD(f) for
small Phase I sample sizes (n ≤ 200).

Construction Procedures

Estimation of Control Limits

In order to estimate the 99%, and 99.9% quan-
tiles of T 2

RMCD(f) for a given Phase I sample size n,
dimension p, and breakdown point 1 − γ, we gener-
ate K = 10,000 samples of size n from a standard
multivariate normal distribution MVNp(0, Ip). For
each data set of size n, we compute the reweighted
MCD mean vector and covariance matrix estimates,
xRMCD(k), and SRMCD(k), k = 1, . . . K. In addi-
tion, for each data set, we randomly generate a new
observation xf,k from MVNp(0, Ip) (treated as a
Phase II observation) and calculate the correspond-
ing T 2

RMCD(k, f) value as given by Equation (9). The
empirical distribution function of T 2

RMCD(f) is based
on the simulated values

T 2
RMCD(1, f), T 2

RMCD(2, f), . . . , T 2
RMCD(K, f). (11)

By inverting the empirical distribution function of
T 2

RMCD(f), we obtain Monte Carlo estimates of the
99%, and 99.9% quantiles. We construct the empiri-
cal distribution of T 2

RMCD(f) for any combination of
p = 2, . . . , 10 and n = 20, 21, . . . , 50, 55, 60, . . . , 200.

Figure 1 shows scatter plots of the empirical 99%,
and 99.9% quantiles of T 2

RMCD(f) versus the sam-
ple size n for dimensions p = 2, 6, and 10. These
scatter plots for different dimensions suggest that we
could model the quantiles using a family of regression
curves of the form f(n) = b1 + b2/nb3 . Because the
asymptotic distribution of T 2(f) is χ2

(p), it is sensible
to use the following two parameter family of curves
instead:

fp,1−α,γ(n) = χ2
(p,1−α) +

a1,p,1−α,γ

na2,p,1−α,γ

, (12)

where χ2
(p,1−α) is the 1 − α quantile of the χ2 dis-

tribution with p degrees of freedom and a1,p,1−α,γ

and a2,p,1−α,γ are constants. Fitting this curve to
the data will help us predict the desired quantiles
of T 2

RMCD(f) for any Phase I sample size n. Note
that, as n increases, fp,1−α,γ(n) approaches χ2

(p,1−α).
Table 1 gives the least-square estimates of the pa-
rameters a1,p,1−α,γ and a2,p,1−α,γ , for dimensions
p = 2, 3, . . . 10 and the 99%, 99.9% quantiles. Using
Table 1 and Equation (12), we can compute the 99%
and 99.9% quantiles of T 2

RMCD(f) for p = 2, . . . , 10
and any Phase I sample size n. The regression curves
given by Equation (12) fit well to all the cases in
Table 1, yielding R2 values of at least 88%. For di-
mensions p ≥ 11, a similar pattern is expected, al-
though for a given situation, a practitioner may sim-
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FIGURE 1. Simulated Quantiles of T 2

RMCD
(f ) and the Fitted Curves for p = 2, 6, 10, γ = 0.5 and α = 0.01 (Upper

Panel) and α = 0.001 (Lower Panel).

ulate the control limit directly. Our simulations
used the function CovMcd() in the rrcov package
written by Valentin Todorov (2007) in R software,
which is available from the R project website http://

r-projects.org/. It is worthwhile to note that
CovMcd() also provides the initial MCD estima-
tors using the function slot() with the arguments
raw.center and raw.cov.

TABLE 1. The Least-Squares Estimates of the Regression Parameters a1,p,1−α,γ , a2,p,1−α,γ for

Dimensions p = 2, . . . , 10, Confidence Levels 1 − α = 0.99, 0.999, and Breakdown Points 1 − γ = 0.5, 0.25

γ = 0.5 γ = 0.75

99% quantile 99.9% quantile 99% quantile 99.9% quantile

p â1,p,0.99,0.5 â2,p,0.99,0.5 â1,p,0.999,0.5 â2,p,0.999,0.5 â1,p,0.99,0.75 â2,p,0.99,0.75 â1,p,0.999,0.75 â2,p,0.999,0.75

2 1387.415 1.632 6225.543 1.795 208.836 1.251 1476.590 1.568
3 13533.973 2.018 71901.268 2.204 830.500 1.474 3530.978 1.647
4 110115.9 2.420 1897062 2.917 1709.908 1.563 23453.370 2.050
5 401744.3 2.618 2261387 2.838 7625.221 1.868 22914.710 1.950
6 3168654 3.060 12987610 3.195 13075.115 1.925 55097.744 2.103
7 2733044 2.904 10857430 3.019 43535.449 2.166 219090.500 2.407
8 5828231 3.009 12730200 2.976 64711.622 2.197 145095.600 2.223
9 9063979 3.048 27445690 3.114 80949.116 2.184 195972.600 2.231

10 41396480 3.385 471116200 3.824 91663.370 2.154 227923.500 2.209
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Implementation Procedures

A step-by-step approach for constructing a T 2
RMCD

control chart is given as follows:

Phase I

1. Decide on the sample size n, number of vari-
ables p, and confidence level 1 − α.

2. Collect the Phase I data {x1,x2, . . . ,xn} at
well-defined periodic intervals.

3. Using the Phase I data, compute the reweighted
MCD estimates xRMCD and SRMCD with
breakdown point 1 − γ = 0.5 or 0.25.

4. For the desired α and p values, choose the least-
square estimates â1,p,1−α,γ and â2,p,1−α,γ from
Table 1, and then compute the control limit
using Equation (12).

Phase II

5. Compute T 2
RMCD for each of the new observa-

tion as per Equation (9) and plot it on a control
chart with the limit derived in Phase I (step 4).

6. Interpret the chart and look for out-of-control
points or patterns. Diagnose the process if
needed.

Performance of
Robust T2 Control Charts

In order to assess the performance of T 2
RMCD con-

trol charts, we conduct a number of simulation stud-
ies that consider different Phase I data structures
and the amount of shift in the process mean vector
in the Phase II data. The performance of the control
chart is judged based on the probability of detecting
changes in the process behavior based on the Phase II
data. A shift in the process mean vector is measured
by the noncentrality parameter (ncp) δ2 as

δ2 = (µ − µA)′Σ−1(µ − µA), (13)

where µ and µA represent in-control and out-of-

control mean vectors, respectively. In this paper,
we assume that there are no changes in covari-
ance structure. Without loss of generality, because of
affine equivariance, we generate in-control (no out-
lier) Phase I data from the standard multivariate
normal distribution MVNp(0, Ip). In Phase I, 100π%
of the data are generated from MVNp(µI , Ip) and
100(1 − π)% from MVNp(0, Ip), where δ2

I = ‖µI‖
2

and π = 0, 0.10, 0.20. Phase II data are generated
from MVNp(µII , Ip) where δ2

II = ‖µII‖
2. We consid-

ered the following different cases in our performance
studies. We consider each combination of the above
Phase I and II scenarios for Phase I sample sizes
n = 50, 150, dimensions p = 2, 6, 10, and breakdown
points 1−γ = 0.5, 0.25, with the control limit set for
a level of confidence of 1 − α = 0.99. We present
only the result for α = 0.01 here and note that
similar conclusions hold for other values of α. The
performance of the control charts is judged by the
probability of signal that is estimated as the propor-
tion of T 2

RMCD(f) values that fall above the control
limit based on 10,000 simulations. In each simula-
tion, we generate a sample of size n and compute the
reweighted MCD estimates. Using these estimates,
we compute the T 2

RMCD(f) from Equation (9) for
each observation in the Phase II data. The computed
T 2

RMCD(f) values were then compared with the ap-
proximate control limit to estimate the probability
of signal. This is done for breakdown points of 50%
and 25%, and the respective probabilities of signal
are denoted by Re-MCD50 and Re-MCD75 in Fig-
ures 2–6.

For comparison purposes, we also estimate the
probability of signal, on the same data sets, for other
methods, such as the standard T 2 chart, the robust
T 2 chart based on raw MCD and MVE estimators
discussed in Vargas (2003) and Jensen et al. (2007),
to identify outliers in Phase I data. We extend the
raw MCD and MVE approaches to Phase II by using
the robust estimators on the Phase I data to elim-
inate outliers. Then we construct the standard T 2

TABLE 2. Different Data Cases in the Performance Study

Case Phase I Phase II

1 No outliers (π = 0) Process shifted with δ2
II = 0, 5, 10, 15, 20, 25, 30

2 10% (π = 0.10) of the data from δ2
I = 5 Process shifted with δ2

II = 0, 5, 10, 15, 20, 25, 30
3 10% (π = 0.10) of the data from δ2

I = 30 Process shifted with δ2
II = 0, 5, 10, 15, 20, 25, 30

4 20% (π = 0.20) of the data from δ2
I = 5 Process shifted with δ2

II = 0, 5, 10, 15, 20, 25, 30
5 20% (π = 0.20) of the data from δ2

I = 30 Process shifted with δ2
II = 0, 5, 10, 15, 20, 25, 30
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FIGURE 2. Probability of Signal When the Phase I Data Sets of Size n = 50 (Upper Panel) and n = 150 (Lower Panel)

Are Outlier Free (See Case 1 in Table 2).

FIGURE 3. Probability of Signal When the Phase I Data Set Has 10% (Upper Panel) and 20% (Lower Panel) Outliers with

δ2

I = 5 and Sample Size n = 50 (see Cases 2 and 4 in Table 2).
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FIGURE 4. Probability of Signal When the Phase I Data Set Has 10% (Upper Panel) and 20% (Lower Panel) Outliers with

δ2

I = 5 and Sample Size n = 150 (See Cases 2 and 4 in Table 2).

FIGURE 5. Probability of Signal When the Phase I Data Set Has 10% (Upper Panel) and 20% (Lower Panel) Outliers with

δ2

I = 30 and Sample Size n = 50 (See Cases 3 and 5 in Table 2).
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FIGURE 6. Probability of Signal When the Phase I Data Set Has 10% (Upper Panel) and 20% (Lower Panel) Outliers with

δ2

I = 30 and Sample Size n = 150 (See Cases 3 and 5 in Table 2).

chart based on the outlier-free Phase I data with
an appropriate quantile of F distribution to monitor
Phase II data. We denote these methods by Stan-
dard, MCD50, and MVE50, respectively, in Figures
2–6.

From Figure 2, we see that, when the Phase I data
set is outlier free (π = 0 or δ2

I = 0), the probability
of signal is increasing as the value of the Phase II
noncentrality parameter δII increases. For n = 50
and p = 2, all five methods perform similarly, but
as dimensionality of data increases, (p = 6, 10) Re-
MCD50 and Re-MCD75 methods do not perform as
well as the other three methods. This is expected
because, if there are no outliers in Phase I, it is best
to use the efficient standard T 2 in Phase II. On the
other hand, as the sample size increases (n = 150),
the probabilities of signal for Re-MCD50 and Re-
MCD75 are similar to that of the Standard, MCD50,
and MVE50 charts.

Figure 3 shows the signal probabilities when n =
50 Phase I data are generated with π = 0.10, 0.20
and noncentrality parameter of δ2

I = 5. As we see, for
p = 2, Re-MCD50 and Re-MCD75 perform slightly
better than the three other methods, but for p = 6, 10
and a sample size of n = 50, none of the meth-

ods work well. If we increase the sample size to
n = 150 (Figure 4), then the Re-MCD50 and Re-
MCD75 methods slightly outperform the other three
methods for all dimensions p = 2, 6, 10. Figures 5
and 6 show that, when the noncentrality parame-
ter in Phase I is large (δ2

I = 30), Re-MCD50 and
Re-MCD75 substantially outperform the Standard,
MCD50, and MVE50 charts for both sample sizes
n = 50 and n = 150.

It is worthwhile to note that the performance
of Re-MCD50 in high dimensions and small sam-
ple sizes is not as good as Re-MCD75 in all cases
we considered, but is still better than the stan-
dard, MCD50, and MVE50 charts for large values of
the Phase I noncentrality parameter. On the other
hand, when sample size is increased to 150, both
Re-MCD50 and Re-MCD75 have more or less sim-
ilar performance for a small percentage of outliers
in the Phase I data. For a large percentage of out-
liers in Phase I with a high noncentrality parameter,
Re-MCD50 out-performs Re-MCD75. This indicates
that, if we have sufficiently large sample size, Re-
MCD50 is preferable to Re-MCD75. We recommend
that for a breakdown point of 1 − γ = 0.5, a Phase
I sample size of 10 to 15 times the dimension (p) is
sufficient.
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Case Study

To illustrate the use of the proposed T 2
RMCD con-

trol chart, we return to the automotive-alignment ex-
ample discussed in the Introduction. For the Phase
I data, which consist of all 186 vehicles produced
during a specific time interval on January 2nd, the
reweighted MCD mean vector and covariance matrix
with 1 − γ = 0.5 (i.e., with the highest breakdown
point 0.5) are

xRMCD = (0.303, 0.431, 3.760, 4.045)′

SRMCD =

⎛
⎜⎝

0.016 −0.003 0.002 −0.006
−0.003 0.020 −0.002 0.010

0.002 −0.002 0.048 −0.005
−0.006 0.010 −0.005 0.059

⎞
⎟⎠

To set the control limits, we consider α = 0.01 and
0.001. From Table 1 and Equation (12), the 99% and
99.9% control limits are given by the following func-
tions, respectively:

f4,0.99(n) = 13.277 +
110115.9

n2.420
,

f4,0.999(n) = 18.467 +
1897062

n2.917
.

Hence, for n = 186 the 99% and 99.9%, control lim-
its are f4,0.99(186) = 13.63 and f4,0.999(186) = 18.92,
respectively. As we see, these control limits are very
close to the asymptotic control limits 13.277 and
18.467 (based on the chi-square distribution with 4
degrees of freedom) because the sample size is reason-
ably large. Using Equation (9), the individual T 2

RMCD

values for Phase I are calculated and depicted in Fig-
ure 7. Note that, using the reweighted MCD control
chart, we do not need to take any action, such as re-
moving outlying points and reconstructing the con-
trol chart because we are using the robust control
chart T 2

RMCD in Phase II.

Using the Phase I robust estimates, we con-

structed the Phase II control chart for the future ob-
servations. A control chart for the 100 vehicles pro-
duced on January12th is shown in Figure 8. From
Figure 8, we see that there is a mean shift in the pro-
cess (assuming that the covariance structure remains
the same) because a large number of T 2

RMCD values
fall above the 99% and 99.9% control limits. The
number of out-of-control points for Re-MCD50 is 43
and 18 for the 99% and 99.9% control limits, respec-
tively. For illustration, we also implemented standard
T 2, T 2

MCD, and T 2
MV E (these three additional charts

are not shown in the paper) for Phase I to identify
outliers and then, after removing outliers, in Phase
II, we apply the standard T 2 charts. MCD50 and
MVE50 methods only identified one sample point as
an outlier in Phase I. The number of data points
above the 99% and 99.9% limits for all of these three
charts are more or less similar (40 and 13 or 14, re-
spectively). Because the Phase I sample is almost
outlier free, the outlier detection pattern for Phase
II is more or less similar for the four charts. The data
are available on request from the first author.

Discussion and Conclusions

In this paper, we proposed a multivariate robust
Hotelling T 2 chart based on reweighted MCD esti-
mates as an alternative to the classical multivariate
T 2 control charts for Phase II data. The proposed
control chart is obtained by replacing the classical
mean vector and covariance matrix of the data in the
Hotelling’s T 2 by the reweighted MCD estimators.
These estimators are affine equivariant and highly
robust with better efficiency than the ordinary MCD
estimators used in Vargas (2003), Hardin and Rocke
(2004, 2005) and Jensen et al. (2007) for outlier de-
tection in Phase I. Monte Carlo simulations were car-
ried out to obtain empirical quantiles for reweighted
MCD T 2, and these quantiles were modeled to ap-

FIGURE 7. Time-Series Plot of the T 2

RMCD
Chart for 186 Phase I Data Collected on January 2.
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FIGURE 8. The T 2

RMCD
Chart for 100 Phase II Observations Collected on January 12. The dashed and solid horizontal

lines represent control limits based on 99.9% and 99% quantiles, respectively.

proximate control limits for any sample size. Our
simulation studies showed that the proposed robust
control charts (T 2

RMCD) are similar to standard T 2

charts in performance when the process is in-control
and are more efficient than standard T 2 charts (with
and without outlier removal in Phase I) when there
are outliers in the process during Phase I. We illus-
trated our proposed method using a case study from
the automotive industry.
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