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Abstract The high R-naught factor of SARS-CoV-2 has

created a race against time for mankind, and it necessitates

rapid containment actions to control the spread. In such

scenario short-term accurate spatiotemporal predictions

can help understanding the dynamics of the spread in a

geographic region and identify hotspots. However, due to

the novelty of the disease there is very little disease-

specific data generated yet. This poses a difficult problem

for machine learning methods to learn a model of the

epidemic spread from data. A proposed ensemble of con-

volutional LSTM-based spatiotemporal model can forecast

the spread of the epidemic with high resolution and accu-

racy in a large geographic region. The feature construction

method creates geospatial frames of features with or

without temporal component based on latitudes and lon-

gitudes thus avoiding the need of location specific adja-

cency matrix. The model has been trained with available

data for USA and Italy. It achieved 5.57% and 0.3% mean

absolute percent error for total number of predicted infec-

tion cases in a 5-day prediction period for USA and Italy,

respectively.
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Introduction

Wuhan city in China initially observed an outbreak of

Covid-19 disease caused by SARS-CoV-2. Eventually it

became a pandemic and more than 200 countries are

fighting hard to contain the infection. One of the best ways

to contain the infection is rapid identification of positive

cases and isolation. Forecasting regional spread can help

identify future hotspots and distribution of infection which

would eventually help to take containment measures.

A spatiotemporal epidemic spread model can accom-

modate both spatial and temporal correlations in data.

However, most of the models either require disease-

specific domain knowledge [1] or are too spatially coarse

[2]. Deep learning models can learn the dynamics of epi-

demic spread with high spatial resolution and high degree

of accuracy with minimal initial bias due to its capability of

high nonlinear representation. Deep neural network-based

spatiotemporal models [3] have already been applied to

predict epidemic spread. However, this model is experi-

mented on a small localized region and influence of

external factors are ignored. Deep learning models also

tend to overfit due to its high representational capability.

Due to availability of very limited dataset, the problem of

overfitting looms large in this case. Thus, modelling of

Covid-19 spread in a wide region with high spatial and

temporal resolution is challenging.

To address the problem of spatiotemporal prediction of

Covid-19 spread in a large geographical region with high

resolution, an ensemble of Convolutional LSTM [4]—

based model is proposed which needs to be trained with

multilayer temporal geospatial data, transformed as

sequence of frames. Each layer of the geospatial data

corresponds to a causal factor that might influence the

spread of the epidemic. An ensemble of models helps

& Swarna Kamal Paul

swarna.kpaul@gmail.com

Saikat Jana

saikatjana23091990@gmail.com

Parama Bhaumik

bhaumikparama@gmail.com

1 Tata Consultancy Services Kolkata, Kolkata, India

2 IT, Jadavpur University, Kolkata, India

123

J. Inst. Eng. India Ser. B (December 2021) 102(6):1137–1142

https://doi.org/10.1007/s40031-020-00517-x

http://orcid.org/0000-0002-2362-935X
http://crossmark.crossref.org/dialog/?doi=10.1007/s40031-020-00517-x&amp;domain=pdf
https://doi.org/10.1007/s40031-020-00517-x


reduce variance in errors and overfitting on small training

dataset. Experimentation is carried out with data of USA

and Italy and achieved country-level mean absolute percent

error (MAPE) of 5.57% and 0.3%, respectively, on fore-

casting of total infection cases in 5 days period.

The paper is organized as following. A brief discussion

on modelling the epidemic spread and feature engineering

is presented in Sect. 2. In Sect. 3, the ensemble of Con-

volutional LSTM model and performance measurement

metrics are presented. Section 4 is about experimental

results. The following section concludes the paper.

Modelling Covid-19 Spread

Disease spread is a complex dynamical system, and

numerous factors contribute to the dynamics of spread

making it non-stationary. Covid-19 is no different. Geo-

graphical location, weather conditions [5], human mobility

[6], and population statistics might be some of the

impacting factors changing the dynamics of the spread.

Epidemic spread is correlated in time as well as spatial

dimensions. However, it may be spatially autocorrelated in

a small localized region but not across wide regions. Thus,

a large geographic region is divided into relatively smaller

grids and model is trained with samples drawn from local

distribution of infection cases. The objective of the model

is to forecast new cases of infection on daily basis in dif-

ferent regions across a country which can be added up to

calculate total cases of infection.

Feature Engineering

All the observations in the dataset are mapped to a spatial

region bounded by defined latitude and longitude. The

region is geospatially divided in M 9 N grids of equal

sizes bounded by calculated latitudes and longitudes. Fig-

ure 1a illustrates a grid bounded by latitudes and longi-

tudes. The box represented by the dotted line is called as

frame. The frames have overlapping areas in all 4 direc-

tions. The overlap allows flow of spatial influence from

neighbouring grids to another. Each frame is in turn divi-

ded into L 9 L pixels which includes the overlapping area.

Each pixel represents a bounded area in geospatial region.

The values in each pixel are mapped to certain feature in

the bounded geospatial region. Separate frame matrices are

constructed for each feature and concatenated through

channels. For example, new infection count and population

are two features and they represent two separate L 9 L

matrices in a frame concatenated across a third axis. Each

pixel in the infection count matrix contains the count of

new infections (DI) in the pixel area in a day. Infection

count is distributed both in spatial and temporal dimen-

sions. To reduce the skewness, the infection count in a

pixel is log transformed and normalized in 0-1 scale.

Considering R0 factor of Covid-19 between 2 and 3, it is

calculated that 60% of the population (P) in an area needs

to get infected to attain herd immunity and reduce further

spreading [7]. Similar to the SIR model [8], the total

population P is compartmentalized into susceptible (S) and

infected/recovered/deceased (I) group. Susceptible popu-

lation at any day is calculated as 0:6P� I: A pixel value is

calculated as ln DIþ 1ð Þ=ln Sþ 2ð Þ. Total population is

distributed spatially in similar fashion, and it is assumed

time invariant within a short interval. Pixel value of pop-

ulation matrix is calculated as

ln 0:6Pþ 1ð Þ=ln max 0:6Pð Þð Þ. Each frame is represented as

tensor of dimension T 9 L 9 L 9 C, where T is the total

time span and C is number of channels or features. As

shown in Fig. 1b, each training sample in a frame is

Fig. 1 a Illustration of overlapping frames obtained by spatially dividing a geographical region. The bold lines represent latitudes and longitudes

which separate the grids. The box with dotted line represents the overlapping frame and it is represented as an image for training the model. Each

grid is divided in certain number of pixels. The margin refers to number of pixels in the overlapping region. b Illustration of sequence of images

in a frame. t-0 is the most recent image. Xtrain, Ytrain are the training samples and Xtest, Ytest are testing samples
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generated by sliding a time window size of W ?1 by 1,

leaving behind a test case sample of time window size of

W0 in the most recent period. Number of training samples

in a frame can be calculated as T�W0 �W� 1. Thus,

total number of training samples Strain for all frames can be

calculated as Strain ¼ T�W0 �W� 1ð Þ �M * N.

The forecasting problem is framed as supervised learn-

ing problem. Given a sequence of observed matrices of

spatial data as images X1;X2. . .Xt, the final objective of the

model is to predict the next image Xtþ1. The training

samples are divided into input sequences and output

sequences each of length W. The input sequence is time

lagged images of output sequence. The model forecasts the

normalized log transformed new infection count in each

pixel in a frame for each timestep. Thus, the output frame

consists of only 1 channel. The input training dataset

(XtrainÞ can be represented as a tensor of size Strain �W�

L � L � C and the output dataset (Ytrain) as

Strain �W� L � L � 1. For training, the input sequences

are selected from all frames having nonzero total infection

count. Figure 1b illustrates the sequence of images in a

frame. The image t-7 to t-3 represents an input training

sequence (XtrainÞ of length W. The output image sequence

(Ytrain) for this training sample is t-6 to t-2. Other training

samples are generated by sliding the window W backwards

in time by 1. The most recent images t-0 and t-1 represent

the test output images (Ytest), and immediate sequence of

images t-6 to t-2 is the test input sample (Xtest). The test set

Xtest is represented by a tensor of size M * Nð Þ �W�

L � L � C and Ytest by M*Nð Þ �W0 � L � L � 1.

Ensemble of Convolutional LSTM Models

The model comprises of a Convolutional LSTM network

[4] configured to take multichannel input such that distinct

features can be passed through different channels. Multiple

convolutional LSTM layers are stacked sequentially to

form a network with high representational capability. The

network terminates with a 3D convolutional layer having

one filter which constructs a single channel output as the

next frame prediction.

A single model may be prone to overfitting on training

dataset and loose stability in terms of prediction made.

Creating an ensemble of diverse models intended to solve

the same task, and combining the predictions made by

them typically improves test accuracy and stability [9]. We

used bootstrap aggregation [10] to create an ensemble of

models. 60% random samples are drawn with replacement

from the original training dataset, and an ensemble of five

models is trained individually. During prediction the output

of each of the models is weighted as per following

equation.

o ¼
X

8nE

r ln

P

I
n
train

MSEn

þ 1

 ! !

n

� on; where r zð Þi

¼
ezi

PK
j¼1 e
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o is output of the ensemble, on is output of the model n, E is

set of all models in the ensemble, I
n
train is number of

infected patients in the training samples of model n, MSEn

is mean squared error of model n on validation dataset, and

r is softmax function. The weights are proportional to the

amount of positive cases used for training the model and

inversely proportional to the validation error.

During testing the model is given a sequence of most

recent frames as input, and the next frame is predicted. The

predicted frame is temporally appended to the input

sequence of frames and fed to the model again to obtain the

next predicted frame. This continues until required number

of future frames are predicted. The accuracy of a model is

tested with the metric ‘‘mean absolute percent error’’

(MAPE) and Kullback–Liebler (KL) divergence [11]. The

pixel values are transformed to DI and summed up cumu-

latively to calculate total infection cases I, up till a specific

day. MAPE is calculated at pixel level for total infection

cases at the end of prediction period and averaged. The

pixels with 0 susceptible population count are ignored

while calculating MAPE. Pixel MAPE is calculated as per

Eq. 2, where Gp is set of all unique pixels in all grids such

that the frame for each corresponding grid has nonzero

total infection count, W 0 is prediction time period, W 00 ¼

T �W 0 is total time period in training set, p is a pixel from

a set of unique pixels in the total region having nonzero

actual susceptible population, pi is predicted pixel value on

i th day, Sip is susceptible population at pixel p on i th day

calculated from pi and Si�1
p , DIip is actual new infection

count at pixel p on i th day, and Np is total number of pixels

p in the region. Îp and Ip are total predicted and actual

infection cases, respectively.

MAPEpixel ¼
1

Np

X

8p

Îp � Ip
�

�

�

�

Ip
jp 2 Gp; where ð2Þ

Îp ¼
X

i2W 0

epi�ln Si�1
p þ2ð Þ � 1þ

X

i2W 00

DIip

Ip ¼
X

8i2W 0

DIip þ
X

i2W 00

DIip

KL divergence at pixel level is calculated for total

infection cases at the end of prediction period to measure

the dissimilarity of distribution of predicted infection cases

with respect to actual. r is softmax function applied after

scaling a series in 0 to 1 scale, and P Xð Þ is probability

distribution of X. Softmax is applied to convert total

infection cases as probability distribution across pixels.
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MAPE is also calculated at country level with respect to

total predicted infection cases across the region during the

prediction period.

MAPEcountry ¼
1
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Experimental Results

Experiments have been carried out to predict the future

new infection cases in Italy for a period of 5 days and

10 days and in USA for a period of 5 days and 8 days.

Data have been collected from Harvard Dataverse [12–14].

For USA the data collection period is ‘2020-03-09’ to

‘2020-04-08’ and for Italy it is ‘2020-02-05’ to ‘2020-04-

10’. Test data period for Italy data is ‘2020-04-01’ to

‘2020-04-10’ and for USA it is ‘2020-04-01’ to ‘2020-04-

08’. Figure 2a, b shows the region of USA and Italy which

has been divided into grids. The length W of each training

input sequence is taken as 10 days. For both the countries,

the frames containing at least a single Covid-19 infection

case are considered for training and testing the model. Each

frame in turn is divided in 16 9 16 pixels with an overlap

Margin of 4 pixel.

The model consists of ensemble of 5 Convolutional

LSTM networks. For Italy each network contains 4 hidden

layers with sigmoid activation. The output layer is a

Convolutional 3D layer with exponential linear unit as

activation. The models are trained for 30 epochs with mean

squared error as loss function. The input and hidden layers

have 32 filters. The input layer is configured to take images

of size 16 9 16 9 2. The second channel is fed with

normalized population data. The region in USA is

approximately 13 times than Italy, and the distribution of

Covid-19 cases in USA is geospatially highly skewed.

Thus, grids are divided in four equal sections by latitude

and longitude with each section containing 9 9 15 grids. A

set of 4 heterogenous ensembles are trained for each of the

4 sections. The configuration of networks is same as that of

Italy except they contain 2 hidden layers and each network

is trained for 20 epochs.

Table 1 shows the performance of the models in terms

of KL divergence and MAPE. For both USA and Italy, low

KL divergences state that the predicted geospatial proba-

bility distribution of total infection cases nearly matches

with the actual probability distribution. The pixel level

MAPE for Italy stays below 30%. For USA in 8-day

forecasting period MAPE is 44% as there are many pixels

in USA with low total patient count. A slight deviation in

the prediction for these pixels shoots up the MAPE.

Country level MAPE is low for both Italy and USA.

Figures 3a and 4a shows predicted versus actual total

Covid-19 cases for a period of 8 and 10 days in USA and

Fig. 2 a A region of USA divided in 18 9 30 grids. The red bubbles denote cumulative number of Covid-19 cases. b A region of Italy divided in

8 9 7 grids with cumulative Covid-19 cases denoted by red bubbles
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Italy, respectively. For Italy the prediction follows closely

with the actual, whereas for USA it is little underestimated.

Figures 3b and 4b shows predicted versus actual daily new

Covid-19 cases in USA and Italy, respectively. Figures 5a,

b shows the distribution of total predicted versus actual

infection cases in each pixel after 10 day and 8 day in Italy

and USA, respectively. The predicted distribution closely

follows with actual with residuals distributed both on

negative and positive sides.

Conclusion

An ensemble of Convolutional LSTM-based spatiotempo-

ral epidemic spread model has been proposed for short-

term forecasting of Covid-19 spread. Experiments done on

data obtained for USA and Italy reveal acceptable predic-

tion accuracy with high resolution. Since the model has

option to fed in any number of external features, we are

experimenting with multiple external features that might

influence the spread. This might help to find important

Table 1 KL divergence at pixel level and mean absolute percent error at pixel and country level for Italy and USA

Country Pixel KL divergence Pixel MAPE total cases Country MAPE total cases Predicted total cases Test span in days

Italy 5.72 9 10-5 11.51% 0.3% 129,665 2020-04-01–2020-04-05

Italy 0.00010 28.64% 1.4% 151,803 2020-04-01–2020-04-10

USA 3.06 9 10-6 30.4% 5.57% 292,032 2020-04-01–2020-04-05

USA 0.0014 44% 9% 368,660 2020-04-01–2020-04-08

Fig. 3 a Predicted versus Actual total Covid-19 cases for a period of 8 days in a region of USA. b Predicted versus Actual daily new Covid-19

cases for a period of 8 days in a region of USA

Fig. 4 a Predicted versus Actual total Covid-19 cases for a period of 10 days in a region of Italy. b Predicted versus Actual daily new Covid-19

cases for a period of 10 days in a region of Italy
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causal features that are impacting the spread across mul-

tiple locations.

References

1. R.M. Neilan, S. Lenhart, Optimal vaccine distribution in a spa-

tiotemporal epidemic model with an application to rabies and

raccoons. J. Math. Anal. Appl. 378(2), 603–619 (2011)

2. V.E. Pitzer, C. Viboud, L. Simonsen, C. Steiner, C.A. Panozzo,

W.J. Alonso, B.T. Grenfell, Demographic variability, vaccina-

tion, and the spatiotemporal dynamics of rotavirus epidemics.

Science 325(5938), 290–294 (2009)

3. G. Xi, L. Yin, Y. Li, S. Mei, A deep residual network integrating

spatial-temporal properties to predict influenza trends at an intra-

urban scale, in Proceedings of the 2nd ACM SIGSPATIAL

International Workshop on AI for Geographic Knowledge Dis-

covery (2018), pp. 19–28

4. S.H.I. Xingjian, Z. Chen, H. Wang, D.Y. Yeung, W.K. Wong,

W.C. Woo, Convolutional LSTM network: a machine learning

approach for precipitation nowcasting, in Advances in Neural

Information Processing Systems (2015), pp. 802–810

5. M.M. Sajadi, P. Habibzadeh, A. Vintzileos, S. Shokouhi, F.

Miralles-Wilhelm, A. Amoroso, Temperature and Latitude

Analysis to Predict Potential Spread and Seasonality for Covid-

19 (2020). Available at SSRN 3550308

6. C. Zhan, C. Tse, Y. Fu, Z. Lai, H. Zhang, Modelling and Pre-

diction of the 2019 Coronavirus Disease Spreading in China

Incorporating Human Migration Data (2020). Available at SSRN

3546051

7. P. Fine, K. Eames, D.L. Heymann, Herd immunity: a rough

guide. Clin. Infect. Dis. 52(7), 911–916 (2011)

8. H.W. Hethcote, Qualitative analyses of communicable disease

models. Math. Biosci. 28(3–4), 335–356 (1976)

9. S. Lee, S. Purushwalkam, M. Cogswell, D. Crandall, D. Batra,

Why M Heads are Better Than One: Training a Diverse Ensemble

of Deep Networks (2015). arXiv:1511.06314

10. L. Breiman, Bagging predictors. Mach. Learn. 24(2), 123–140

(1996)

11. S. Kullback, R.A. Leibler, On information and sufficiency. Ann.

Math. Stat. 22(1), 79–86 (1951)

12. https://www.citypopulation.de/en/italy/admin/

13. China Data Lab, US COVID-19 Daily Cases with Basemap,

Harvard Dataverse (2020). https://doi.org/10.7910/DVN/

HIDLTK

14. Dipartimento della Protezione Civile, Coronavirus Disease 2019

(COVID-19) in Italy, Harvard Dataverse (2020). https://doi.o

rg/10.7910/DVN/KDFYZW

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.
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