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ABSTRACT 

Rank-based cross-covariance matrices, extending to the case of multivariate observed series 
the (univariate) rank autocorrelation coefficients introduced by Wald and Wolfowitz (1943). are 
considered. A permutational central limit theorem is established for the joint distribution of such 
matrices, under the null hypothesis of (multivariate) randomness as well as under contiguous 
alternatives of (multivariate) ARMA dependence. A rank-based, permutationally distribution-free 
test of the portmanteau type is derived, and its asymptotic local power is investigated. Finally, a 
modified rank-based version of Tiao and Box’s model specification procedure is proposed, which 
is likely to be more reliable under non-Gaussian conditions, and more robust against gross errors. 

RESUME 

Des matrices de covariances croistes fondtes sur les rangs, gtntralisant au cas des sines 
multivarites les coefficients d’autocorrtlation de rangs introduits par Wald et Wolfowitz (1943) 
sont considtrtes. Un thtortme central-limite permutationnel est ttabli pour ‘ces matrices, sous 
I’hypothtse que la stde sous-jacente constitue la rtalisation d’un bruit blanc multivarit, ainsi que 
sous des contre-hypothtses contigues de dCpendance ARMA. Un test de rangs du type portemanteau 
est tgalement construit, et sa puissance asymptotique locale est explicitement calculte. Enfin, une 
version fondte sur les rangs de la proctdure d’identification de Tiao et Box est proposte. Celle-ci 
est plus fiable que la procedure usuelle sous des conditions non gaussiennes, et plus robuste par 
rapport h la prtsence de valeurs aberrantes. 

1. RANK-BASED CROSS-COVARIANCE MATRICES OF THE 
SPEARMAN-WALD-WOLFOWITZ TYPE 

Denote by X(”) = (Xp’, . . . , Xy’, . . . , Xr’) a series of m-variate observations Xy’ = 
(Xl(t’, . . . ,X:,$)T, t = 1,. . . , n. We are interested in the null hypothesis 9-f(”) of ran- 
domness under which the observations X?’ are independently and identically distributed, 
according to some unspecified density f ( x ) ,  x = (XI,. . . ,Xm)T E Rm. Whenever f needs 
to be specified, the resulting subhypothesis will be denoted by 9$(”). The alternatives we 
are considering are serial-dependence alternatives, with emphasis on multivariate ARMA 
dependence. 

Much attention has been devoted recently to the one-dimensional version of this 
nonparametric problem; see, e.g., Dufour (1981), Dufour and Roy (1985, 1986), Chan and 
Tran (1992) or Shaug and Tjgstheim (1993). In this univariate version [m = 1; observed 
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series X(n) = (Xp', . . . , Xt')]. usual invariance arguments lead to the consideration of 
rank-based testing procedures; see Hallin and Pun (1992). In this latter context, Wald 
and Wolfowitz (1943) proposed test statistics of the form (up to additive and multiplicative 
constants) Sicn) = n-I C:=, Rj")RFi, where RP) denotes, as usual, the rank of Xf') among 
Xv), . . . ,X!,"), and with the (convenient but rather arbitrary) convention that RP), s = 0, 
- 1,. . . , -i + 1, is set equal to RZs .  Clearly, S y )  is a (circular) serial version, of lag i, of 
Spearman's ordinary rank correlation coefficient (still, up to additive and multiplicative 
constants). The performance of such test statistics in a time series context have been 
investigated by Knoke (1977) and Bartels (1982), among others-see also Hallin and 
MClard (1  988). A systematic theoretical study of serial, rank-based statistics is provided 
in Hallin er al. (1985, 1987) and Hallin and Puri (1988, 1991, 1994). 

Our objective here is to extend Wald and Wolfowitz's idea to the problem of testing 
for mulrivariate randomness. Due to the greater complexity inherent in the nature of 
multivariate variables, the development of multivariate theories-especially in the area 
of rank-based procedures-typically has been much slower than that of their univariate 
counterparts. Multivariate rank-based statistics for serial-dependence problems have been 
introduced in Hallin et al. (1989), from which several asymptotic results are used here. 

The multivariate generalization of Wald and Wolfowitz's radk-based autocorrelation 
coefficients quite naturally takes the form of rank-based cross-covariance matrices. Let- 
ting R$) denote the rank of X$) among X [ y / , .  . . ,X,$,  put RY) = (R!:) ,..., $'$T, 

and R(") = (RY', . . . , Rf)): R(") is called the rank-collection matrix associated with 
the observed series X(n). 

It is well known that, unless m = I ,  the rank vectors RY) are not distribution-free, 
even under the null hypothesis of randomness. If however we denote by RF) the rank- 
collection matrix resulting from R(") on rearranging the columns in such a manner that the 
first row yields elements 1,2,. . . , n in ascending order, then the n! possible permutations 
of the columns of R? are conditionally equiprobable: the rank vectors Rj") are thus 
conditionally distribution-free, given the "ordered" rank-collection matrix RF). 

The consideration of this conditional distribution actually also follows from un- 
biasedness and Neyman-structure arguments. The matrix X?) resulting from X(n) on 
rearranging the columns as in Rt'  indeed can be shown to be sufficient complete under 
9f ( n ) ,  Conditioning, as usual, upon this sufficient complete statistic yields the permu- 
tational distribution of (Xr). . . . , Xf)). Additional componentwise invariance arguments 
then lead to the permutational distribution of R("), which is precisely the conditional 
distribution of the rank vectors given in RF'. 

Define the rank cross-covariance matrix of lag i as 

t=i+l 

where ml:) denotes the permutational mean of (n - i)-' C(RY))(Rpi)T. Denote by y&!l 
the elements of r?): for k # I ,  y!!$ is a rank cross-covariance coefficient of lag i, and 
fork = 1 it is a (univariate) rank autocovariance coefficient, of the type studied in Hallin 
et af. (1985, 1987). Note that a similar notation is adopted in Hallin et al. (1989) for a 
more general type of rank cross-covariance matrix, which we do not consider here. 

Section 2 below is devotFd to the asymptotic distribution theory of rank cross- 
covariance matrices: (n - i)I(n + 1)-2 vec ri(n) will be shown to be asymptotically 
multinormal, under the null hypothesis of randomness as well as under contiguous alter- 
natives of ARMA dependence. Section 3 discusses statistical applications in time-series 
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analysis. Before proceeding to asymptotic results, however, we start with an explicit ex- 
pression for the permutational mean matrices mj:). Here 1 stands for a matrix of ones of 
appropriate dimensions; Op and op are unconditional Op's and op's. 

PRoPoslnoN 1.1. The permutational mean matrices ml:) in ( 1 . 1 )  are of the form 

with m$ = n-' C:=I(Ry))(Ry')T. Their elements uniformly satisfy 

Moreover, as n + 00, 

Proof. For i = 1,2,. . . , n - I ,  we have 

Now, (nmk))k., = c:=l R;[;)R$) 5 C:=l(t2) = n(n + 1)(2n + 1)/6; (1.3) and (1.4) 
straightforwardly follow. 0 

Note that mj:), i 2 1, does not depend on i .  

2. ASYMPTOTIC DISTRIBUTION THEORY 

Rank cross-covariance matrices can be used for testing *(") against arbitrary al- 
ternatives of serial dependence. If however local asymptotic power results are desired, 
more specific alternatives are to be considered. Denote by KY)(A,B) the local alterna- 
tive under which X(") constitutes a finite realization of some solution of the stochastic 
difference equation (ARMA model) 

D a 

i= 1 i= I 

where is an independent m-variate white noise with density functionf. Assume that f 
satisfies some mild technical conditions, such as being twice differentiable [put +(x) = 
-grad logf(x)] and having finite Fisher information [ J $(x )+~(x )~(x )  dx = I(f) < 003. 
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Then the sequences KT)(A,B) and $(“) are contiguous [see Hallin et al. (1989) for 
details]. 

Denote by F, fi and F; ( i  = 1,.  . . , m), respectively, the m-dimensional distribution 
function, marginal densities and marginal distribution functions associated with F. As- 
sume that s x f ( x )  dx = 0, and that s xxTf(x)  dx = 7, a finite, strictly positive definite 
covariance matrix. Finally, define F(x) = ( F I ( x I ) .  . . . , Fm(Xm))  , x = ( X I , .  . . , x , )~  E Rm. 

PROPOSITION 2.1. ~ e t  i’ # i’’. AS n ---$ 00, the joint distribution of (n  + 1)-2((n - i t);  
vecT I‘p), (n  - i”)j vecT I‘p) is asymptotically multinormal, with mean 0 under 31 (”) 
and mean 

T 

T 

{ J F ( x ) x ~  dF(X)} @ { J F ( x ) + ~ ( x )  dF(X)} vec(Ail+ Bit) 
{ J F(x)xT dF(x)} 18 { s F(x)QT(x) dF(x)} vec(Ap + Bp) 

under !IC)’”(A, B), and with covariance matrix 

under both (all diagonal elements in this latter matrix are equal to A). 
Proof. Letting I = max(i‘, i”), we see that (n  + I )-2( + m,!:!k,/) is of the form 

where Jh(u) = U h  ( h  = 1,. . . , m)-a nondecreasing function with respect to all the 
components of u E (0, l)m-satisfies E J i (  F(XY’)) = sd u2 du c 00. The assumptions 
of Proposition 3.1 in Hallin et al. (1989) are thus fulfilled. and J(u1,. . . , UI+I) = Ul.kUj+l,/ 

is a score-generating function for (n  + 1)-*( + mjs,,). The corresponding “centered 
scores” (Proposition 2.1, same reference) are 

Proposition 2.2 (same reference as above) then entails the asymptotic joint binormality 
of (n+  1)-2((n - f) i$’!!l , / l , (n - f)i’$!if,,,lf) , with mean (O,O)T under $((”), mean T 

i= I 

under K)”)(A,B), and covariance matrix 
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under both, where K = max(p,q), Ai = 0 for i = p +  1,. . . , K, Bi = 0 for i = 4+ 1.. . . , K, 
and with (all expectations below are taken under 9$(“)) 

and 

Proposition 2.1 follows. 0 

The asymptotic distribution of r;, as provided by Proposition 2.1, unfortunately cannot 
be used for inferential purposes, since the asymptotic covariance matrix (2.3) is not 
distribution-free, and clearly depends on the underlying joint density f ( x ) .  Genuinely 
permutationally distribution-free rank statistics with asymptotic distribution-free uncon- 
ditional distributions, however, can be obtained if conditional (permutational) covariances 
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are substituted for the unconditional ones. The exact permutational covariance of vec rjn) 
is (for n 2 2i) 

This exact, somewhat cumbersome form results from combinatorial arguments [see 
Lemma 2.1 in Hallin et al. (1989). In practice, it can be replaced by the following 
much simpler one, without affecting asymptotic results. 

PROPOSITION 2.2. Let 

Then W; - W; is op(n3), and (vec I'f))'(Wf)-'(vec 
(under !Ji- (")), with m2 degrees of freedom, provided that 

is asymptotically chi-square 

1 F ( x ) {  F(x)}' dF(X) - - V = s 4 

is a full-rank matrix. 

Proof. It follows from Proposition 2.4(ii) in Hallin et al. (1989) that the permutational 
covariance matrix of (n - i ) i ( n  + vec ri(n), viz. (n - i)(n + 1 ) - 4 ~ ; ,  converges in 
probability to its asymptotical counterpart; ( n  - i)(n + l)-4Wf - V@* = op(1) in (2.3). 
On the other hand, (n - i ) (n  + I ) - 4 w ;  is the permutational mean of the (matrix of) linear 
serial multirank statistic(s) of order one 

with a (matrix of) score-generating function(s) J(u, v) = (uuT - a )  63 (vvT - a) [this is a 
consequence of Proposition 3.1 in Hallin et al. (1989)J. Applying again Proposition 2.4 
(same reference), this permutational mean converges in probability to its unconditional 
asymptotical counterpart: 

(n - i ) (n  + 1)-4w: - v B 2  = op(1). 

It follows that Wf - W; is op(n3). Now, from Proposition 2.1 above, and provided that 
V (hence VQ2) is of full rank, QP) = ( n  - i ) (n  + I)-4(vec rf))T(V@2)-1 vec I'p 
is asymptotically chi-square, under 9f("), with m2 degrees of freedom. Since 
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(vet I'?))T(W;)-l(vec I"?)) and (vec I'?))T(Wf)-l(vec ry)) are asymptotically equiva- 
lent to el"), their asymptotic distribution is also chi-square- with however the additional 
property that they do not involve unknown quantities such as V. This completes the proof. 
0 

3. STATISTICAL APPLICATIONS 

3.1. Testing Randomness against Specified A RMA Dependence Alternatives. 

The distributional results of Section 2 of course can be exploited in the problem of 
testing the null hypothesis 31 of randomness. Two testing procedures are investigated 
here. The first one deals with the case of a specified alternative of ARMA dependence; the 
second one is a general, rank-based, portmanteau-type test, to be used against unspecified 
alternatives of serial dependence of order less than or equal to K. Finally, a rank-based 
version of Tiao and Box's specification method is presented in Section 3.3. 

If a particular local alternative of ARMA dependence, of the form (2. I). is considered, 
a "directional" test can be based on a linear combination of rank cross-covariances of 
the form 

C:=, tr{W;-II'?)(Ai + Bi)T} 
[~:.I{vec W;-'(Ai +Bi)}TW;{vec W;-'(Ai +Bi)}]f ' 

(3.1) T'"' - ww - 

where 

I =  I 

If necessary, Wf can be substituted for W;; as for W;, it is easy to see that (n  + l)-*W; 
is a consistent, permutationally invariant estimator of V; it is supposed here to be of full 
rank. 

It follows from Proposition 2.1 that T#,, is exactly (i.e., permutationally) standardized, 
and hence asymptotically standard normal (under the assumptions of Proposition 2. I ) .  
Indeed, letting 'G denote permutational expectations, 

'G{tr WG-'r?)(Ai + Bi)T}2 

= E{vecT(A; + B;) vec(W;-'I'?)) vecT(WG-II','")) vec(Ai + Bi)} 

= {vecT(A; + Bi)}(I €3 WG-')Wr(I 8 WG-'){vec(Ai + B;)} 

= vecT{WG-'(Ai + Bi)} W; vec{W;-'(Ai + Bi)}. 

Still on account of Proposition 2.1, the asymptotic power, under KF)(A, B), of the test 
rejecting H(") whenever exceeds the standard normal ( I  - a)-quantile kl-a is 

Pww = 1 

9 (3.3) 
xi"=, tr[E { F(X)+T(X)}(Ai + Bi)E { F(X)XT}(Aj + Bj)TV-l] 

(C:=, tr{(Ai + B;)V(Ai + Bi)TV-l})f 

where the expectations are computed under 9$("), and @ denotes, as usual, the standard 
normal distribution function. 



62 HALLIN AND PURl Vol. 23, No. 1 

The corresponding normal-theory parametric procedure relies (Hallin et al. 1989, 
Section 4.1) on the usual sample cross-covariance matrices 

n 

it?) = (n  - i)-' C ~ ~ ' ( x ~ ~ ) '  (3.4) 
t=i+l 

[if the assumption that E X ,  = 0 is not to be made, the observations in (3.4) and in the 
subsequent formulas have to be centered about their mean] and rejects the null hypothesis 
of (supposedly full-rank Gaussian) randomness whenever 

Cr=l(n - i)f tr{$J"')-lf,.("'(Aj + Bj)'} 
{Cr=l{vec @J"')-'(Aj + Bj)}T@~')@2{vec $J"')-I(Aj + Bj)}}f 

@' = > k ' - a .  (3.5) 

The resulting asymptotic power, still under !I(/(A, B), is 

The asymptotic relative efficiency of the Wald-Wolfowitz test based on 7$b with respect 
to the Gaussian one based on accordingly is 

The matrices E { F(X)XT}, E { F(X)+'(X)) and V = E { F(X)FT(X)} - in general 
are not easy to compute. If howeverf itself is Gaussian, with covariance matrix % = (au), 
then +(X) = $I-'X, 

which implies 
E { F(X)XT) = diag(2&-' s, 

and 
E { F(X)$'(X)} = E { F(X)X')%-l = diag(260)-', 

where diag(2&a)-' stands for the diagonal matrix with ith diagonal element (2fio;)- ' .  
If moreover & = a21, then 

I 
V = E { F(X) FT(X)} - 4 

and (3.7) reduces to ( 3 / ~ ) ~ ,  which is exactly the ARE, under Gaussian assumptions, of the 
univariate Wald-Wolfowitz test against serial dependence with respect to its parametric 
counterpart, based on usual sample autocorrelations (see, e.g., Hallin et al. 1985). 
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3.2. A Wald- Wolfowitz Multivariate Portmanteau Test. 

Specified alternatives such as (2.1) seldom are considered in practice. In the case of 
an omnibus alternative of ARMA(p, q )  dependence, with unspecified coefficients A/ and 
Bi but with orders p and q smaller than K, one might like to consider the following 
rank-based portmanteau procedure, which consists in rejecting whenever 

where j&,,2;1-a denotes the (1 - a)-quantile of a chi-square variable with m2 degrees of 
freedom. The corresponding Gaussian portmanteau test relies on 

K 

~ g )  = c(n - i)(vec i.!n))T{@$))@2}-1(vec f?)), (3.9) 
i= I 

which is also (Chitum 1976) asymptotically chi-square, under the hypothesis of Gaussian, 
full-rank white noise, still with m2 degrees of freedom. 

The asymptotic powers and relative efficiencies of these two portmanteau procedures 
under KJ")(A, B) depend on the noncentrality parameters 

= c vecT(Ai + Bi) 

and 
K 

G(A, B; f) = C vecT(Aj + Bj) (7 C3 I)(T-1)@2(T 8 I) vec(Aj + Bj) 
i= I 

K 

= tr{&-'(Ai + Bj)$(Aj + Bj)T} 
i= I 

K 

= vecT(Ai + Bj) (7 8 7-I) vec(Aj + Bi). 
i= I 
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The asymptotic relative efficiency of the Wald-Wolfowitz procedure with respect to the 
Gaussian one, under Kj”)(A. B), accordingly is 

(3.10) 

Even under Gaussian assumptions, there is no guarantee that this ARE will be smaller 
than one; if, however, F is Gaussian with diagonal covariance matrix a21, (3.10) again 
reduces to 9/x2. 

3.3. A Rank-Based Version of Tiao and Box’s Tentative Specification Method. 

models on the following device. Denoting by p&!/ the sample cross-correlation 
Tiao and Box (1981) suggest basing a tentative specification of multivariate ARMA 

n 

they propose considering, for each lag i = 1,2,. . . , a matrix where element (k, 1 )  is 
replaced with 

a plus sign if big,, is greater than 2n-4, 
a minus sign if fi!?,, is less than -2n-f , 
a dot if o$!/ lies in [f2n-4]. 

These indicator symbols of course cannot be considered as resulting from formal (5%)  
significance tests, but (quoting the authors) “as a rather crude signal-to-noise ratio 
guide (. . .) providing useful and assimilable indicators of the general correlation pattern.” 

From Proposition 2.1, it follows that the rank-based cross-covariance coefficients y/$’, 
are asymptotically normal under 9( (”), with mean zero and variance (n + 1)4/ 144(n - i ) .  
Accordingly, this widely used device of Tiao and Box can be modified in an obvious 
way, substituting rank-based cross-covariances for sample autocorrelations. and replacing 
y!$)/ . .  in r(n) with 

a plus sign if y& is greater than (n + l)2/6(n - i )  f , 
a minus sign if y$), is less than -(n + 1)2/6(n - i)4, 
a dot if y/& lies in [ f ( n  + 1)2/6(n - i ) i ] .  

This Wald-Wolfowitz rank-based version of Tiao and Box’s procedure is likely to be more 
reliable under non-Gaussian conditions, and more robust against gross error. Contrary 
to the methods described in Sections 3.1 and 3.2 above, its practical implementation is 
quite straightforward. 
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