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A musically motivated mid-level representation for

pitch estimation and musical audio source

separation
Jean-Louis Durrieu, Bertrand David, Member, IEEE and Gaël Richard, Senior Member, IEEE

Abstract—When designing an audio processing system, the
target tasks often influence the choice of a data representation or
transformation. Low-level time-frequency representations such as
the short-time Fourier transform (STFT) are popular, because
they offer a meaningful insight on sound properties for a low
computational cost. Conversely, when higher level semantics, such
as pitch, timbre or phoneme, are sought after, representations
usually tend to enhance their discriminative characteristics, at
the expense of their invertibility. They become so-called mid-
level representations. In this paper, a source/filter signal model
which provides a mid-level representation is proposed. This
representation makes the pitch content of the signal as well
as some timbre information available, hence keeping as much
information from the raw data as possible. This model is
successfully used within a main melody extraction system and a
lead instrument/accompaniment separation system. Both frame-
works obtained top results at several international evaluation
campaigns.

Index Terms—Non-negative Matrix Factorization (NMF), au-
dio signal representation, pitch estimation, audio melody extrac-
tion, musical audio source separation

I. INTRODUCTION

THE high diversity of music signals is particularly chal-

lenging when designing systems for audio analysis, in-

dexing or modeling. This diversity is not only due to the

multiple production mechanisms and the wide tessitura of

the involved musical instruments but also to the large palette

of possible instrument combinations. It is also worth em-

phasizing that music signals are, in most cases, polyphonic

(e.g. produced as mixtures of individual musical sources).

This polyphony undoubtedly is one of the major bottlenecks

of musical signal processing since it considerably limits the

analysis capabilities. For instance, compared with pitch es-

timation on monophonic signals, multiple pitch estimation

adds several other challenges such as dealing with partial

overlapping between concurrent sounds or the estimation of

the number of notes.

When dealing with polyphonic signals, two strategies can

be undertaken: either the whole signal is processed with
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a direct extraction of information, or it is split in several

individual components ideally hypothesized as monophonic

streams. Examples of the first case include multiple pitch

analysis [1] or cover song detection [2]. For the second

case, applications range from instrument recognition [3] to

lyrics-to-audio alignment [4]. A third alternative strategy is

emerging, following the latter strategy but without explicitly

performing any separation. It consists in defining a mid-level

representation that facilitates the subsequent processing (see

for example [5] for tempo estimation, [6], [7] for instrument

recognition and pitch estimation, or [8] for genre classifica-

tion). Compared to traditional time domain and frequency do-

main representations (such as the short-time Fourier transform

or STFT), mid-level representations are often viewed as a

signal transformation from which a collection of indicators are

extracted and indexed by their time instants. These indicators

generally tend to emphasize higher semantics than the energy

in the time-frequency plane. In a number of cases, designing

such a mid-level representation consists in obtaining a salience

function for the task at hand. For example, the representa-

tion proposed in [9] provides Instantaneous Frequency (IF)

attractors, that can be compared to a reassigned STFT and are

well adapted for audio processing systems based on sinusoidal

models. It was in particular used in [10] for main melody

extraction where the time domain signal is first mapped to its

constituting sinusoids, and then transformed into the “pitch

domain”. As another example, the salience functions defined

in [1] for multipitch extraction are directly obtained by a

weighted alternative of the Harmonic Sum (HS).

Mid-level representations may also be built upon perceptu-

ally motivated time-frequency transforms such as gammatone

filter-banks [11] or the constant-Q transform (CQT) [12], with

logarithmically spaced frequency bands. Finally, numerous

studies rely on a low-level feature extraction step which

can also be seen as a form of mid-level representation.

Indeed, the widely used Mel-Frequency Cepstral Coefficients

(MFCC) [13] globally provide information about the spec-

tral envelope: more precisely, under mild assumptions, it

carries information about the filter part of an underlying

source/filter model. Other features such as those based on

chroma vectors, also known as pitch class profiles (PCP),

are often used as salience function for harmony related tasks,

such as chord detection, tonality estimation or audio-to-score

alignment tasks [14], [15].

A potential drawback of such representations is however

a bias towards indexing tasks at the cost of information
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loss, thus limiting the potential for other applications such

as sound transformation, compression or source separation.

For example, the CQT neglects detailed information in high

frequency bands and is not invertible. Similarly MFCCs and

PCPs only describe particular aspects of sounds, which can

be respectively interpreted as timbre and harmony, but only

with rather strong assumptions, and are better defined when

dealing with monophonic signals. It is therefore interesting

to investigate models that allow to describe most, if not all,

the contributions of the audio mixture: in this paper, we

propose a novel “model-driven” mid-level representation. It

combines some advantages of existing representations, espe-

cially invertibility allowing separation applications, with the

access to semantically rich salience functions for pitch and

timbre content analysis. Such a representation can be used

in a number of applications including main melody extraction

and separation, lyrics-to-audio alignment [4], music instrument

recognition or singer identification [16], [17].

The proposed mid-level representation is an extension of

previous works on the Instantaneous Mixture Model (IMM)

presented in [18], [19]. The main contributions of this paper

include:

• A more generic model for the IMM framework: the

assumptions on the signal of [19] are relaxed. In par-

ticular, the part dedicated to the monophonic lead voice

in [19] is here used to model several harmonic audio

sources. This relaxation first allows to use the proposed

model for a broader range of signals, and second provides

new interpretations, leading to semantically rich mid-level

representations;

• The extension of the initial model to multi-channel (e.g.

stereo) signals;

• The incorporation of a specific dictionary element in the

decomposition to allow the representation of unvoiced or

noise components in the leading musical source;

• a detailed experimental validation for both main melody

and lead instrument/accompaniment separation.

This paper is organized as follows. The signal model is

presented in Section II, along with a brief introduction to the

estimation of the involved parameters and a discussion of the

different facets of the proposed model. Then, in Section III,

we discuss three applications of the proposed representation.

At last, in Section IV, concluding remarks are followed by

perspectives for future work.

II. SIGNAL MODEL

The proposed signal model is based on previous studies

on main melody extraction [18], [19]. Here, it is presented

in a generalized framework, with a specific focus on the

interpretation of the parameters and their potential use.

A. Model description

1) Generic model: The input music signal X is the instan-

taneous sum of two signals: a signal of interest and a residual.

For our applications, the signal of interest often refers to a

leading instrument which is pitched (such as a singing voice)

while the residual refers to the remaining background music.

The signal of interest is therefore denoted V and the residual

M , by reference to “Voice” and “Music”. In this section, the

single-channel case is introduced, while stereo-channel signal

processing is addressed in Section II-A2, as a specific instance

of the generic model presented here.

In the proposed framework, the F × N STFT of the

single-channel mixture, X = [xfn]fn, is modeled through

its squared magnitude or power spectrum: S
X , the short-time

power spectrum (STPS) of X . The analysis window size for

the STFT is L = 46.44ms (2048 samples at 44100Hz) and

the hop size is fixed to 5.8ms (256 samples at 44100Hz),

resulting in N analysis windows for the STFT. The discrete

Fourier transforms are performed on L points, after applying a

sinebell weighting window to the frame. The first F = L/2+1
coefficients (the bins of the positive frequencies) of frame n
are stored as the nth column of X.

V and M are assumed independent one from the other, and

the STPS of their sum is therefore assumed to be the sum of

their STPS’s:

S
X = S

V + S
M (1)

In this section, the signal of interest is defined in a broad sense,

and will be specified for target applications in Section II-A2.

This general definition however allows to better understand

the principle of the proposed method and enhances the appli-

cability of the model to a wider range of applications.

Since we are here interested in analyzing the polyphonic

content of music signals, V is assumed to be generated by

one or more harmonic instruments. Each frame n of V is

characterized by its power spectrum for each frequency bin

f , denoted sV
fn. This time-frequency bin of the STPS is

further modeled as follows: each frame is decomposed into

an excitation spectrum (“source”) sF0

fn modulated by a spectral

shaping envelope (“filter”) sΦ
fn, such that

sV
fn = sΦ

fnsF0

fn. (2)

F0 recalls that the pitch information is included in the source

part. Since it is aimed at building a pitch salience representa-

tion with possibly concurrent notes, the source part is further

modeled as a combination of different hypothesized individual

pitches:

sF0

fn =

U∑

u=1

hF0

unPu(f) (3)

where Pu, for all u, are fixed spectral shapes and hF0

un ≥ 0. Pu

can be any kind of spectral shape, for instance a spectral shape

designed to correspond to a typical sound. Here, for each u,

a fundamental frequency (or F0) F(u) is chosen, and Pu is

then generated such that it is the power spectrum of a glottal

signal with F0 equal to F(u), using the glottal source model

KLGLOTT88 [20]. For convenience, the resulting harmonic

spectral “combs” are then stored as the columns of the F ×U
dictionary matrix W

F0 , such that wF0

fu = Pu(f). F varies

from Fmin to Fmax, logarithmically every 1/Ust semitone:

F(u) = 2
u−1

12Ust Fmin,∀u = 1 . . . U (4)
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Fig. 1: Matrix W
F0 , with KLGLOTT88 source model,

Fmin =100, Fmax =800Hz, and Ust =20 (values used for

the experiments, except for Fig. 5a, where Fmax =2500Hz).

Energy in dB.

Note that when Ust = 1 and with Fmin such that F(69) =
440Hz, F is the mapping of a MIDI code number to its

corresponding F0 in Hz. An example of a dictionary W
F0

is given on Fig. 1.

The “filter” part sΦ
fn aims at providing more flexibility to the

model, adapting it to a variety of possible instances (recording

conditions, velocity of the played notes, intonations for a

voice, etc.). It is then decomposed into a linear combination

of “smooth” filters Φk(f). The smoothness of these filters is

controlled by generating them as a weighted sum of smooth

spectral atoms Γp(f):

sΦ
fn =

K∑

k=1

hΦ
knΦk(f) =

K∑

k=1

hΦ
kn

(
P∑

p=1

hΓ
pkΓp(f)

)
, (5)

where hΦ
kn ≥ 0 and hΓ

pk ≥ 0. Contrary to Pu, Γp is constrained

to be a smooth elementary envelope, describing broadband

frequency behaviors. The decomposition onto the Γp function

family therefore allows to catch a global spectral envelope.

More precisely, the whole signal is described onto K = 10
spectral “envelopes” Φk(f), which are in turn decomposed

onto the P = 30 smooth elementary envelopes Γp. A sensible

choice for Γp is to use Hann functions overlapping at 75%,

covering the whole frequency range, with centers linearly

spaced in frequency. This can be seen as sub-sampling the

spectral envelope, implicitly enforcing the smoothness of the

estimated envelopes1. The choice of P fixes the frequency

bands of these Hann functions. P = 30 allows to use

functions that are narrow enough to describe a wide range

of smooth envelopes, yet wide enough to avoid to capture

spectra composed of isolated harmonics. Similarly to W
F0 ,

we define W
Γ such that wΓ

fp = Γp(f) and W
Φ such that

wΦ
fk = Φk(f). The chosen W

Γ family and two examples of

w
Φ
k are illustrated on Fig. 2.

1Other bases were proposed as in [3], with logarithmically spaced centers,
motivated by perceptual principles or by the physical properties of the sounds.
Our choice, however, allows a broader variability in the spectral envelope.
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Fig. 2: Filter part: (a) W
Γ, P = 30 Hann functions, overlap

of 75%. The corresponding frequency band for each function

is about 3000Hz. Only the first elements of the matrix, with

non-null energy in the visible frequency bands are shown here.

(b) 2 elements of W
Φ, in dB.

Finally, V is modeled such that:

sV
fn =

(
K∑

k=1

hΦ
kn

P∑

p=1

hΓ
pkΓp(f)

)(
U∑

u=1

hF0

unPu(f)

)
(6)

In Eq. (6), the amplitude coefficients hF0

un, hΦ
kn and hΓ

pk

give the decomposition of the signal onto the aforementioned

dictionaries. They are estimated from the input signal, and

respectively form the amplitude matrices H
F0 (U ×N), H

Φ

(K×N ) and H
Γ (P ×K). These matrix conventions allow to

write S
V in a compact way, underlining the link between the

proposed framework and Non-negative Matrix Factorization

(NMF) [21]:

S
V = (WΓ

H
Γ
H

Φ)︸ ︷︷ ︸
SΦ

• (WF0H
F0)︸ ︷︷ ︸

SF0

, (7)

where the symbol • represents the Hadamard product. Matrices

S
Φ and S

F0 therefore capture different characteristics of the

input signal of interest: they respectively catch the spectral

envelope (related to timbre properties) and the pitch content,

for each frame. Indeed, the purpose of this structure is to

catch in H
F0 a pitch information which is independent from

the timbre information, and conversely for S
Φ. For instance,

when a singer sings an A4 (440Hz) note, but sings different

vowels, e.g. a [a] at a frame n1 and a [e] at a frame n2,

then we would expect the columns h
F0

n1
and h

F0

n2
to roughly

contain comparable values, while the spectral envelopes s
Φ
n1

and s
Φ
n2

should be rather different and characteristic of the

pronounced vowel. This model is therefore remotely related

to a source/filter model [22], which takes an almost literal

meaning for the special case addressed in Section II-A22.

2According to [22], the filter should be a cascade of filters (product in
frequency) and not filters in parallel (i.e. sum of filters). However, in [23],
it is shown that parallel filters can also be used to successfully synthesize
formants.
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The STPS of the mixture X is therefore modeled as:

S
X = (WΓ

H
Γ
H

Φ) • (WF0H
F0) + S

M (8)

We refer to this model as the Instantaneous Mixture

Model (IMM): the signal X is indeed assumed to be the

instantaneous mixture of the different contributions. This, in

particular, means that the model does not explicitly take into

account reverberations or echoes: these are rejected to the

residual part. We also define our model in contrast with an

alternative framework, the Gaussian Scaled Mixture Model

(GSMM) [19], for which only one of the contributions is active

at each frame.

2) Specific model for main instrument+accompaniment

modeling: The IMM is particularly well suited for signals

containing a main harmonic instrument, such as a singing

voice V , played by a single monophonic instrument backed by

an accompaniment M , played by other instruments. In such

a case, the main voice STPS is parameterized by the above

source/filter framework, while an unconstrained NMF model

of order R is assumed for S
M , as in [19]:

S
V = S

Φ • SF0 and S
M = W

M
H

M (9)

This model is then called the “Voiced”-IMM (VIMM).

Strictly speaking, SV , and in particular H
F0 , should reflect the

fact that V is generated by a single monophonic instrument:

for a given frame n, the vector h
F0

n should contain only

one non-null coefficient. This condition could for instance be

controlled during the parameter estimation of Section II-B.

However, as in [19], this constraint is applied in iterative

steps, as shown on the general block diagram in Fig. 4 and

further explained in Section III-B for melody estimation and

Section III-C for lead instrument separation.

The aperiodic (or unvoiced for a singing voice) components

of the main instrument are however not well modeled with

the harmonic patterns of W
F0 and will mostly remain in the

residual. To better capture these unvoiced components, it is

proposed to extend the previous model by adding an element

to the dictionary W
F0 . This additional element, a vector of

ones, is appended to the former W
F0 and corresponds to a

white noise spectrum. The model including this element is

called the “Voiced+Unvoiced”-IMM (VUIMM). This extra

element is only added in the source separation framework,

once the melody of the lead instrument and all the other

parameters have been accordingly estimated. This allows for

an appropriate modeling of the unvoiced components of V
while at the same time avoiding, to a certain extent, to capture

the noise components of the other musical sources such as the

drums.

At last, since many audio recordings are recorded on several

channels, mostly with two channels, right R and left L, we

also propose an extension allowing to deal with such signals.

The mixture is assumed to be an anechoic mixture of all

the contributions: each source contributes to a channel only

through the direct path between the corresponding microphone

and the position of the source. We further neglect the delay

of reception between microphones, hence reducing the spatial

model to real amplitude gain differences between channels.

The main voice is placed at a single static position, and

contributes to channel C with gain αC > 0, while each of the

R elements of M has its own position, with contribution gain

βC,r > 0. Let BC = diag(
[
β2
C,1, . . . , β

2
C,R

]
), then, for each

channel C ∈ {R,L}:

S
V,C = α2

CS
Φ • SF0 and S

M,C = W
M

BCH
M (10)

The constraints on the gains are given by:
∑

C

αC = 1 and
∑

C

βC,r = 1,∀r = 1, . . . , R (11)

This model, although simple, still allows to consistently deal

with multi-channel signals, even for more than 2 channels.

It might however not be robust enough to discriminate the

different contributions directly from their spatial positions. Our

specific source/filter model for the main instrument compen-

sates this simplicity by enforcing the signal of interest, V , to

obey to the desired melody smoothness property [19].

B. Estimation of the parameters

In this section, we address the estimation of the parameter

set Θ = {HΓ,HΦ,HF0 ,ΘM}, such that S
X , in the single-

channel case, is the estimation of the observed STPS S
X,o =

|X|2:

S
X,o ≈ S

X = S
Φ • SF0 + S

M (12)

S
X is parameterized by Θ and by the fixed dictionaries

W
Γ and W

F0 . Θ
M is the set of variables which calibrates

the residual STPS S
M . The set Θ is estimated as the Θ̂ that

minimizes criterion C(Θ), defined as the divergence measure

D between S
X,o and S

X :

Θ̂ = arg min
Θ

C(Θ) = arg min
Θ

D(SX,o|SX) (13)

We consider divergence measures of the following form:

D(A|B) =
∑

ij

d(aij , bij) (14)

where A and B are two matrices with the same dimensions

I × J and d is a scalar divergence measure. Typical measures

for NMF methods are the Euclidean (EUC) distance dEUC,

the Kullback-Leibler (KL) divergence dKL or the Itakura-Saito

(IS) divergence dIS. These divergences differ in properties but

also in their interpretation on the signal model [24]. The β-

divergence generalizes these divergences [25]:

dβ(a, b) =






aaβ−1
−bβ−1

β(β−1) + bβ−1 b−a
β

, β ∈ R
+\{0, 1}

a log a
b
− a + b, β = 1

a
b
− log a

b
− 1, β = 0

(15)

dβ therefore corresponds to dEUC, dKL and dIS when β respec-

tively equals 2, 1 and 0.

The chosen estimation algorithm relies on the multiplicative

gradient principle developed in [21]. Some insights about its

convergence properties can be found in [26]. The V(U)IMM

estimation algorithm, where Θ
M = {WM ,HM}, is an

iterative algorithm for which the updating rules are given

in Tab. I, where the Hadamard products are denoted by
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TABLE I: Single-channel IMM parameter estimation, with

NMF accompaniment model for residual S
M .

Initialize with random Θ (e.g. modulus of values drawn from the standard
normal distribution),
for i = 1, . . . , Niter do

Update the matrices of Θ in the following order, recomputing SX after
each of the following updates:

H
F0
← H

F0
•

(WF0 )T (SΦ
• (SX).(β−2)

• SX,o)

(WF0 )T (SΦ
• (SX).(β−1))

H
Φ
← H

Φ
•

(WΓHΓ)T (SF0 • (SX).(β−2)
• SX,o)

(WΓHΓ)T (SF0 • (SX).(β−1))

H
M
← H

M
•

(WM )T ((SX).(β−2)
• SX,o)

(WM )T (SX).(β−1)

H
Γ
← H

Γ
•

(WΓ)T (SF0 • (SX).(β−2)
• SX,o)(HΦ)T

(WΓ)T (SF0 • (SX).(β−1))(HΦ)T

W
M
←W

M
•

((SX).(β−2)
• SX,o)(HM )T

(SX).(β−1)(HM )T

end for

•, the fractions are meant element by element, as well as

the exponent in A
.(ω). Niter is the number of iterations for

the gradient algorithm. The divergence value could be used

to set a convergence condition, hence dynamically setting

the optimal number of iterations. However, the link between

this divergence value and the resulting score for the desired

applications is sometimes not clear if not misleading [27]. In

our experiments, several numbers of iterations were tried.

To derive the stereo-channel algorithm, the updating rules

have to be modified. For instance, for H
F0 , the updating

formula should be:

H
F0 ← H

F0 •
(WF0)T (

∑
C

αCS
Φ • (SX,C).(β−2) • SX,Co)

(WF0)T (
∑

C
αCS

Φ • (SX,C).(β−1))

The updates for the channel gains are given by the following

equations:

αC ← αC

sum
(
S

Φ • SF0 • (SX,C).(β−2) • SX,Co
)

sum
(
SΦ • SF0 • (SX,C).(β−1)

)

BC ← BC

(WM )T ((SX,C).(β−2) • SX,Co)(HM )T

(WM )T ((SX,C).(β−1))(HM )T

where the operator sum(.) is the sum over all the elements of

the input matrix.

We have more specifically focussed on the estimation for

β = 0, that is when the β-divergence is the Itakura-Saito

(IS) divergence. One can indeed show that the estimation of

the parameters by minimizing the IS divergence is equivalent

to assuming that the Fourier vector of each frame n follows

a complex Gaussian distribution, centered, with a diagonal

covariance matrix whose diagonal is the vector s
X
n [24]. This

view of the model is further studied in [19] and motivated by

the applications to audio signals of Section III.

It is important to note that, because of the divisions in the

formulas of Tab. I, the values of the parameters have to be

controlled so as to avoid numerical errors such as divisions

by zero. In addition, the indeterminacies related to the model

and the chosen criterion can be avoided by normalizing the

columns of H
Γ, HΦ and W

M . The columns of W
Γ and W

F0

should also be normalized, such that the values in H
F0 all have

the same dynamics. At last, especially for the formulas used

for stereo signal decompositions, the multiplicative gradient

can be raised to some exponent between 0 and 2 as suggested

in [26], [28]. A small value (0.1 for αC and BC) of this expo-

nent usually avoids an evolution of the parameters that would

be, according to our tests, too chaotic and often converging

towards the bounds of the search space, namely 0 or 1 for αC

and βC . Although the convergence of the algorithm in Tab. I

has not been proved yet, in practice, both the single- and

stereo-channel algorithms decrease the criterion in Eq. (13)

after each iteration. The resulting decompositions are also

satisfying, as discussed in Section III.

C. Interpretation: three views of a model

In order to fully take advantage of the proposed signal

model, it is important to understand what kind of represen-

tation it yields. The proposed model,

S
X = (WΓ

H
Γ
H

Φ)︸ ︷︷ ︸
filter

• (WF0H
F0)︸ ︷︷ ︸

source

+(WM
H

M )︸ ︷︷ ︸
residual

, (16)

exhibits several matrix multiplications. This fact makes our

model very close to NMF models, in which, as we did

previously, the decomposition of the signal onto a basis of

spectral atoms is explicit. When using NMF-like methods

for source separation [29], [30] or music analysis [31], most

studies estimate both the spectral atoms and the activation

coefficients, directly from the signal, in an “unsupervised”

way.

Conversely, we develop in this section the reasons why

supervised NMF methods such as ours are particularly in-

teresting and why fixing some parameters is appropriate. An

example of how the remaining parameters can be used is

then sketched: the filter parameters indeed give an interesting

insight on the timbre of the mixture.

1) (Non-)estimation of the pitch: As in [10], we propose a

signal model that allows to decompose the signal onto several

harmonic patterns: in this supervised case of NMF, we fix

the spectral shapes W
F0 and only estimate the corresponding

amplitudes H
F0 . The estimation of the pitch with estimated

spectral shapes may be unreliable, especially when these

shapes are unconstrained, as shown in [32]. In the proposed

framework, the pitch used to generate the basis W
F0 prevents

from the need to determine the pitch of each estimated shape.

2) Pitch salience: The interpretation of the estimates we

obtain are also similar to [10]: hF0

un reflects the energy of the

source component u at frame n, which is related to the fixed

F0 value F(u). An example of an estimated H
F0 is given

on Fig. 3. In [31], a similar pitch salience representation is

proposed, but the reference pitch has to be estimated from the

obtained spectral atom.

Following Goto [10], we believe that representations such as

his or ours are very powerful: they provide salience functions

that are specially designed to avoid classical octave estima-

tion errors. Indeed, assuming that an ideal decomposition of
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Fig. 3: Estimated H
F0 for the song by Tamy, from [33], the

intended notes are drawn as red rectangles for the singing

voice and green rectangles for the guitar.

the signal onto the given basis W
F0 exists and is sparse,

the only non-zero coefficients correspond to sounds that are

present in the mixture. However, due to the flexibility of the

approaches, several spurious non-zero coefficients may occur,

as seen on Fig. 3. For instance, at around 3s, the unvoiced

component [sh] leads to an amplitude vector h
F0

n with

values relatively uniform: a wide band noise can indeed be

roughly approximated by a weighted sum of harmonic combs.

A post-processing is therefore needed, depending on the target

application, as will be seen in Section III.

Such a representation should be compared with other pitch

salience functions such as those proposed in [34], [35]. These

approaches rely more on a perceptual basis for analysis, while

decomposition approaches as the proposed one are analysis-

by-synthesis approaches. The former approaches tend to focus

on what is assumedly important in the signal, while the latter

ones first model the signal, and then interpret the desired

parameters. Indeed, our method first estimates the parameters,

and then analyzes H
F0 . This aspect is discussed in detail in

Section III-A.

3) Timbre analysis: At last, using the filter parameters,

we can extract a “spectral envelope” for the mixture. A

first estimation round does not usually provide a meaningful

envelope, since it corresponds, in our framework, to the global

envelope of the mixture. We could estimate one envelope

per frame and per component, as in [10]. The choice of a

limited number of filters however comes from the desire to

limit the range of possible timbres, hence limiting the number

of instruments that are caught. Since the proposed model

is originally designed to focus on only one instrument, a

second round of estimation of the parameters, with an explicit

restriction on the instrument to catch, provides a more useful

estimation of the spectral envelope.

One can thereafter process these envelopes for instance to

infer the lyrics, without an explicit separation of the signals

as done in [4].

M̂VUIMM

Wiener

Filters
Wiener

Round

Round

Round
1st Estimation

2nd Estimation

3rd Estimation

Melody
Tracking

Melody

random Θ0

Initial H
F0 = H̄

F0

H
F0

Θ

Θ

unvoicing in W
F0

random Θ0

X

V̂VIMM

M̂VIMM

V̂VUIMM

Filters

Fig. 4: Block diagram of the complete system: a melody

estimation block followed by a first parameter re-estimation

block for the VIMM separation, then a second re-estimation,

for the VUIMM separation.

III. APPLICATIONS

The block diagram of the complete system is given in Fig. 4.

It illustrates each target application, namely the main melody

estimation and the separation of the corresponding instrument

(with both variants VIMM and VUIMM), respectively detailed

in Section III-B and III-C. The use of the IMM as a mid-level

representation is first discussed in Section III-A, along with

its underlying interpretations, in order to illustrate the charac-

teristics of the proposed model. In addition, some supporting

material, sound examples, annotation files and source code can

be found at http://www.durrieu.ch/research/jstsp2010.html.

A. IMM as a mid-level representation

It is possible to build, using the IMM, a new mid-level rep-

resentation, interesting for pitch content analysis. Indeed, the

matrix H
F0 gathers the necessary information for inspecting

the pitched content, as discussed in Section II-C2.

In this section, the resulting F0 salience representation for

a polyphonic music excerpt is first described in detail, high-

lighting both the advantages and drawbacks of the proposed

model. These characteristics are then discussed against other

representations based on harmonic summations (HS).

1) Detailed example: A polyphonic excerpt from “Three

views of a secret” (J. Pastorious) is analyzed by the single-

channel version of the IMM. The chosen excerpt is interesting

because it exhibits a rather dense polyphony, with a leading

theme played by several instruments, on two octaves. The

parameters of the model for the analysis were fixed as follows,

using the NMF model for S
M = W

M
H

M :

Parameter Fmin Fmax Ust K P R Niter

Value 100Hz 2.5kHz 20 20 35 1 60

Fig. 5a shows a detail of the resulting matrix H
F0 . The

presence of several concurrent tones, at t=2s, is evidenced by

the strong contours marking the corresponding midi notes at

numbers 81 (A5) and 93 (A6).

http://www.durrieu.ch/research/jstsp2010.html
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A first property arising from our decomposition-based

model is the sparsity of the representation: in the best

cases, non-null coefficients correspond to active F0s, with very

localized peaks in the representation. It therefore provides a

comfortable pitch representation, with a good readability. It is

worth noting how the different F0 lines are distinguishable on

Fig. 5a: in the 1s-2s interval, the evolutions of two different F0

lines at MIDI number 81 can be observed, and the F0 line at

93 is clearly different from those at 81, which tends to confirm

that it is another distinct F0 line, and not an artefact of the

algorithm which could be caused by the active F0s one octave

below.

Second, the lead instruments are usually well represented in

H
F0 , and the main F0 lines on Fig. 5a indeed correspond to

lead instruments. This makes the model particularly suitable

for the applications explored in Section III-B and III-C, respec-

tively main melody estimation and lead instrument separation.

For real world signals, as can be seen on Fig. 3 and Fig. 5a,

the obtained H
F0 is however much noisier than wished for.

Several reasons explain this result: first, since W
F0 is not a

basis, the decomposition is not unique. The algorithm in Tab. I

may therefore lead to local minima of the criterion in Eq. (13).

For instance, coefficients of overtones of active F0s are very

likely to be non-null. Second, since that criterion does not

explicitly include sparsity constraints, the result itself is not

guaranteed to be sparse. Such constraints have been proposed,

for instance in [36] or [37] and could easily be included in the

proposed framework. However, for the applications presented

in the following sections, the H
F0 matrices, estimated without

such constraints, lead to satisfying results in terms of melody

estimation and separation.

Other potential limitations lie in the possible discrepan-

cies between the assumed properties of the model and the

characteristics of real world signal. The chosen matrix W
F0

may be unadapted for inharmonic instruments, for which the

correction brought by S
Φ may be too restricted. Another

limitation is the quantification of the F0 scale. If the real F0

does not belong to the scale, the method will likely use the

neighboring quantified values to represent the sound. This can

be seen on Fig. 3, where the fast pitch variations of the singer

lead to a blurrier graph.

2) Qualitative comparison: In this section some of the

advantages and drawbacks of the proposed representation are

discussed and qualitatively compared to other representations.

Two other existing methods are discussed: the weighted

harmonic sum (HS) of [1] and its improved version [35]. The

HS method, implemented using the same parameters as in [1],

is one of many methods using sub-harmonic summation as

pitch salience function. For a given F0, it consists in adding the

amplitude of the frequency bins that lie within a certain range

from the expected harmonics of F0, weighted by a function of

the harmonic number. The method described in [35] performs

a further processing improving the salience of fundamental

frequencies, while reducing the salience of “spurious” peaks

which inherently appear in the representation3. This section

3The authors are thankful to Prof. A. Klapuri for providing a Matlab
implementation of his algorithm [35].

mainly focusses on HS because many pitch salience functions

rely on a similar principle, including [38], [39].

Fig. 5b and 5c respectively show the representation obtained

with the weighted HS (WHS) [1] and the pitch salience of [35].

For all the figures, the colors have been scaled such that the

result is visually satisfying. The F0 granularity (y-axis) of each

representation was chosen or re-mapped to fit the above IMM

choices.

First, the HS-based representations are inherently more

dense than the previously presented H
F0 matrix: a single sinu-

soid indeed leads to a rather complex pattern [35], with many

non-zero coefficients which do not correspond to any “true”

F0. Harmonic sounds therefore correspond to sophisticated

patterns, as illustrated on Fig. 5b and post-processing steps

from HS results need to take into account these patterns. For

instance, the problem of finding the optimal salience function

in [35] can be seen as an inverse problem of finding the

sources (and their F0s) which have generated these patterns.

To a certain extent, as discussed earlier, the proposed method

provides such a solution directly from the power spectrum.

Furthermore, on Fig. 5b or 5c, the F0 lines around note

81, in the 1s-2s interval, are hidden within one unique lobe.

Although with each representation and appropriate algorithms,

it would probably be possible to retrieve these lines, it is worth

noting that with the IMM, such a task may be greatly sim-

plified when the decomposition is “ideal”. On that particular

excerpt, the octave line, note 93, seems easier to distinguish

from its lower octave on Fig. 5a than on the others: this is not

surprising, since the sparsity induced by our decomposition

approach very likely helps in obtaining F0 lines which are

more localized than HS-based methods.

As mentioned above, the purpose of this section is not

to formally compare or classify the above representations

but rather to illustrate some properties of our framework. In

practice, a mid-level representation has no intrinsic perfor-

mance outside the framework within which it is developed:

the proposed representation could not replace that of the

multiple F0 estimation system in [1] without proper changes

in the whole processing chain. It however provides detailed

and meaningful information about the pitch content (through

H
F0), the timbre (SΦ) and the residual (SM ), tending towards

invertibility, since the whole spectrogram is modeled (except

for its phase). It then allows further processing steps such as

main melody estimation or source separation based on pitch,

as shown in the subsequent sections, in a unified framework.

In comparison, the signal model used to estimate the melody

in [40], also based on an HS salience, is different from the

model used to remove the singing voice therein, which is based

on an NMF decomposition approach.

At last, the main drawback of the proposed method, com-

pared to HS-based ones, is its complexity. It requires quite a lot

of memory to store all the matrices of the model. Furthermore,

its use in a real-time system is not straightforward, since

the estimation algorithm also requires many computationally

heavy iterative steps.
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Fig. 5: Pitch representations for an excerpt from “Three Views

Of A Secret” (J. Pastorius). The rectangles show some of

the notes played by the predominant instruments (mostly

trumpets): (a) Estimated H
F0 (60 iterations), each frame is

normalized by its maximum, displayed in dB. ; (b) Salience

function from [1] (HS with parametric weights), normalized

frames, displayed in dB; (c) Salience function from [35] (HS

with learnt weights), normalized frames.

B. Main melody extraction

The input song is here assumed to be composed of two main

contributions: a leading voice, produced by a given instrument,

playing a predominant melody line, and the complementary

music, or accompaniment. Such a framework was already

studied in [19], and is only briefly described here.

Ideally with the lead instrument/accompaniment model

V(U)IMM, the estimated S
V = S

Φ • S
F0 represents the

lead voice signal, while the estimated S
M represents the

accompaniment. As seen previously, the estimation of H
F0

actually describes a pitch salience for the processed mixture

signal: the desired main melody but also occasionally some

accompaniment notes. For this reason, a post-processing step

is necessary in order to extract the main melody from these

other sources. We have proposed in [19] a simple yet satisfying

system, shown in Fig. 4.

The matrix H
F0 is first estimated without any constraint on

the number of active sources, such that more than one non-

null pitch per frame can be active. As previously seen, the

estimation is usually effective in keeping the most energetic

F0s in H
F0 . The melody F0s can therefore be detected using

a Viterbi algorithm. The underlying assumption is that the

melody line is smooth and that it can therefore be modeled

thanks to a hidden Markov model (HMM), balancing the

smoothness of the melody line with its energy dominance

over the other active F0s. This results in the sequence of

melody index {ξn}n=1...N ∈ [1, U ]N , such that the sequence

of melody F0s is {F(ξn)}n=1...N . In addition, as described

in [19], the lead instrument present or absence was decided

thanks to the energy of each frame.

In addition to the state-of-the-art results obtained at interna-

tional campaigns [41], [42], we have tested our system on the

development dataset from the SiSEC evaluation campaign for

Professionally Produced Music Recordings [43] and [33]. We

have annotated the 5 available stereo audio excerpts: using

the proposed system, the melody was first estimated on the

vocals, then manually corrected. Each annotation is therefore

a sequence of melody F0s, in Hz, evaluated on windows of

46.44ms, every 5.8ms.

The proposed IMM model requires several manually set

parameters for the leading instrument (Fmin, Fmax, Ust, P , the

overlapping rate for W
Γ, K), for the accompaniment (R) and

Niter. Several combinations of these parameters were tested

in [19]. In this section, we propose to analyze the effect of

the choice of R and Niter. We set the other parameters such

that Fmin = 100, Fmax = 800, Ust = 20, P = 30, K = 10
and an overlapping rate for W

Γ of 75%. The tested values of

R were 1, 5, 10, 20, 32, 40, 50, 70, 100 and 200. Niter was

taken from 15, 30, 50, 70 and 100.

Each system outputs a sequence of F0, one per frame.

The returned value is assumed to be a “True Positive” (TP)

if it is within a semitone around the ground-truth value.

“False Positives” (FP) are non-null returned values of F0 for

silent frames, “True Negatives” (TN) count the number of

times the system correctly detected silent frames, while “False

Negatives” (FN) are the frames incorrectly detected as silent.

The precision (Pr = #TP
#TP+#FP

), recall (Rc = #TP
#TP+#FN

) and

F-measure (F = 2 PrRc
Pr+Rc

) were computed and analyzed.

Tab. II provides the best results for each of the SiSEC

songs, obtained by the proposed single-channel VIMM system

performed on the mean of the 2 channels. Fig. 6 also shows

Pr with respect to Niter.

We performed an analysis of variance (ANOVA) on the

results. It appears that all the parameters (R, Niter and the

so-called “song” factor) have a non-negligible effect on the

performances. Not surprisingly, the differences between the

songs imply most of the differences in the results. As seen in

Tab. II, the best overall result is obtained for the song by Tamy
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TABLE II: Precision (Pr), Recall (Rc) and F-measure (F ) for

melody estimation. The best result among all tests is reported,

along with the corresponding parameters R and Niter.
Song R Niter Pr (%) Rc (%) F (%)

Bearlin 100 50 55.0 76.1 64.0
Tamy 100 100 79.9 95.1 86.9

Another Dreamer 10 70 47.7 69.4 56.5
Fort Minor 1 100 36.1 45.5 40.2
“Ultimate” 20 100 52.6 68.2 59.4

(with, in average, P = 77%, R = 92% and F = 84%), while

the worst result is obtained for the rap song by Fort Minor

(P = 31%, R = 38% and F = 34%). The performance

of the system clearly depends on the actual content of the

excerpt: in the best case, there is only one singer, plus a

guitar, with repetitive and soft chords, easily fitted by our

accompaniment model. On the contrary, in the rap song, the

accompaniment is dense and very present, and the “singer”

recites, with voiced components that are less sustained, hence

breaking the assumption of smoothness of the melody line,

hence disturbing the algorithm.

A better discrimination between vocal and instrumental

notes is also crucial to improve the system. This is particularly

true for the song by Tamy, with a very good recall score, i.e.

our algorithm finds many of the notes that were sung, but

a relatively low precision, i.e. when the singer is silent, our

algorithm tends to catch another instrument.

Furthermore, the ANOVA reveals that the more elements

there are in W
M , and the better the results are. Similarly,

the performances grow with the number of iterations. It

however seems that there exists some interaction between

these two factors, such that, depending on the song, there are

different optimal combinations, as shown in Tab. II. From our

experiments, as a trade-off, the combination of R = 40 and

Niter = 50 can lead to satisfying results.

It is also interesting to note that, at low values of R, even

with R = 1, and for a sufficient number of iterations, the

melody estimation does not break down. This tends to confirm

that a polyphonic signal can be modeled in S
V , as presented

in Section II-A1.

At last, a detailed analysis of the estimated pitch deviations

to the ground-truth shows that, with a small number of

iterations (under 10), octave errors seem to happen more often

than with more iterations.

C. Lead instrument/Accompaniment separation

The proposed representation is also useful for audio source

separation. We have demonstrated in [44] and [18] that the

previously described melody estimation can be successfully

used to separate the lead instrument from the accompaniment.

The systems in these references, one single-channel and one

stereo-channel system, are designed such that both the melody

estimation and the separate signal estimations are done within

a unified framework. Indeed, contrary to common represen-

tations in melody pitch estimation [10], [14], the proposed

model provides a representation of the signal which does

not miss important information, in particular the envelope of

each note in the signal. Furthermore, as shown in [24], the

statistical model underlying the choice of the IS divergence

makes the computation of the Wiener filters straightforward,

and the time-domain signals can be retrieved, by an overlap-

add procedure, from the estimated STFTs, for channel C:

V̂
C =

Ŝ
V,C

ŜX,C
X

C and M̂
C =

Ŝ
M,C

ŜX,C
X

C (17)

We propose two main systems, based on the VIMM and the

VUIMM models. As shown on Fig. 4, we first estimate the

main melody {ξn} (first block line), with the single-channel

VIMM algorithm, performed on the mean of the 2 available

channels. Then, H
F0

is created from H
F0 and the estimated

melody to simulate an “ideal” source coefficient matrix where

only the coefficients on the path of the melody and around a

quarter-tone thereof are non-null:

h
F0

un = hF0

un, if |u − ξn| < Ust/2

= 0, otherwise.

Such a H
F0

matrix as initial H
F0 for the stereo-channel

VIMM parameter estimation therefore limits the number of

active F0s in V to 1 per frame, fulfilling the monophonic

assumption for the lead instrument. This leads to the VIMM

separation result (second block line). At last, we add the

unvoiced basis element in W
F0 before a last parameter

estimation round, leading to the VUIMM results (third block

line).

One drawback of the proposed methods is the sub-optimal

solution which consists in first estimating the melody, and then

re-estimating the parameters to compute the Wiener masks.

The joint estimation of the melody and of the separation

parameters is however a difficult problem. The proposed

solution, although sub-optimal, still provides good results, as

discussed in this section. Improvements may rather come from

a revised signal model, with more constraints narrowing the

potential lead instrument, for instance, or directly integrating

the HMM for the states of the source part during the estimation

of the parameters.

The separation results for the above experiences, testing

the number of iterations and the number of elements in the

accompaniment part, were also computed, in terms of Signal-

to-Distortion Ratio (SDR) [45]. The ANOVA suggests that the

separation performance also depends on all the factors: R, Niter

as well as the differences between the songs. In particular, the

SDR grows with R, up to about R = 40, then decreases as R
grows. This effect can be explained by the imperfections of the

model for the lead instrument V : when the harmonic combs

in W
F0 or when the filter smoothness constraint is too rigid,

some elements in W
M may be fitting the lead instrument

part, replacing the estimation in S
V . This will more likely

occur when there are more elements in W
M than necessary.

The parameter R should therefore be adapted to the processed

song, in accordance with its actual content. Furthermore, a

close inspection of the results suggests, as for Precision (Pr),

that an optimal combination of R and Niter exists for each

song. Again, the values of R = 40 and Niter = 50 seem to
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the corresponding SDR gains.

lead to a good trade-off for a general use of the systems for

separation purposes.

In addition, Fig. 6 shows the melody estimation Precision

Pr against Niter, with R = 40, and the corresponding SDR

gains with respect to Pr, for the 5 songs from SiSEC 2010.

The SDR gains are computed as the SDR of the estimated

vocals, to which the original Signal-to-Interference Ratio

(SIR), here the vocal to accompaniment energy ratio, has been

subtracted. As the melody Pr grows, the SDR gains also grow,

but the absolute gain itself does not seem to be related in a

linear way to Pr.

Tab. III provides the resulting vocal SDRs for several

systems. First, the original SIR for each song is provided,

in dB. The Wiener system corresponds to the estimation of

the V and M using a Wiener mask computed thanks to

the original separated tracks: in Eq. (17), Ŝ
V,C = |VC |2,

Ŝ
M,C = |MC |2 and Ŝ

X,C = Ŝ
V,C + Ŝ

M,C . The Oracle systems

compute the Wiener masks with V(U)IMM parameters directly

estimated on the original individual tracks. Then, we ran the

V(U)IMM systems with different initial conditions, providing

the annotated melody (Melody), the voiced-vocal presence for

each frame (Pres., based on the annotated melody) and at last

without prior knowledge. For the oracle systems, as well as

for the Pres. systems, Niter was fixed to 50. For the other

V(U)IMM systems, the best results were chosen, among the

different experiments with R and Niter.

From Tab. III, several remarks can be made:

• All the SDR gains are positive, which shows that our

systems always improve the separation, and rarely miss

the desired lead instrument.

• The Wiener estimations are satisfying with regards to

many criteria, although the underlying assumption of

independence between the audio sources is not always

true.

• The performance differences between the oracle systems

and V(U)IMM systems with annotated melody show that

the melody alone is not a sufficient cue to achieve an

optimal separation. A better estimation of the accompa-

niment part might explain the difference and future work

TABLE III: Vocal SDR results for several systems: see text for

details. The song labels are: #1 Bearlin, #2 Tamy, #3 Another

Dreamer, #4 Fort Minor and #5 “Ultimate nz tour”
Song #1 #2 #3 #4 #5

Original SIR -5.3 0.2 -3.0 -7.2 -7.5
Wiener 10.9 13.7 11.5 11.4 10.1

VIMM - Oracle 8.5 12.4 8.4 7.4 6.4
VUIMM - Oracle 8.6 12.4 8.8 6.8 6.2
VIMM - Melody 6.9 11.3 5.7 4.2 4.9

VUIMM - Melody 7.5 11.8 6.6 4.5 5.5
VIMM - Pres. 5.9 10.5 5.3 2.6 4.4

VUIMM - Pres. 6.7 10.7 6.1 2.7 4.8
VIMM 6.0 11.3 5.3 3.3 4.3

VUIMM 6.5 11.6 5.8 3.3 4.9

Best SiSEC2010 x x 3.1 3.9 2.6

should probably aim at better exploiting the accompani-

ment characteristics, such as repetitions or steadiness in

comparison with vocal signals.

• The automatic systems sometimes perform better than the

Pres. systems: the provided voiced-presence might be too

restrictive for the systems. A fuzzier knowledge, provided

as probabilities of presence, may improve the results,

especially at the boundaries of presence/non-presence and

for frames with lead instrument unvoiced parts.

• VUIMM improves the result of VIMM, thanks to the

addition of the unvoiced element in W
F0 . However, many

spurious unvoiced sounds, especially drum elements, are

caught in VUIMM. A pre-processing step reducing these

effects could be held, for instance using [46]. Note

however that for some signals, such as the rap song (by

Fort Minor), the vocal signal seems easier to understand

with VUIMM than with VIMM.

• The lowest SDR is obtained for the rap song by Fort

Minor. In this case, the singing part is closer to speech

than singing. For rap songs, a possible work-around is

probably to explicitly take into account the repetitive as-

pect of the accompaniment: the lead vocal is predominant

mostly because it varies more than the rest, not because

of its energy. Our systems are essentially based on the

energy cue to detect the melody and are therefore less

suitable for these specific signals.

• Our V(U)IMM systems achieve better results than the

algorithms that participated to the SiSEC 2010 evalua-

tion campaign, on the vocal SDR basis for songs #3 and

#5 [43]. The interested reader is also invited to compare

our separated vocals to those at http://www.irisa.fr/metiss/

SiSEC10/professional/dev eval.html. These encouraging

results show that, when the singing style exhibits suffi-

ciently smooth melody lines, a lead instrument separation

system based on melody estimation achieves state-of-the-

art results.

IV. CONCLUSION

The proposed method models an audio mixture power

spectrum as a decomposition onto a dictionary of pre-defined

spectral shapes. The algorithm to estimate the decomposition

parameters, both for single and multiple channel cases, is also

described. The model and its parameters can be successfully

http://www.irisa.fr/metiss/SiSEC10/professional/dev_eval.html
http://www.irisa.fr/metiss/SiSEC10/professional/dev_eval.html
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used as a mid-level representation of the mixture, displaying in

our case its polyphonic pitch content, but also for applications

such as melody extraction and lead instrument separation from

its background accompaniment.

These applications obtain state-of-the-art results, as shown

by international evaluation campaigns. However, there is room

for improvement, especially in modeling specific singing

styles, such as rap or spoken texts. Deciding whether an

unvoiced sound belongs to the lead instrument, e.g. a singer,

rather than to some other instrument, such as the drums, might

actually be an ill-posed problem. Indeed, some people can

rather genuinely imitate percussive sounds, which also means

that some unvoiced parts of speech signals might be harder

to discriminate from the accompaniment, without an explicit

learning stage. Using several channels to take advantage of

spatial information may help in the decision process.

At last, it is believed that the proposed model could be

advantageously used in other scenarios than those explored in

this article, such as lyrics recognition, chroma computation or

multiple pitch extraction.
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