
A Mutation Model for the SystemC TLM 2.0 Communication Interfaces ∗

Nicola Bombieri Franco Fummi Graziano Pravadelli
Dipartimento di Informatica, Università di Verona, Italy

{nicola.bombieri, franco.fummi, graziano.pravadelli}@univr.it

Abstract
Mutation analysis is a widely-adopted strategy in software

testing with two main purposes: measuring the quality of test
suites, and identifying redundant code in programs. Similar ap-
proaches are applied in hardware verification and testing too,
especially at RTL or gate level, where mutants are generally re-
ferred as faults, and mutation analysis is performed by means
of fault modeling and fault simulation. However, in modern
embedded systems there is a close integration between HW and
SW parts, and verification strategies should be applied early
in the design flow. This requires the definition of new mutation
analysis-based strategies that work at system level, where HW
and SW functionalities are not partitioned yet. In this context,
the paper proposes a mutation model for perturbing transac-
tion level modeling (TLM) SystemC descriptions. In particular,
the main constructs provided by the SystemC TLM 2.0 library
have been analyzed, and a set of mutants is proposed to perturb
the primitives related to the TLM communication interfaces.

1 Introduction

Mutation analysis and mutation testing have definitely
gained consensus during the last decades as being important
techniques for software testing [1]. Mutation analysis is pre-
sented as an approach to validate the effectiveness of a test suite
with respect to its ability in discovering defects in software pro-
grams [2], while mutation testing is the process of generating
new test suites to improve the mutation analysis score [3]. Such
testing approaches rely on the creation of several versions of
the program to be tested, “mutated” by introducing syntactic
changes. The purpose of such mutations consists of perturb-
ing the behavior of the program to see if the test suite is able
to detect the difference between the original program and the
mutated versions. The effectiveness of the test suite is then
measured by computing the percentage of detected mutations.
Similar concepts are applied also for HW testing, when verifi-
cation engineers use high-level fault simulation to measure the
quality of test benches [4], and test pattern generation to im-
prove fault coverage, thus, providing more effective test suites
for the design under verification (DUV). In this case, mutations
introduced in the HW descriptions are referred as faults [4].

Nowadays, (i) the close integration between HW and SW

∗This work has been partially supported by the European project VERTIGO
FP6-2005-IST-5-033709. The authors would like to thank Mark Hampton from
Certess, and Andrea Fedeli and Umberto Rossi from STMicroelectronics for
their valuable contribution in discussing the relation between mutants and de-
sign errors.

SystemC
TLM 2.0
library EFSM formalization

of TLM primitives

Mutations
on EFSMs

TLM design
errors on DUV

Faults
on EFSMs

Figure 1: Mutations on TLM 2.0 primitives vs. design errors.

parts in modern embedded systems, (ii) the development of
high-level languages suited for modeling both HW and SW
(like SystemC with the TLM library), (iii) the need of develop-
ing verification strategies to be applied early in the design flow,
require the definition of mutation analysis-based strategies that
work at system level, where HW and SW functionalities are not
partitioned yet. In this context, the paper proposes a mutation
model targeting the communication primitives of the new Sys-
temC TLM 2.0 library [5]. In particular, the paper analyzes the
main primitives provided with such a library, and it presents the
following innovative contributions (Figure 1):
• a way for formalizing the internal behavior of the TLM

2.0 communication primitives by using the extended finite
state machine (EFSM) model [6];

• a set of mutations for such EFSMs based on an extension
of the well-known transition fault model for FSMs [7];

• identification of relations between the proposed mutations
and typical design errors.

Based on these EFSM mutations we have implemented mu-
tated versions of the TLM 2.0 primitives that can be used for
measuring, via mutation analysis, the quality of test suites de-
fined for verifying SystemC descriptions.

The paper is organized as follows. Section 2 is devoted to
related works. Section 3 introduces the main concepts of the
SystemC TLM 2.0 library and formalizes the TLM primitives
by means of the EFSM model. Section 4 presents the proposed
mutation model and its relation with design errors. Section 5
shows the effectiveness of the proposed mutations in measuring
the quality of test suites. Finally, conclusions are discussed in
Section 6.

2 Related works
Several approaches [8–13], empirical studies [14] and

frameworks [15, 16] have been presented in the literature for
978-3-9810801-3-1/DATE08 © 2008 EDAA 

 



mutation analysis. Different aspects concerning software im-
plementation are analyzed in all these works, in which the ap-
proaches are mainly suited for Java or C constructs.

In [8], a technique for performing mutation analysis on
object-oriented programs is presented. Faults are injected into
objects (e.g., I/O streams) that instantiate items from common
Java libraries and user defined classes. In [9] an extensive set
of mutation operators are defined by means of formal speci-
fications to target basic constructs of traditional programming
languages, like conditions, mathematical operators, data types,
etc.. In [10], very specific mutants are proposed for testing
classic synchronization constructs like monitors, semaphores,
etc. implemented in Java. However, all these approaches are
suited to target basic constructs and low-level synchronization
primitives rather than high-level primitives typically used for
modeling TLM communication protocols.

Approaches described in [11–13, 17] present mutation op-
erators targeting formal abstract models, independently from
specific programming languages. In [11], the great variety of
operators used to introduce mutation in graph-based models is
gathered into two basic operations (i.e., insertion and omission)
and their combinations. In [12], mutation analysis is applied to
integration and system level testing in addition to unit level test-
ing. The application of the mutation analysis criterion in the
context of specification based on finite state machine is pro-
posed in [13]. Finally, a mutation model for representing a
specific class of timing faults is presented in [17] by exploiting
the EFSM model. These approaches are valuable to be applied
at TLM levels. However, the authors do not show a strict rela-
tion between the modeled mutants and the typical design errors
introduced during modeling steps.

To the best of our knowledge, no paper in the literature
addresses the problem of defining mutations for the SystemC
TLM 2.0 communication primitives.

3 EFSM models of SystemC TLM 2.0 commu-
nication interfaces

Recently, the OSCI committee has proposed a TLM li-
brary [18, 19] composed of a set of SystemC primitives that
allow designers to implement several TLM communication
protocols with different degrees of accuracy. Thus, for each
TLM abstraction level, i.e., programmer view (PV), program-
mer view with time (PVT) and cycle accurate (CA) [20], the
best-suited communication protocols can be implemented de-
pending on the purpose of the modeling/verification activity
that has to be performed (e.g., architectural exploration, func-
tional verification, performance evaluation, etc.). Such differ-
ent protocols can be classified according to the following as-
pects, that characterize the underlying TLM primitives:
• type of the communication channel (i.e., bidirectional or

unidirectional primitives);
• communication schema (i.e., blocking or non-blocking

primitives);
• timing (i.e., timed or untimed primitives).
In this context, we summarize, hereafter, the features of the

main SystemC TLM 2.0 primitives, and for each primitive we

A
write(addr,data)

true

B

(a)

A
Bget(data)

true

Handling of
received data

channel_event

C

(d)

A B
Setting of data
to be sent;
put(data)

true

channel_eventC

(c)

A
Bpeek(data)

true

Handling of
received data

channel_event

C

(e)

A
read(addr,data)

true

B

(b)

A

B

Setting of data
to be sent;
nb_put(data)

true

(f)

A
nb_get(data);
Handling of
received data

true

B

(g)

A
nb_peek(data);
Handling of
received data

true

B

(h)

Figure 2: EFSM models of SystemC TLM 2.0 primitives.

propose a formalization by means of the EFSM model. Such
a formalization allow us to (i) precisely define the behavior of
each primitive, and (ii) define a mutation model (Section 4) to
perturb the communication interface of TLM designs accord-
ing to typical design errors. For sake of simplicity and lack
of space, we use graphical descriptions of such EFSMs in the
following sections, but a more detailed textual explanation is
available in [21].

3.1 The EFSM model

An EFSM is a transition system which allows a more com-
pact and intuitive representation of the state space with respect
to the traditional finite state machines. In an EFSM, transitions
are associated with a couple of functions (i.e., an enabling func-
tion and an update function) acting on input, output and register
data. The enabling function is composed of a set of conditions
on data, while the update functions is composed of a set of
statements performing operations on data. Given a transition
out-going from a state, the transition is fired, bringing the ma-
chine from the current state to the next state and performing the
operation included in the update function, once the conditions
involved in the enabling function are all satisfied. The EFSM
model is widely used for modeling complex systems like re-
active systems [22], communication protocols [23], buses [24]
and controllers driving data-path [25].

3.2 Bidirectional/unidirectional primitives

In TLM, communication is generally accomplished by ex-
changing, through a channel, request and response packets,
containing data and control values, between an initiator (mas-
ter) module and a target (slave) module. In this context, the
choice between a bidirectional interface and an unidirectional
interface depends on the degree of detail desired for modeling
the design description.

SystemC Bidirectional primitives (i.e., read() and
write()1) are used to implement a bidirectional interface
each time a tight one-to-one binding between a request and the
corresponding response is required without taking care of de-
tails related to the communication protocol.

Figures 2(a) and 2(b) show the EFSM models correspond-
ing, respectively, to the write() and read() bidirectional
primitives. In both cases, the EFSM is composed of two states.
The enabling function of the connecting transition is always

1Such primitives rely on the SystemC TLM transport() function,
which opportunely calls the implementations of read() and write() de-
fined by the designer.



true, to indicate that as soon as a module calls a write() or
a read(), the corresponding operations are executed and a
return value is provided to the caller.

On the other hand, when a more detailed description of the
communication protocol is desired, it is more reasonable to
break down the protocol operations into a sequence of trans-
fers by exploiting the SystemC unidirectional primitives (i.e.,
put(), peek() and get()). The behavior of put() and
get() is intuitive, they are used to, respectively, send and re-
ceive packets on channels. The peek() function is called to
understand if the channel is ready to provide packet to a subse-
quent get(). By composing such primitives at PVT level,
communication protocols can be more accurately described
to simulate, for example, complex phases of handshaking be-
tween the initiator and the target modules.

Figures 2(c-h) show the EFSM models corresponding to
put(), get() and peek(). There exist both blocking and
non-blocking (nb prefix) unidirectional primitives. The ex-
planation of the corresponding EFSMs is demanded to the
next subsection, where concepts related to blocking and non-
blocking aspects are detailed2.

3.3 Blocking/non-blocking primitives

SystemC blocking primitives might implicitly call a
wait() statement to suspend their execution until a synchro-
nization event occurs. In this way, for example, it is possible to
model a process that starts a transaction by calling the blocking
primitive put() to send a request (or response) packet through
a communication channel. If the channel is not ready (e.g.,
since it is full), the put() implicitly calls a wait() to sus-
pend the process execution until the channel become ready.

On the other hand, processes cannot be suspend if non-
blocking primitives are used. When a process starts a trans-
action, by calling a SystemC non-blocking primitive (e.g.,
nb put()) to send a request (or response) packet, it immedi-
ately receives a response concerning if the access to the channel
succeeded, and then it continues the execution. Thus, synchro-
nization between processes adopting non-blocking primitives
generally relies on polling mechanisms explicitly defined by
the designers.

The EFSM models of unidirectional blocking and non-
blocking primitives are shown in Figure 2(c-h). For example,
the EFSM of the blocking primitive get() is composed of
three states. Once the get() is called, it immediately moves
from state A (initial state) to state B and it asks the channel to
provide a packet (either a request or a response). Then, get()
suspends in state B waiting for an event from the channel (chan-
nel event) indicating that the packet is ready to be retrieved. Fi-
nally, the retrieved data are handled by executing the operations
included in the update function moving from B to the final state
C. The behavior of peek() and put() is almost analogous
to get(), except that put() sets the data to be sent moving
from A to B, and it does not perform operations moving from B

2It is worth noting that the bidirectional write() and read() primitives
exist only in the blocking form.

A
write(addr,data)

true

INITIATOR TARGET

B Communication
phase

Elaboration
phase

Elaboration
phase

Elaboration
phase

write(…) {

} Communication
phase

Figure 3: EFSM model of Bidirectional Blocking Untimed TLM pro-
tocol.

to C once the channel event has been triggered to unblock the
execution.

EFSM models of non-blocking primitives are composed of
two states only. Removing the wait on the channel, primitives
nb get(), nb peek() and nb put() perform the required
operation as soon as they are called, and they immediately
reach the final state in the corresponding EFSMs. The caller
process is informed if the non-blocking primitive succeeded by
looking at its return value.

3.4 Untimed/timed primitives

A modeling style in which there is no explicit mention of
time or clock cycles, like for example TLM PV, is called un-
timed. In this case, the sequence of operations performed by
TLM PV processes are synchronized by using events and the
SystemC untimed primitives described in the previous subsec-
tions (independently from their bidirectional/unidirectional or
blocking/non-blocking characteristics).

On the contrary, TLM primitives are provided with timing
annotations to describe timed-approximated models at TLM
PVT level. In this way, timed behaviors such as system de-
lays and response latencies can be easily verified. The Sys-
temC timed primitives differ from the corresponding untimed
versions, since they include a parameter more for expressing
time delays. The EFSM models of timed primitives resem-
ble the corresponding untimed EFSMs, but their final state is
reached only when the desired delay is elapsed.

3.5 EFSM models of TLM communication
protocols

Several TLM communication protocols can be modeled
by using the TLM primitives previously described, and their
EFSM models can be represented by sequentially composing
the EFSMs of the involved primitives. According with the
OSCI TLM 2.0 proposal [18, 19], the most relevant protocols
are the following.

1) Bidirectional Blocking Untimed. This protocol is im-
plemented by calling a single untimed bidirectional primitive.
Thus, the EFSM model of the protocol is composed only of
the EFSM of the used primitive. For example, Figure 3 shows
the EFSM model of a bidirectional blocking untimed commu-
nication protocol, where the initiator enters the communication
phase by calling the write() primitive, which is atomically
executed by the target. Since the primitive is untimed, the write
is executed instantaneously, and the communication phase ends



A B
put(req)

true

channel_event

TLM request
channel

INITIATOR TARGET

D

E

peek(rsp)

true

H

-ctrl statements-

channel_event

C

F

G
get(rsp)

true

-data response
statements-

channel_event

A
B

get(req)

true

-data request
statements-

channel_event

C

D
E

put(rsp)

true

-data response
statements-

channel_event

F

C
om

m
un

ic
at

io
n

ph
as

e

C
om

m
un

ic
at

io
n

ph
as

e

TLM response
channel

Elaboration
phase

Elaboration
phase

Elaboration
phase

Figure 4: EFSM model of Unidirectional Blocking Untimed TLM
protocol.

by providing the return value to the initiator, which can proceed
with the subsequent elaboration phase.

2) Bidirectional Blocking Timed. The EFSM model of such
a kind of protocol resembles the corresponding untimed EFSM
model. The target, in performing the required operation, takes
care of time delays expressed by the parameter passed to the
adopted bidirectional primitive.

3) Unidirectional Blocking Untimed. This protocol is im-
plemented by splitting write and read transactions into a se-
quence of unidirectional blocking untimed primitives. Figure 4
shows the EFSM models of initiator and target for perform-
ing the same operation of Figure 3, by using the unidirectional
blocking untimed protocol instead of the bidirectional untimed
protocol. The initiator, first, requests a transaction by means of
put(req) (states A, B, C on the left). Then, once the request
succeeds, the initiator peeks the channel for a response by call-
ing peek(rsp) (states D, E, F on the left). Finally, it gets the
response from the channel by means of get(rsp) (states F,
G, H on the left) and it proceeds with the subsequent elabora-
tion phase. Analogously, the target, first asks for a request by
means of get(req) (states A, B, C on the right), and then, af-
ter the elaboration phase (which corresponds to the elaboration
phase implemented in the write() function of Figure 3), it
provides a response by calling put(rsp) (states D, E, F on
the right).

4) Unidirectional Non-blocking Untimed. In the non-
blocking interface, TLM primitives are not allowed to call
wait() functions. Thus, every call to non-blocking primi-
tives returns a boolean value to indicate whether the access suc-
ceeded, and polling mechanisms should be adopted. By consid-
ering the example of Figure 4, the EFSMs modeling put(),
peek() and get() must be substituted with the EFSM mod-
els of, respectively, nb put(), nb get() and nb peek()
to represent the same behavior through the implementation of
an unidirectional non-blocking untimed protocol.

5) Unidirectional Non-blocking Timed. The EFSM model
of such a kind of protocol resembles the corresponding untimed
EFSM model. Timing information is encoded in the enabling
and update functions of the EFSM modeling the timed anno-
tated version of nb put(), nb get() and nb peek().

4 TLM mutation model
In this section we present a mutation model to perturb the

communication protocol of TLM 2.0 SystemC-based designs.
The strategy we followed for defining such a mutation model
consists of the following steps:

1. Identify a set of design errors typically introduced during
the design of TLM communication protocols.

2. Identify a fault model to introduce faults (i.e., mutations)
in the EFSM representations of the TLM 2.0 primitives.

3. Identify the subset of faults corresponding to the design
errors identified at step 1.

4. Define mutant versions of the TLM 2.0 communication
primitives implementing the faults identified at step 3.

4.1 Design errors

Based on the expertise we have gained about typical errors
made by designers during the creation of a TLM description,
we have identified the following classes of design errors:

1. deadlock in the communication phase;
2. forgetting to use communication primitives (e.g., missing

to call put() for sending a request, before calling get()
for retrieving the response);

3. misapplication of TLM operations (e.g., calling
write() for reading data instead of read());

4. misapplication of blocking/non-blocking primitives;
5. misapplication of timed/untimed primitives;
6. erroneous handling of request/response packets (e.g., fail-

ing to set or read the packet fields);
7. erroneous polling mechanism (e.g., infine loop).

Other design errors could be added to the previous list
to expand the proposed mutation model without altering the
methodology we have proposed to define it. Each of the pre-
vious error classes has been associated with at least a mutation
of the EFSM models representing TLM communication primi-
tives, as described in the next subsection. It is worth noting that
we have not considered errors leading to problems during the
code compilation.

4.2 Design errors vs. EFSM mutations

According to the classification of errors that may af-
fect the specification of finite state machine, proposed by
Chow [26], different fault models have been defined for per-
turbing FSMs [7,13]. They target, generally, boolean functions
labeling the transitions, and/or transition’s destination states.
Mutated versions of an EFSM can be generated in a similar
way, by modifying the behavior of enabling and update func-
tions and/or changing the destination state of transitions.

Hereafter, we present how EFSMs of Figure 2 can be per-
turbed to generate mutant versions of the TLM primitives ac-
cording to the design errors summarized in Section 4.1. We
differentiate among mutations that (i) affect the destination
state of transitions, (ii) change the truth value of the enabling
functions, (iii) modified the operations performed in the up-
date functions. Figure 5 shows how such kinds of mutations
are used to affect the behavior of a representative for each
class of primitives (respectively, a write(), a put() and a



(a)

A
write(addr,data)

true

B 2

(b)

A
write(addr,data)

true

B 7

(c)

A
write(addr,data)

B

false

1

(d)

A
write(addr,data)

true

B 3,4,5

(e)

A
write(addr,data)

true

B 6

A
nb_get(data);
Handling of
received data

true

B

(t)

3,4,5

(u)

A
nb_get(data);
Handling of
received data

true

B 6

(f)

A B

C

Setting of data
to be sent;
put(data)

true

channel_event
2

(h)

A

C

B

4,7

Setting of data
to be sent;
put(data)

true

channel_event

(l)

A B

C

Setting of data
to be sent;
put(data)

true

channel_event

false

1

(i)

A B

C

Setting of data
to be sent;
put(data)

true

channel_event 7

(m)

A B

C

Setting of data
to be sent;
put(data)

true

channel_eventtrue 4

(n)

A B

C

Setting of data
to be sent;
put(data)

true

channel_eventfalse 1

(o)

A B

C

Setting of data
to be sent;
put(data)

true

channel_event 3,4,5

(q)

A
nb_get(data);
Handling of
received data

true

B 2

(p

A B

C

Setting of data
to be sent;
put(data)

true

channel_event 6

(s)

A
nb_get(data);
Handling of
received data

true

B

false

1

(r)

A

B

nb_get(data);
Handling of
received data

true

7

(g)

A

C

B

4

Setting of data
to be sent;
put(data)

true

channel_event

Figure 5: Mutations on EFSMs representing TLM 2.0 communication
primitives.

nb get() for bidirectional, unidirectional blocking and uni-
directional non-blocking primitives). Numbers reported in the
bottom-right part of each EFSM identify the kind of design er-
rors modeled by the mutation w.r.t the classification of Sec-
tion 4.1.

4.2.1 Mutations on destination states
Changing the destination state of a transition allows us to model
design errors of type 2, 4 and 7 w.r.t the classification of Sec-
tion 4.1. For example, let us consider Figure 5. Cases (a,b)
show mutated versions of the EFSM corresponding to the bidi-
rectional write() primitive that affect the destination state
of transitions. Mutation (a) models the fact that the designer
forgets to call write() (design error #2), while (b) models
an erroneous polling mechanism (design error #7). Similar
mutations have been defined for unidirectional blocking (cases
(f,h)) and non-blocking primitives (cases (q,r)). However, in
the case of unidirectional blocking primitives there exist two
more mutations, i.e., cases (g,i) which model, respectively, the
misapplication of a non-blocking primitive instead of a block-
ing one, since the wait on channel event is bypassed (design
error #4), and a different way for representing an incorrect use
of the polling mechanism w.r.t case (h) (design error #7).

4.2.2 Mutations on enabling functions
Changing the truth value of enabling functions allows us to
model design errors of type 1 and 4 w.r.t the classification of
Section 4.1. For example, let us consider Figure 5. Case (c)

shows a mutated version of the EFSM corresponding to the
write() primitive, where the transition from A to B is never
fired and B is never reached. Such a mutation corresponds to a
deadlock in the communication protocol (design error #1), due
for example to a wrong implementation of the write() in the
target module. Similar mutations have been defined for uni-
directional blocking (cases (l,n)) and non-blocking primitives
(case (s)). In these cases, the deadlock may be caused by an
incorrect synchronization between get and put operations per-
formed by communicating modules, such that the intermediate
channel is always full (block on put operation) or always empty
(block on get operation). Unidirectional blocking primitives
can also be mutated as shown in case (m), which corresponds
to using a non blocking primitive instead of a blocking one,
since the wait in B for the channel event is prevented by an
always-true enabling function (design error #4).

4.2.3 Mutations on update functions
Changing the operations performed in the update functions al-
lows us to model design errors of type 3, 4, 5 and 6 w.r.t the
classification of Section 4.1.

Two kinds of mutations are defined for the update functions:
modification of the operation, and perturbation of data included
in request or response packets. In the first case, shown in cases
(d,o,t), respectively, for bidirectional, unidirectional blocking
and unidirectional non-blocking primitives, the mutation cor-
respond to a misapplication of the communication primitives,
like, for example, calling a write() instead of a read()
(design error #3), a put() instead of an nb put() (design
error #4), a timed primitive instead of an untimed one (design
error #5). On the contrary, mutations to EFSMs for perturbing
the exchanged data are shown in cases (e,p,u). They allow us
to model design errors corresponding to an erroneous handling
of request/response packets (design error #6).

5 Experimental results
Effectiveness of the mutation analysis based on the

proposed mutation model has been evaluated by verify-
ing the design examples released with the OSCI TLM
2.0 library [5]. In particular, six examples have been
considered where different TLM communication protocols
are implemented, i.e., bidirectional blocking untimed for
pv example, byte enable single and byte enable block, unidi-
rectional blocking untimed for example 3.3, and unidirectional
unblocking timed for p2p pipe thread and bus 1m 3s.

Mutated versions of SystemC TLM primitives have been
implemented and included in a library linked to the considered
benchmarks, instead of the original OSCI SystemC TLM 2.0
library. Then, a SystemC framework have been developed to
perform the mutation analysis by using the test benches pro-
vided with the benchmarks (note that, such test benches have
been modeled by people of the SystemC TLM working group
unaware of our mutation model). The framework works ac-
cording to the single mutation assumption, i.e., each test bench
is simulated by activating a single mutation during each sim-
ulation run and the result is compared with the one obtained
by running a reference simulation without activating mutants.



Mut. on Mut. on Mut. on Total Coverage (%)
Design P. dest. states (#) en. fun.(#) up. fun.(#) mut. (#) Design errors Total

(#) app det app det app det app det 1 2 3 4 5 6 7

pv example 7 14 14 7 7 49 34 70 55 100 100 100 na na 58.3 100 78.6
example 3 3 2 8 7 6 5 21 15 35 27 100 100 100 50.0 na 44.4 100 77.1

p2p pipe thread 3 6 6 3 3 66 27 75 36 100 100 84.2 66.7 100 28.2 100 48.0
bus 1m 3s 9 18 18 9 9 198 84 225 111 100 100 78.9 33.3 50.0 33.3 100 49.3

byte enab single 5 10 10 5 5 155 38 168 53 100 100 100 na na 20.0 100 31.5
byte enab block 4 8 8 4 4 124 48 136 60 100 100 100 na na 37.9 100 44.1

Table 1: Experimental results.

The framework computes the mutation coverage and provides
feedback to the designers by showing which mutations are cov-
ered/not covered by each test bench.

Table 1 shows the obtained results. Column P. (#) shows the
number of instances of communication primitives used in the
designs. Each primitive has been mutated according to the mu-
tation model presented in Section 4.2. The number of applied
(app) and detected (det) mutations on destination states, en-
abling functions and update functions is reported, respectively,
in Columns Mut. on dest. states (#), Mut. on en. fun. (#) and
Mut. on up. fun. (#), while Column Total mut.(#) shows the
total. Columns Coverage (%) report the percentage of covered
mutations corresponding to the seven categories of design er-
rors classified in Section 4.1, and the total coverage. Note that,
mutants corresponding to the design error category number 4
(i.e., misapplication of blocking/non-blocking primitives) are
not applicable (na) for benchmarks using bidirectional primi-
tives, since there are not non-blocking versions for such primi-
tives. Moreover, mutants corresponding to the design error cat-
egory number 5 (i.e., misapplication of timed/untimed prim-
itives) are not applicable for benchmarks pv example, exam-
ple 3 3, byte enab single and byte enab block because they in-
volve primitives that are not provided for considering time.

The achieved coverage proves that test benches released
with the examples are not accurate enough to detect some pos-
sible design errors in the communication protocol. Most of the
undetected mutations are related to design errors belonging to
category number 6, i.e., erroneous handling of packets. This
is due to the fact that the test benches do not set/read some
fields inside the packet (e.g., priority of the request, transaction
id, master thread id, etc.). Test benches that do not consider
such fields may lead to a false sense of security, since they fail
to check the correctness of the synchronization mechanism be-
tween masters and slaves. Moreover, for some benchmark the
considered test benches fail to cover mutations corresponding
to design errors in category 3, 4 and 5 too. Even if such errors
are not often recurring, high-quality test benches should detect
them to avoid error conditions in the communication phase.

6 Concluding remarks

In this paper, we have presented a mutation model for the
new SystemC TLM 2.0 library. First, TLM communication
primitives have been formalized by using the EFSM model.
Then, mutations for perturbing the behavior of the resulting
EFSMs have been defined. Such mutations have been put in re-
lation to actual design errors, and they have been implemented
in mutant versions of the TLM primitives to be used during
mutation analysis of TLM SystemC descriptions. Experimen-

tal results have confirmed the effectiveness of such mutants,
highlighting, for example, the inability of test benches provided
with the reference examples of the SystemC TLM library in
covering all aspects of the adopted communication protocols.

Future works will deal with the definition of mutants to ad-
dress design errors affecting the delay parameter of TLM timed
primitives.

References
[1] D. Hyunsook and G. Rothermel. On the Use of Mutation Faults in Empirical As-

sessments of Test Case Prioritization Techniques. IEEE Transaction on Software
Engineering, pp. vol. 32, Issue 9, 733–752, 2006.

[2] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on Test Data Selection: Help
for the Practicing Programmer. IEEE Computer, pp. vol. 11, Issue 4, 34–41, 1978.

[3] R. A. DeMillo and A. J. Offutt. Constraint-Based Automatic Test Data Generation.
IEEE Trans. Softw. Eng., vol. 17(9):pp. 900–910, 1991.

[4] M. Abramovici, M. Breuer, and A. Friedman. Digital Systems Testing and Testable
Design. Computer Science Press, New York, 1990.

[5] Open SystemC Initiative. www.systemc.org.
[6] D. Lee and M. Yannakakis. Online minimization of transition systems. In Proc. of

ACM Symposium on the Theory of Computing, pp. 264–274. 1992.
[7] K.-T. Cheng and J.-Y. Jou. A Single-State-Transition Fault Model for Sequential

Machines. In Proc. of IEEE ICCAD, pp. 226–229. 1990.
[8] R. T. Alexander, J. M. Bieman, S. Ghosh, and J. Bixia. Mutation of Java objects. In

Proc. of IEEE ISSRE, pp. 341–351. 2002.
[9] P. E. Black, V. Okun, and Y. Yesha. Mutation operators for specifications. In Proc.

of IEEE ASE, pp. 81–88. 2000.
[10] J. S. Bradbury, J. R. Cordy, and J. Dingel. Mutation Operators for Concurrent Java

(J2SE 5.0). In Proc. of IEEE ISSRE, pp. 11–11. 2006.
[11] F. Belli, C. J. Budnik, and W. E. Wong. Basic Operations for Generating Behavioral

Mutants. In Proc. of IEEE ISSRE, pp. 10–18. 2006.
[12] T. Olsson and P. Runeson. System level mutation analysis applied to a state-based

language. In Proc. of IEEE ECBS, pp. 222–228. 2001.
[13] S. C. Pinto Ferraz Fabbri, M. E. Delamaro, J. C. Maldonado, and P. C. Masiero.

Mutation analysis testing for finite state machines. In Proc. of IEEE ISSRE, pp.
220–229. 1994.

[14] M. R. Lyu, H. Zubin, S. K. S. Sze, and C. Xia. An empirical study on testing and
fault tolerance for software reliability engineering. In Proc. of IEEE ISSRE, pp.
119–130. 2003.

[15] J. S. Bradbury, J. R. Cordy, and J. Dingel. ExMan: A Generic and Customizable
Framework for Experimental Mutation Analysis. In Proc. of IEEE ISSRE, pp. 4–9.
2006.

[16] B. J. Choi, R. A. DeMillo, E. W. Krauser, R. J. Martin, A. P. Mathur, A. J. O. H.
Pan, and E. H. Spafford. The Mothra tool set (software testing). In Proc. of IEEE
HICSS, pp. vol. 2, 275–284. 1989.

[17] S. S. Batth, E. R. Vieira, A. Cavalli, and M. Ü. Uyar. Specification of Timed EFSM
Fault Models in SDL. In Proc. of FORTE, pp. 50–65. 2007.

[18] A. Rose, S. Swan, J. Pierce, and J.-M. Fernandez. Transaction Level Modeling in
SystemC, 2004. White paper. www.systemc.org.

[19] T. Kogel, T. Wieman, H. Keding, O. Fathy, and M. Burton. OSCI TLM 2.0. PVT
Modeling Examples, 2007. www.systemc.org.

[20] J. A. Colgan and P. Hardee. Advancing Transaction Level Modeling (TLM):
Linking the OSCI and OCP-IP Worlds at Transaction Level. In White paper.
http://www.opensystems-publishing.com/whitepapers.

[21] N. Bombieri, F. Fummi, and G. Pravadelli. EFSMs and Fault Modelling. Deliverable
D2.5 of VERTIGO European Project, University of Verona, Italy, 2007.

[22] T. J. Koo, B. Sinopoli, A. Sangiovanni-Vincentelli, and S. Sastry. A Formal Ap-
proach to Reactive System Design: Unmanned Aerial Vehicle Flight Management
System Design Example. In Proc. of IEEE CACSD, pp. 522–527. 1999.

[23] H. Katagiri, K. Yasumoto, A. Kitajima, T. Higashino, and K. Taniguchi. Hardware
implementation of communication protocols modeled by concurrent EFSMs with
multi-way synchronization. In Proc. of ACM/IEEE DAC, pp. 762–767. 2000.

[24] A. Zitouni, S. Badrouchi, and R. Tourki. Communication Architecture Synthesis for
Multi-bus SoC. Journal of Computer Science, vol. 2(1):pp. 63–71, 2006.

[25] A. Guerrouat and H. Richter. A component-based specification approach for embed-
ded systems using FDTs. ACM SIGSOFT Softw. Eng. Notes, vol. 31(2):pp. 14–18,
2006.

[26] T. Chow. Testing software design modeled by finite state machines. IEEE Trans. on
Software Engineering, vol. 4(3):pp. 178–187, 1978.


