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Abstract:&&Title reworded slightly for clarity: silver-copper

oxide could be confused for (silver oxide)/(copper oxide). We

also avoid words like “new” or “novel” in titles.&&The

selective oxidation of ethylene to ethylene epoxide is highly

challenging as a result of competing reaction pathways leading

to the deep oxidation of both ethylene and ethylene oxide.

Herein we present a novel catalyst based on silver and copper

oxide with an excellent response in the selective oxidation

pathway towards ethylene epoxide. The catalyst is composed of

different silver nanostructures dispersed on a tubular copper

oxide matrix. This type of hybrid nanoarchitecture seems to

facilitate the accommodation of chlorine promoters, leading to

high yields at low reaction temperatures. The stability after the

addition of chlorine promoters implies a substantial improve-

ment over the industrial practice: a single pretreatment step at

ambient pressure suffices in contrast with the common practice

of continuously feeding organochlorinated precursors during

the reaction.

Ethylene oxide (EO) is a bulk chemical intermediate of
paramount importance in the chemical industry for the
production of multiple oxygenated end-products.[1] The
main goal in EO production processes is to increase the
selectivity and the EO concentration at the outlet of the
reactor. However, maintaining a high selectivity at moderate
to high conversion rates remains challenging in view of the
susceptibility of ethylene and EO to be completely oxidized
to CO2 in the presence of oxygen.[2]

The reference industrial catalysts for this reaction consist
of large silver nanoparticles (100–200 nm) supported (circa
15%wt.) on low-surface-area alumina. Over the years, these
catalysts have been highly optimized by promotion with alkali
metals (mainly cesium)[3] and also with other metals, such as
rhenium, molybdenum, tungsten, and chromium.[4, 5] To min-
imize the formation of CO2, chlorine-containing compounds,
such as 1,2-dichloroethane (DCE), hydrochloric acid, and
ethyl chloride, are also used as promoters.[6, 7] These chlori-
nated compounds are added continuously to the reactor feed
and have a strong influence on the final EO selectivity.
Furthermore, it is also customary&typical? Common?& to
add ethane to the reactor feed (around 10% of the total
volume) to facilitate the adsorption/desorption equilibrium of
Cl on the Ag surface. Otherwise irreversible poisoning of the
Ag active sites by Cl occurs.[3, 7]

Due to the industrial importance of this reaction, many
efforts have been devoted to the design of a catalyst that
could outperform the silver–alumina system. Barteau et al.
showed both theoretically[8] and experimentally[3,9] that
copper–silver bimetallic catalysts increase the performance
of conventional Ag catalysts, achieving higher selectivity
towards EO. Other reports aiming at a rational design of
catalytic surfaces suggest that the presence of Cu on the
surface of the catalyst could critically affect the epoxidation
mechanism.[8, 10–12] Cu tends to oxidize at the reaction temper-
atures forming CuO surfaces alongside the Ag particles and,
depending on the catalyst surface structure, this combination
of silver and copper oxide can increase the selectivity towards
EO.[11, 13] Another important fact regarding the specific role of
Cu is that both Cu and CuO can interact with Cl, in a similar
way to how Ag does, with the already mentioned benefits
regarding EO selectivity.[14–16]

Considering the above premises, herein we present
a novel structure for a Ag/CuO catalyst with a high content
of both metals. This material can be prepared by a facile co-
precipitation method (see the Experimental Section in
Supporting Information), followed by a careful thermal
treatment. Unlike other structures that are prepared by
similar methods (for example the Ag2Cu2O3 material
reported by Tejada-Rosales et al.[17] that is inactive for
ethylene epoxidation), we have obtained Ag/CuO nanoarch-
itectures with highly accessible Ag nanoparticles and where
the Ag and CuO are intimately linked, leading to an increase
in the activity and the selectivity to EO.

A first examination of the morphology of the catalyst by
using scanning electron microscopy (SEM) revealed a tubular
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configuration with a high aspect ratio with lengths of up to
1 mm and variable widths between 30–200 nm (see Figure S1
in Supporting Information). Energy-dispersive X-ray spec-
troscopy (EDX) analysis at different spots showed a homoge-
neous overall chemical composition with Ag:Cu atomic ratios
of 0.97 (57%wt. Ag in the solid), in agreement with the
equimolar ratio of the initial solution (see the Experimental
Section and Figure S1 in the Supporting Information). X-ray
diffraction (XRD) and HR-TEM analysis confirmed the
presence of two crystallographic phases assigned to metallic
Ag (Fm3m cubic&&do you mean Fm3̄m?&&) and CuO
(C2/c monoclinic), respectively (Figures S2, S4, S5). To gain
further insight into the distribution of the Ag nanostructures
in relation to the CuO phases, high-angle annular dark field
scanning transmission electron microscopy (HAADF-STEM)
images were acquired, including a tomographic analysis
carried out by taking up to 140 STEM images at varying
angles from �70 to 70 8 and reconstructing a three-dimen-
sional model of a single Ag/CuO tube. Different morpholo-
gies ranging from small nanoclusters to anisotropic rods
accounted for the heterogeneous variety of shapes displaced
in this Ag/CuO catalyst (Figure 1a; Figures S3–S5). The
energy-dispersive (EDX) mapping analysis of the different
layers of material compositions suggested a core–shell
distribution with an irregular Ag core (outlined in red in
Figure 1b,c) in conjunction with multiple segregations&clus-
ters?& of Ag nanoparticles of a few nanometers in size

(Figure 1b, AgNPs shown in blue). A CuO outer shell
surrounds these Ag nanostructures (highlighted in yellow/
orange in Figure 1c; see also Figure S6 and the Movie in the
Supporting Information) but interestingly, does not com-
pletely covering them. In summary, from the above observa-
tions, and especially from the 3D tomographic reconstruction,
a picture emerges of a complex hybrid nanostructure in which
metallic Ag and CuO are segregated but intertwined, with
a high amount of shared interface area that facilitates
interaction, and where a representative fraction of the Ag
remains accessible to gas-phase reactants.

The evaluation of the catalytic activity of the Ag/CuO
hybrid catalyst for ethylene epoxidation was first carried out
in the absence of promoters and compared with a reference
silver-based catalyst (20% wt. Ag) supported on a-alumina
and prepared by a conventional wetness impregnation
method (Figure S7). The performance of this catalyst is
similar to other unpromoted Ag/Al2O3 catalysts in the
literature (see for instance Ref. [9]). The results obtained
during reaction under identical experimental conditions of
both solids&(that is, the Ag/Al2O3 reference catalyst and the
Ag/CuO system)?& are summarized in Table S1. It can be
observed that the Ag/CuO nanostructure greatly outperforms
the reference Ag/Al2O3 catalyst. At 225 8C, the conversion
obtained with the Ag/CuO catalyst is more than 20 times
higher, but the reaction rate, referred to the mass of Ag, is
more than 40 times higher. Furthermore, with the Ag/CuO
catalyst, selectivity values are generally over 10 points higher
at equivalent conversions and 21% yields can be achieved at
only 225 8C. Furthermore, the Ag/CuO structure starts to be
active at a much lower temperature and 100 8C is sufficient to
obtain measurable conversions, instead of the 175 8C typically
reported for this reaction.[18]

As can be inferred from the preceding discussion, we
credit the enhanced performance of the Ag/CuO catalyst to
the strong interplay between both phases, with a high degree
of entanglement shown through electron microscopy images.
The presence of Cu can withdraw electrons from nearby Ag
atoms and rendering the Ag more electropositive, thereby
increasing the electrophilicity of adsorbed oxygen species that
favor the direct formation of EO.[19]

Perhaps the most compelling evidence regarding the
singular nature of the Ag/CuO catalyst compared to standard
epoxidation catalysts can be obtained from the different
behavior against poisoning by chlorine-containing com-
pounds. To study this, we challenged both Ag/CuO and Ag/
Al2O3 reference catalysts by co-feeding of a Cl precursor (1,2-
dichloroethane, DCE) during the ethylene epoxidation reac-
tion in the absence of ethane (ethane is generally added in
industrial practice to counterbalance the poisoning effect of
Cl).[3, 20] Their behavior was remarkably different, as shown in
Figure 2, where the evolution of the rates of formation of EO
and CO2 during the ethylene epoxidation reaction at 200 8C is
shown.

As expected, in the absence of ethane in the feed, the Ag/
Al2O3 catalyst is quickly poisoned. After 30 min, the reaction
rate is one tenth of the initial, and becomes negligible after 2 h
on stream (Figure 2b). In contrast, for the Ag/CuO catalyst
the EO formation rate initially increases, reaching amaximum
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Figure 1. Morphochemical analysis of the Ag/CuO catalyst: a) Selec-

tion of representative HAADF-STEM images and the corresponding

EDX mapping analyses to determine the chemical distribution of Ag

(red) and Cu (yellow) on the catalyst; b) Snapshot of the Ag fraction in

a HAADF-STEM 3D tomography reconstruction of a Ag/CuO nano-

tube: the red figure corresponds to the bulk Ag inner core while the

blue dotted images are randomly distributed individual Ag NPs;

c) Equivalent side-view reconstruction now including the CuO envelope

(yellow color) covering the Ag core. The presence of Ag/CuO inter-

twined areas with Ag islands emerging on the surface can be detected.

All scale bars=25 nm.
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after about 40 min of poisoning and smoothly decreasing
thereafter (Figure 2a). Interestingly, for the Ag/CuO catalyst
the effects of Cl pretreatment are permanent, and depend
solely on the total amount of DCE fed to the reactor. If at any
time during pretreatment the DCE feed is stopped, the
catalyst remains thereafter “frozen” in that state, with
constant conversion and selectivity (Figure S8), independent
of the amount of Cl previously dosed. Moreover, the catalyst
maintains a stable performance for at least 40 h of operation
at 200 8C, indicating that the Cl species irreversibly remain on
the surface during reaction (Figure S9). This could be
expected, since it has been reported that temperatures
above 400 8C are needed to remove the Cl from Ag[21] and
Cu surfaces.[15] Therefore, the presence of copper oxide seems
to be playing a determinant role in the stabilization of
chlorine atoms. This unique behavior means that chlorine
promotion could be carried out only during the preparation of
the catalysts, without the need to add DCE during reaction,
with the economic and environmental advantages that this
implies.

X-ray photoelectron spectroscopy (XPS) was used to
confirm the presence of Cl on the catalyst surface and to

evaluate the extent of penetration of Cl species into the Ag/
CuO catalyst (Figure S10 and S11). Increasing the pretreat-
ment time led to a deeper penetration of Cl species and after
1200 seconds of etching, Cl was only found for the catalyst
pretreated for 3 h.

The effect of Cl addition during ethylene epoxidation has
been intensely studied. A widely supported idea states
&proposes?& that Cl promotion decreases the energy
barrier from the oxometallacycle intermediate (OMC) to
EO relative to the nonselective pathway.[22, 23] Moreover,
Cl species block oxygen vacancies on the Ag surface, thus
preventing the formation of OMC, which is deemed mainly
&is considered primarily?& responsible for the nonselective
reaction[2, 23] and favors the selective direct epoxidation route.
Recently, Rocha et al.[24] demonstrated by in situ XPS analysis
that Cl has a direct effect on oxygen atoms on the Ag surface,
increasing the electrophilic nature of the oxygen adsorbed on
Ag. In accordance with the direct epoxidation mechanism,[25]

an overall increase of the EO selectivity was detected. The
interaction of Cl with Ag depends on the degree of coverage,
ranging from an initial chemisorption at low coverage to the
consolidation of segregated AgCl phases at higher coverage
levels.[21] The interaction with Cu or CuO is analogous but
requires a lower number of intermediates to accommodate Cl
atoms and forms CuCl or CuCl2 regardless of the amount of
Cl added.[15] Furthermore, the diffusion rates of the Cl atoms
into Ag films are substantially lower than in Cu films.[14] In
summary, Cl promotion appears to increase the electro-
philicity of absorbed oxygen by electrostatic effects and is
likely to be enhanced in the presence of Cu since copper
chlorination occurs more readily than silver chlorination.

Considering our experimental observations, the reported
studies of Cl promotion on Ag catalysts, and the interactions
of Ag and CuO with Cl, we suggest a chlorination mechanism
&for?& our catalyst, schematized in Figure 3a. Two different
outcomes are possible, depending on the Cl amount dosed,
which in turn depends on the Cl concentration and contact
time. For low DCE amounts, Cl-containing species will
interact preferably with the CuO, forming CuO/Cl derivatives
and acting as a chlorine sponge.&&Ok?&& Thanks to the
Ag/CuO intertwined structure of our catalyst, these Cl atoms
will increase the electrophilicity of the oxygen adsorbed on
neighboring Ag surfaces while avoiding most of the poisoning
effect. This is consistent with the observations in Figure 2a,
where, at lower pretreatment times (< 60 min), the rate of
formation of EO slightly increases as a consequence of the
increase in the selectivity to EO that offsets the decrease in
conversion. On the other hand, for higher doses of Cl
precursors (contact times greater than 60 min, see Figure 2a),
Cl interaction with Ag nanoparticles becomes more impor-
tant, ultimately leading to poisoning of the catalyst. In this
scenario, the selectivity continues to increase as Cl withdraws
electrons from the adsorbed oxygen, but now Cl also blocks
the vacancies available on Ag, reducing the EO produced.

The performance of the Ag/CuO catalyst with a pretreat-
ment of 4 ppm of Cl for 180 min is compared in Figure 3b
with some of the best reported results[3, 20,26,27] measured under
similar experimental conditions (ethylene concentration (6–
15%), C2H4/O2 ratios varying from 1 to 2, with and without
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Figure 2. Evolution of the reaction rates of CO2 and EO during

pretreatment with 1.2-dichloroethane (4 ppm) of the a) Ag/CuO cata-

lyst or the b) Ag/Al2O3 catalyst. Temperature=200 8C. The inlet flow

contains 6% ethylene, 12% oxygen, and 88% helium. Insets: STEM-

HAADF images of the catalysts (see also the Supporting Information).
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promoters, at 1 bar of total pressure). In general, the
selectivity to EO with the Ag/CuO catalyst presented in this
work is higher and the temperatures required to reach
a certain conversion are considerably lower (circa 75 8C
lower), even when comparing with Cs or Cs+Cl promoted
catalysts[20] or when using lower oxygen concentrations (Fig-
ure S12). Only the recent results reported by Li et al.[28] who
prepared Ag/a-Al2O3 by an impregnation–bioreduction pro-
cess with Cinnamomum camphora extract match the perfor-
mance of the Ag/CuO catalyst, although it is important to
note that they were obtained under reaction at 20 bars of total
pressure and at lower space velocity.

The fact that results comparable or better than the best
reported in the open literature have been obtained with
a simple and robust catalyst strongly suggests that Ag/CuO
catalysts may be a key platform for increasing the perfor-
mance&efficiency?& of the ethylene epoxidation reaction in
the near future. The high stability of the Cl promotion allows
us to tune the catalytic performance simply by controlling the

total dose of DCE supplied in the pretreatment step. This
allows a simpler and more economical operation compared to
standard practice with conventional catalysts, since the
feeding of both ethane and chlorine-containing compounds
during operation can be avoided.
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Figure 3. a) Representation of the proposed Cl promotion mechanism;

the Cl atoms are readily adsorbed or substituted on both CuO and Ag

surfaces and promote the generation of more electrophilic oxygen

species in the vicinity; b) Overview of the best reported catalytic

performances for ethylene epoxidation expressed in terms of selectivity

to EO formation against total ethylene conversion. The Ag/CuO

catalyst pretreated with 4 ppm of 1,2-dichloroethane for 180 min (circle

symbols) is selected for comparison. Results for previously reported

systems are shown as square symbols. The different colors of circles

and squares indicate different reaction temperatures (see inset

legend). Numbers in square brackets indicate the reference in which

the indicated system is reported.&&Caption ok? Expanded to aid the

reader.&&
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Communications

Heterogeneous Catalysis

A. Ramirez, J. L. Hueso,* H. Suarez,

R. Mallada, A. Ibarra, S. Irusta,

J. Santamaria* &&&&—&&&&

A Nanoarchitecture Based on Silver and

Copper Oxide with an Exceptional

Response in the Chlorine-Promoted

Epoxidation of Ethylene

When silver meets copper oxide : A cata-

lyst composed of silver nanostructures

dispersed within a nanotubular copper

oxide support was found to be an excel-

lent catalyst for the selective epoxidation

of ethylene at temperatures below 250 8C.

The catalyst can accommodate chlorine

promoters in a single pretreatment step

with the CuO acting essentially as a Cl

sponge, thus avoiding, for the most part,

irreversible catalyst poisoning.

Heterogene Katalyse

A. Ramirez, J. L. Hueso,* H. Suarez,

R. Mallada, A. Ibarra, S. Irusta,

J. Santamaria* &&&&—&&&&

A Nanoarchitecture Based on Silver and

Copper Oxide with an Exceptional

Response in the Chlorine-Promoted

Epoxidation of Ethylene

Dispergierte Silber-Nanostrukturen in

einem Tr�ger aus Kupferoxid-Nanorçhren

katalysieren die selektive Epoxidierung

von Ethylen bei Temperaturen unter

250 8C. In einem Vorbehandlungsschritt

nimmt der Katalysator Chlor-Promotoren

auf, wobei CuO als Cl-Schwamm fungiert

und eine irreversible Vergiftung des

Katalysators weitestgehend vermeidet.
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