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Abstract  

The increasing use of nanoparticles (NPs) in a wide range of consumer and industrial applications has 

necessitated significant effort to address the challenge of characterizing and quantifying the underlying 

nanostructure – biological response relationships to ensure that these novel materials can be exploited 

responsibly and safely. Such efforts demand reliable experimental data not only in terms of the biological 

dose-response but also regarding the physicochemical properties of the NPs and their interaction with 

the biological environment. The latter has not been extensively studied, as a large surface to bind 

biological macromolecules is a unique feature of NPs that is not relevant for chemicals or 

pharmaceuticals, and thus only limited data have been reported in the literature quantifying the protein 

corona formed when NPs interact with a biological medium and linking this with NP cellular 

association/uptake. In this work we report the development of a predictive model for the assessment of 

the biological response (cellular association, which can include both internalized NPs and those attached 

to the cell surface) of surface-modified gold NPs, based on their physicochemical properties and protein 

corona fingerprints, utilizing a dataset of 105 unique NPs.  Cellular association was chosen as the end-

point for the original experimental study due to its relevance to inflammatory responses, biodistribution, 

and toxicity in vivo.  The validated predictive model is freely available online through the Enalos Cloud 

Platform (http://enalos.insilicotox.com/NanoProteinCorona/) for use as part of a regulatory or NP safe-

by-design decision support system. This online tool will allow the virtual screening of NPs, based on a list 

of significant NP descriptors, identifying those NPs that would warrant further toxicity testing on the 

basis of predicted NP cellular association.  

 

Keywords 

Nanoparticles, Nanoinformatics, protein corona, cell association, Enalos Cloud platform, web service, 

toxicity, hazard characterization, risk assessment  
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1. Introduction 

Nanoparticles (NPs) unique properties are increasingly gaining attention in a wide range of applications 

spanning from electronics, to drug delivery, defence applications and many more. A critical mass of 

scientific effort is currently directed towards NPs research and technology development targeting new 

improved structures for all possible uses.  Recent progress in the field resulted in the emergence of 

several NPs as valuable alternatives to ‘traditional’ bulk materials and simultaneously raised concerns 

regarding the short and long term effects of such novel materials on human health and the 

environment.(Haase, Tentschert and Luch, 2012; D. Fourches, 2014; Tropsha, Mills and Hickey, 2017)  

 

Specific health and safety concerns regarding NPs relate to their small size that allows the NPs to interact 

with biological entities in new ways, such as engaging with biological receptors thereby ensuring active 

uptake processes and access to sub-cellular organelles, or through binding of biological macromolecules 

such as proteins, lipids and polysaccharides. Such interactions are driven by the chemical composition of 

the NP (its’ synthetic identity), and result in a context-dependent biological identity.(Liu et al., 2011; 

Rallo et al., 2011; Zhang et al., 2012; Tantra et al., 2015; Fourches et al., 2016; Mu et al., 2016; Fjodorova 

et al., 2017) Additionally, some of the features of NPs themselves pose an inherent risk to living 

organisms, such as where there is the possibility for transfer of electrons from the NPs to the cells, in 

specific cases where the band-gap (the difference in energy between the valence band and the 

conduction band of a solid material that consists of the range of energy values forbidden to electrons in 

the material) of the NP overlaps with that of cells, which has been linked to a specific toxicity mechanism 

for metal oxide NPs.( Zhang et al., 2012)  

 

Nanoinformatics methods and techniques, developed to support safer NP design and risk assessment of 

NPs, have been rapidly advancing in recent years and are especially targeting the development of useful 

tools addressing the needs of regulators.(Bates et al., 2015; David A. Winkler, 2016)  Quite recently, a 

range of nanoinformatics tools have been proposed to assess the biological responses of different NPs 

that helped facilitate informed debate on how to best direct the ongoing efforts towards development of 

safe(r)-by-design (nano)materials. (Marvin et al., 2013; Kleandrova et al., 2014; Melagraki and Afantitis, 

2014; Mikolajczyk et al., 2015; Kar et al., 2016; Tämm et al., 2016; Isayev et al., 2017).  

 

For those NPs developed specifically for biomedical applications or consumer products and that have 

direct contact with humans, it is vital to understand the interaction of nanostructures with the biological 

environment.  It has been experimentally demonstrated that when NPs enter a biological medium, the 

surface of NPs is selectively covered by different proteins forming the so called ‘protein 

corona’.(Cedervall et al., 2007; Lynch et al., 2014; Vilanova et al., 2016) The protein modified surface of 
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the NPs is then exposed to the surrounding environment affecting its subsequent interactions with 

biological entities (cells, organisms etc.).  The interactions of NPs with proteins have been demonstrated 

to be sufficiently long-lived, with slow exchange times, such that the bare surface of a NP is never 

exposed.(Cedervall et al., 2007; Monopoli et al., 2012)  

 

For each NP composition and form (shape, capping, charge etc.), this protein corona is uniquely formed, 

and its (ensemble) composition is dependent on the nature of the biological environment, and as such is 

context-dependent. The NP physicochemical parameters that crucially affect the structure and 

composition of the protein corona include size, shape, composition, hydrophobicity, surface modifiers 

and charges which influence both which proteins bind, and their bound conformation.(Hadjidemetriou 

and Kostarelos, 2017; García-Álvarez et al., 2018)  Further work is needed (experimental and theoretical) 

to understand the thresholds in terms of each physicochemical parameter leading to significant 

differences in corona composition – e.g. the effect of the width of the NP size distribution and mean size 

on corona composition.  The ultimate goal would be to be able to predict the composition of the NP 

corona from its physico-chemical parameters, and ultimately then to predict its biological fate (uptake, 

localisation and impacts) on the basis of its corona, allowing classification and grouping of NPs.  

 

The nature of the exposure environment and the duration of exposure also influence the final corona 

composition, and small changes in protein structure (single amino acid substitutions) have been shown 

to significantly alter corona thickness and stability.(Treuel et al., 2014) Thus, the relative abundances of 

proteins identified in different NP protein coronae do not directly correlate with their respective 

abundances in the biological medium.  Note also that not all proteins in the corona are directly 

interacting with the NP surface; protein-protein interactions also play a vital role in determining the 

corona composition, adding to the complexity of understanding and predicting corona 

compositions.(Stigler et al., 2010)  Thus, utilisation of existing knowledge on protein-protein interactions, 

and incorporation of these interaction constants into modelling approaches would be a useful for 

prediction of NP protein coronas and their dynamics as NPs move into and potentially between cells. 

However, in order to develop predictive computational models, such as for NP proteins coronas and how 

the nature of the corona influences the cellular uptake and impact of the NPs, there is first a need for 

robust datasets against which to train and test the models.  

 

Although several studies and reviews have been published to determine and describe the protein corona 

formation for a variety of NPs,(Pino et al., 2014; Farrera and Fadeel, 2015; Foroozandeh and Aziz, 2015) 

including some limited efforts to correlate corona formation with biological efficiency in cells,(Treuel et 

al., 2014; Varnamkhasti et al., 2015), these data are generally disparate and insufficiently large to use for 
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model development and consequently efforts to computationally explore these data are very limited to 

date (Liu et al., 2015; Bigdeli et al., 2016). Recently, a library of gold NPs with different sizes and surface 

modification have been synthesized and tested in terms of their physicochemical properties, protein 

corona compositions and cell association, with the goal of developing a predictive model for NP cell 

association.(Walkey et al., 2014)  Data on protein corona were also explored and relative abundances for 

several proteins were determined for each NP. The inclusion of serum protein corona fingerprints to 

predict cell association using Partial Least Squares (PLS) regression, was proven more accurate than a 

model that used only physical information for the NPs. The authors thus concluded that protein corona 

encodes more biologically relevant information about a NP than its physical properties, and presented 

the idea of the corona as a “fingerprint” predictive of subsequent cellular behaviour.  Moreover, the 

authors suggested that protein corona fingerprints can be extended to predict the association of NPs 

with other physiologically relevant cell types. In a newer publication the same authors also explored 

more linear as well as non-linear quantitative structure-activity relationships (QSARs) to derive important 

correlations for the prediction of cell association.(Liu et al., 2015) However, work in this area is very new, 

and papers showing no correlation / predictive capacity from the corona for a biological effect can also 

be found – e.g. Dobrovolskaia et al. found that corona composition did not accurately predict 

hematocompatibility of colloidal gold NPs.(Dobrovolskaia et al., 2014)  

 

In this work, a nanoinformatics workflow was developed with the dual aim to propose a validated 

predictive model for NP cell association based on a set of significant descriptors and to facilitate the use 

of the model by allowing its free online access within a user friendly interface. The validated open access 

model to quantitatively define the cellular association of gold NPs based on their physicochemical 

properties combined with available data on their acquired protein corona from undiluted human serum 

utilised data from (Walkey et al., 2014). The developed model was made publicly available through the 

Enalos Cloud Platform and thus can be easily accessed and used by experts and non-experts interested in 

the design of safe NPs and their applications in medicine and elsewhere. This web service is a significant 

step forward from our previously published work on web services related to NPs hazard and risk 

assessment, as data on protein corona were exploited in addition to the critical physicochemical 

properties that influence the biological effects of NPs.  Using this new tool, researchers, industry and 

regulators will be able to assess the likely biological behaviour of functionalized Au NPs and design the 

optimal surface functionalization strategy and physicochemical parameters to enhance or minimize 

association of their NPs with cells.  Given that corresponding input parameters (serum corona 

information and uptake data) are available, the extension to other types of NPs is also feasible and the 

reliability of the predictions will be provided via the domain of applicability of the model.  Extension to 

other cell types is more challenging as it would demand, for a given set of NPs, data on several cell types 
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that would be computationally explored to afford meaningful correlations among the different routes of 

NP uptake presented by different cells.  

 

 

2. Methods 

 

2.1 QNAR development via KNIME workflow  

During QNAR development the following steps are required: data preprocessing, variable selection, 

model development and validation and domain of applicability determination. All these steps were 

implemented within the KNIME (Konstanz Information Miner) platform which is a freely available and 

open source tool that is increasingly used for solving chemoinformatics problems (Berthold et al., 2009).  

For this purpose, existing nodes were combined with our in-house Enalos KNIME nodes that execute 

several important operations including model validation performed by the Enalos Model Acceptability 

Criteria node and domain of applicability determination performed by the Enalos Domain – Similarity 

node and Enalos Domain – Leverage node.(Melagraki  Afantitis, A., 2013; Varsou et al., 2017) These 

nodes have been developed by NovaMechanics and are publicly available through the KNIME 

Community and the company’s website (NovaMechanics Ltd, 2013) and have been described in detail in 

previous publications.(Melagraki and Afantitis, 2013; Melagraki et al., 2017)  A brief schematic 

description of our workflow is provided in Figure 1.  

 

 

Figure 1. Nanoinformatics workflow for the development of NP cellular association predictive model. 

 

Once the validated model was achieved, it was released as a ready-to-use application to be used in NP 

risk assessment by experts as well as non-experts. Our KNIME workflow enabled easy export of the 

model as a web service through the Enalos Cloud Platform as described below (Melagraki and Afantitis, 

2014, 2015; NovaMechanics Ltd, 2017).  

 

2.1.1 Data Set 

We explored a data set that consists of 105 chemically diverse gold NPs with different surface 

modifiers.(Walkey et al., 2014)  Three different core sizes were included, namely 15, 30 and 60 nm. In 

Data Preprocessing 
Variable Selection & 
Model Development 

Model Validation & 
Domain of Applicability 

Web service via    
Enalos Cloud Platform 
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the formulations 67 organic surface modifiers were used, including small molecules, polymers, peptides, 

surfactants and lipids that can be characterized as “neutral”, “anionic” and “cationic” based on their 

chemical structure and net charge at physiological pH (pH 7.4).  All NPs are coded based on their core 

size and surface modifier as shown in Walkey et. al.(Walkey et al., 2014)  

 

For each NP, several descriptors were available including physicochemical parameters measured after 

synthesis, and physicochemical parameters measured after exposure in undiluted human serum that 

stimulates the biomolecular environment with which the NP interacts during in vitro cell culture 

experiments. These parameters include: Surface area (cm2/NP) based on TEM size, As synthesized and 

Serum Z-Average Hydrodynamic Diameters, Synthesized and Serum Volume Mean Hydrodynamic 

Diameters, As synthesized and Serum Number Mean Hydrodynamic Diameters, As synthesized and 

Serum Intensity Mean Hydrodynamic Diameters, As synthesized and Serum Polydispersity index, As 

synthesized and Serum Zeta Potential (mV),  As synthesized and Serum-dispersed Localized Surface 

Plasmon Resonance (LSPR) index, As synthesized LSPR peak position (nm), Serum density Total protein 

(BCA assay), Total Au concentration (Autot, determined via ICP-AES) in nmol, Total surface area (SAtot) in 

cm2, Protein density (at the NP surface) in ug/cm2.  

 

On top of that, data on the presence of 785 distinct serum proteins across the entire library of NPs are 

also available. For each NP, distinct serum proteins were identified and quantified based on their relative 

protein spectral count and can be used as serum protein corona fingerprints for each formulation.  On 

average, each NP formulation adsorbed 71 ± 22 distinct serum proteins. The abundances of the specific 

proteins attached to the different NPs were used as possible inputs for the QNAR model development.  

In total 805 parameters were extracted from the experimental dataset and included as possible inputs 

for the model development described here.  

  

In parallel, data on NP association (which includes internalization of the NPs and adhesion to the cell 

membrane) with A549 human lung epithelial carcinoma cells in a monolayer culture, determined via 

inductively coupled plasma-atomic emission spectroscopy (ICP-AES), were also available.  Experimental 

values of cell association for each NP included were calculated using the pseudopartition coefficient: 

where mcell was the total atomic gold (or silver) content associated with cells, mwell was 

the total atomic gold (or silver) content in the exposure well (associated with cells and free in solution), 

and mcells was the total mass of magnesium per sample.  Thus, cell association data are expressed as the 

logarithm base of 2  expressed in units mL/ug (Mg) with values ranging from -11.123 to 1.327.(Walkey et 

al., 2014; Liu et al., 2015) The values of the variables considered as input parameters and the 

corresponding experimental values are given for each NP in Table S1 in the Supplementary file.   
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2.1.2 Model Development 

KNIME provides the flexibility of exploring a great variety of methods for variable selection and 

modelling with minimum time required and thus several predictive KNIME workflows have been 

developed and applied in numerous cheminformatics / bioinformatics studies.(Nicola et al., 2015; 

Steinmetz et al., 2015; Yin et al., 2015)  

 

For our study, from the original pool of available variables, both physicochemical and protein 

fingerprints, a subset was first removed as some of the variables had low variance and added no 

discrimination power when included in the model.  This was achieved by applying the ‘Low Variance 

Filter’ node straight after the data enter the KNIME workflow.  

 

The Partitioning node included in KNIME was then used to divide the initial dataset into training and test 

sets in the ratio of 75:25 by applying the draw randomly option using the default random seed to get 

reproducible results upon re-execution of the node.   

 

Among the available variables, a variable selection method was used to select the most important ones. 

Correlation–based feature subset selection (CfsSubset) variable selection, combined with BestFirst 

evaluator, were chosen to evaluate the most critical parameters for the training set.(Hall et al., 2009; 

Witten, Frank and Hall, 2011). More details on these methods can be found in the Supporting 

Information.  

 

In parallel with variable selection, a large variety of machine learning methods were explored to afford 

the variable combination that best suites the data. The approach considered here was the k Nearest 

Neighbour (kNN) methodology as the machine learning method combined with the variable selection 

method described above (CfsSubset) for performing regression to the available dataset.  The kNN 

algorithm is a method for classifying objects based on closest training examples in the feature space and 

belongs to instance-based (or lazy) learning.(Zhang et al., 2006)  Based on the kNN algorithm, an object is 

classified by a majority vote of its neighbours, with the object being assigned to the class most common 

amongst its k nearest neighbours (where k is a positive integer, typically small).  If k = 1, then the object 

is simply assigned to the class of its nearest neighbour. In this work, a distance weighted kNN algorithm 

was applied, Euclidean distance was used with all descriptors and contributions of neighbours weighted 

by the inverse of distance. The optimal k value (k=6 as per Table S2) was selected based on best model 

performance (Table S2).  
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2.1.3 Model Validation 

The proposed model was fully validated both internally and externally as proposed by the Organization 

for Economic Cooperation and Development (OECD) principles for the validation, for regulatory purposes 

of QSARs (OECD, 2007) and represented by goodness-of-fit, robustness and predictivity as described 

below.(Zhang et al., 2006; Puzyn et al., 2017)  

 

To evaluate the model performance, the following statistical criteria were used: the coefficient of 

determination between experimental values and model predictions (R2), validation through an external 

test set, leave-many-out cross validation procedure and Quality of Fit and Predictive Ability of a 

continuous QSAR Model according to Tropsha’s tests.(Melagraki et al., 2007; Liu, Yao and Gramatica, 

2009)  Validation based on Tropsha’s tests was made feasible by including the Enalos Model 

Acceptability Criteria node in our KNIME workflow. Details on the predictive ability formulas are given in 

the Supporting Information (equations S1-S5).   

 

Moreover, a Y-randomization test was also used to ensure the robustness and the statistical significance 

of the predictive model. The dependent variable vector is randomly shuffled and a new model is 

developed using the original independent variable matrix. The derived models after several repetitions 

are expected to have less significant correlation coefficient values than the original model. This method 

is performed to eliminate the possibility of chance correlation.  If the opposite happens then an 

acceptable predictive model cannot be obtained for the specific modelling method and data. 

 

2.1.4 Domain of Applicability 

When the model’s limitations are known, predictions for any new entry can either be considered as 

reliable or unreliable based on some metrics compared to the model’s limits.  Structures (e.g. NP 

compositions) that fall outside the domain of applicability of the model are filtered out as the model 

cannot generate reliable predictions for these. The domain of applicability can be defined using similarity 

measurements based on the Euclidean distances among all training compounds and the test compounds 

or using leverages, as described in Supplementary Information. The Enalos Domain – Similarity node and 

the Enalos Domain – Leverage node that execute the aforementioned procedures are included in our 

workflow and were used to assess the domain of applicability of the proposed model.(Vrontaki et al., 

2015)  

 

2.2 Enalos Cloud Platform 

The Enalos Cloud Platform serves as a freely available web-based platform to support decision making by 

experts and non-experts regarding the biological activity, properties and toxicity of chemicals and NPs for 
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use in development of safe-by-design strategies and risk assessment. The Enalos Cloud Platform has 

been developed by NovaMechanics and is continuously extended as more validated models are 

developed.(Melagraki and Afantitis, 2014, 2015)  The Enalos Cloud Platform has a user friendly format 

and was designed to address the needs of experts as well as non-experts.   

 

Predictive workflows dedicated to the risk assessment of NPs have already been included in the Enalos 

Cloud Platform to act as a useful aid in the virtual screening of NPs. Models published in the Enalos Cloud 

platform are built based on reliable peer-reviewed and published data sources, and are based on the 

integration of advanced in silico tools to provide accurate predictions. The predictive model described in 

this work adds to our previous efforts on NPs safe-by-design and can be accessed at the following 

webpage: http://enalos.insilicotox.com/NanoProteinCorona/.  

 

 

3. Results  

 

3.1. Final Data Set for Model development 

Application of the ‘Low Variance Filter’ node to the available data to remove variables that do not have 

any discrimination power (low variance),(OECD, 2007) resulted in all physicochemical parameters and 

129 out of the 785 protein fingerprints remaining to be considered as input parameters for model 

development. The filtered dataset was pre-processed, normalized and randomly partitioned into training 

and validation set in a ratio of 75:25 using the Partitioning KNIME node by applying the default random 

seed. After data preprocessing, variable selection, model development, model validation and domain of 

applicability determination followed. Among the 105 NPs originally included in the dataset, 79 

constituted the training set and 26 the validation or test set (see Table 1 where the validation set are 

indicated with *), of which 14 had 15nm cores, 5 had 30nm cores and 7 had 60nm cores, with 7 cationic, 

5 neutral and 14 anionic surfaces.  Only NPs included in the training set were used to develop the 

predictive model whereas NPs included in the test set were not involved by any means in the model 

development.  

 

 

Table 1. NPs descriptions (size is indicated as G15, G30 or G60) including surface modification and charge 

(for full descriptions see the Supplementary information), Cellular Association (measured and predicted) 

and reliability of predictions for the validation test set (indicated with * in the ID column).  From Walkey 

et al., 2014; Liu et al., 2015. 

 
ID NP 

 Cell Association  
(measured) 

Cell Association  
(predicted) 

Domain 
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Log2 mL/µg (Mg) Log2 mL/µg (Mg) 

1 G15.AC Anionic -5.183805957 -5,181354241  

2 G15.AHT Cationic -1.008545824 -1,105799078  

3 G15.Ala-SH Anionic -5.504706794 -5,539984404  

4 G15.Asn-SH Anionic -5.676379339 -5,667675173  

5 G15.AUT Cationic -1.315678187 -1,404784637  

6 G15.CALNN Anionic -7.137754348 -7,089063955  

7* G15.CIT Anionic -5.419973023 -6,237281392 reliable 

8* G15.cPEG5K-SH Neutral -7.741605599 -7,529702202 reliable 

9 G15.cPEG5K-SH (LD) Neutral -7.886871112 -7,806827755  

10* G15.CTAB Cationic -5.862112795 -6,671601425 reliable 

11 G15.DDT@BDHDA Cationic -7.293801253 -7,273753288  

12 G15.DDT@CTAB Cationic -7.589736344 -7,460190789  

13 G15.DDT@DOTAP Cationic -1.127551204 -1,183361387  

14 G15.DDT@ODA Cationic -6.121702418 -6,210757259  

15 G15.DDT@SA Anionic -6.803915548 -6,782461817  

16 G15.DDT@SDS Anionic -7.675057239 -7,574950302  

17 G15.DTNB Anionic -6.083455091 -5,992147102  

18 G15.F127 Anionic -5.36093598 -5,471712175  

19 G15.Gly-SH Anionic -4.975181466 -5,005932259  

20 G15.HDA Cationic -0.270326496 -0,325215372  

21* G15.LA Anionic -5.964253977 -6,565603538 reliable 

22* G15.MAA Anionic -6.142429499 -5,276864107 reliable 

23 G15.MBA Anionic -5.381432273 -5,36369475  

24 G15.MES Anionic -3.199317327 -3,31486014  

25 G15.Met-SH Anionic -5.928482312 -5,912529871  

26 G15.MHA Anionic -5.73573998 -5,686345489  

27 G15.MHDA Anionic -5.778134503 -5,781290783  

28 G15.MPA Anionic -5.395652798 -5,396667548  

29 G15.mPEG1K-SH Neutral -10.75701655 -10,54636627  

30 G15.mPEG20K-SH (LD) Neutral -9.582595393 -9,526586909  

31 G15.mPEG2K-SH Neutral -7.857546161 -7,831881975  

32 G15.mPEG5K-SH Neutral -9.67146499 -9,601772313  

33 G15.mPEG5K(NH2)-SH Neutral -8.116498147 -8,099114047  

34 G15.MSA Anionic -6.10444776 -6,06976071  

35* G15.MUA Anionic -4.846906601 -5,535995384 reliable 

36* G15.MUEG4 Neutral -7.071905418 -6,708752158 unreliable 

37 G15.MUTA Cationic 0.11274716 0,097099997  

38 G15.nPEG5K-SH Neutral -10.99355273 -10,7320945  

39* G15.nPEG5K-SH (LD) Neutral -6.068267192 -6,403093022 reliable 

40 G15.NT@DCA Anionic -8.588936426 -8,529271912  

41 G15.NT@F127 Neutral -6.426294194 -6,563387183  

42* G15.NT@PSMA-AAP Anionic -6.223250188 -6,337957661 reliable 

43 G15.NT@PSMA-EA Anionic -6.1682121 -6,198950134  

44 G15.NT@PSMA-EDA Anionic -5.403231085 -5,466962463  

45 G15.NT@PSMA-Urea Anionic -6.360621059 -6,389058819  

46 G15.NT@PVA Neutral -5.80079106 -5,86429014  

47 G15.ODA Cationic -2.765190582 -2,935815348  

48* G15.PAH-SH Cationic -0.980042834 -1,285164209 reliable 

49 G15.PEG3K(NH2)-SH Neutral -9.251353003 -9,188574234  

50 G15.PEI-SH Cationic -1.292169896 -1,320999634  

51* G15.Phe Anionic -5.303711518 -6,482925693 reliable 

52 G15.Phe-SH Anionic -6.268908041 -6,259990898  
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53* G15.PLL-SH Cationic -0.965765859 -0,84352245 reliable 

54* G15.PVA Anionic -7.929043536 -6,111843589 reliable 

55 G15.PVP Anionic -6.022283964 -6,055637514  

56 G15.SA Anionic -5.916395245 -5,968381717  

57 G15.Ser-SH Anionic -5.224189072 -5,225632957  

58 G15.SPP Anionic -6.611425167 -6,554908695  

59 G15.T20 Anionic -5.916658634 -5,941138028  

60 G15.Thr-SH Anionic -5.859606618 -5,870504099  

61 G15.TP Anionic -4.652498266 -4,676594598  

62* G15.Trp-SH Anionic -6.965231933 -6,167321956 reliable 

63 G30.AC Anionic -3.43591682 -3,526548823  

64 G30.AUT Cationic -1.630813246 -1,660831742  

65* G30.CALNN Anionic -7.551188457 -5,429385858 reliable 

66 G30.CFGAILS Anionic -6.356212428 -6,337558073  

67 G30.cPEG5K-SH Neutral -11.12261143 -11,02499026  

68 G30.DDT@BDHDA Cationic -4.95219456 -4,99220669  

69 G30.DDT@CTAB Cationic -7.598915524 -7,552880113  

70 G30.DDT@DOTAP Cationic -0.513598137 -0,505106609  

71* G30.DDT@HDA Cationic -5.30868286 -5,676779587 reliable 

72 G30.LA Anionic -5.051279148 -5,070347461  

73* G30.MAA Anionic -6.142085992 -4,539660116 reliable 

74 G30.Met-SH Anionic -5.22867711 -5,193784893  

75 G30.MHDA Anionic -4.32610319 -4,325047307  

76 G30.mPEG20K-SH (LD) Neutral -7.762460306 -7,752086318  

77 G30.MUA Anionic -4.555008456 -4,560375643  

78 G30.MUTA Cationic 0.500053177 0,481741091  

79 G30.NT@F127 Neutral -7.458863564 -7,464573452  

80 G30.PAH-SH Cationic -0.697714084 -0,713849845  

81* G30.Thr-SH Anionic -5.737355739 -5,018852701 reliable 

82* G30.TP Anionic -4.142553328 -5,226708248 reliable 

83 G60.AUT Cationic -0.779821601 -0,797637212  

84 G60.CIT Anionic -4.747717784 -4,790419222  

85 G60.cPEG5K-SH (LD) Neutral -6.23895505 -6,231556175  

86* G60.CTAB Cationic -4.067031065 -4,480795555 reliable 

87* G60.CVVIT Anionic -4.647958051 -4,711362996 reliable 

88* G60.DDT@BDHDA Cationic -4.23739786 -3,91259778 reliable 

89* G60.DDT@DOTAP Cationic -0.303146847 -0,134886074 reliable 

90 G60.DTNB Anionic -5.871960339 -5,786210906  

91 G60.HDA Cationic -1.008863835 -1,067392687  

92 G60.MBA Anionic -2.689194352 -2,763642933  

93 G60.MPA Anionic -3.07952409 -3,130724639  

94* G60.mPEG20K-SH Neutral -8.786059054 -7,903638297 reliable 

95 G60.mPEG5K-SH Neutral -10.22835958 -10,08667207  

96 G60.MUTA Cationic 1.327288978 1,278470097  

97* G60.nPEG5K-SH Neutral -7.181117171 -7,794940362 reliable 

98 G60.NT@PSMA-AP Anionic -4.338543242 -4,380532584  

99 G60.NT@PVA Neutral -4.263386251 -4,377940842  

100 G60.ODA Cationic -3.370987013 -3,424311113  

101 G60.Phe-SH Anionic -4.14596268 -4,151055721  

102 G60.PVA Anionic -5.401348342 -5,33465243  

103 G60.Ser-SH Anionic -4.040817544 -4,058929332  

104* G60.SPP Anionic -4.430879842 -4,427412398 reliable 

105 G60.Trp-SH Anionic -3.954229393 -3,983932184  

*Test Set 

11 
 



Table 2. Data on the proteins found to predictive of gold NP uptake into A549 human lung epithelial carcinoma cells. 

Protein UniCode Protein description and role Functional 

Annotation 

Protein characteristics Identified in proteins coronas of other NPs 

Molecular 

weight 

Iseoelecctric 

point  (IEP) 

 

P01024 Complement C3 plays a central role in 
the activation of the complement system 
(both classical and alternative 
complement pathways). After activation 
C3b can bind covalently, via its reactive 
thioester, to cell surface carbohydrates 
or immune aggregates, and is considered 
to be opsonising protein enhancing NP 
uptake.(Scieszka et al., 1991)  

Complement 
system 

188,688 5.96 PS NPs with various surface 
functionalisations (Ritz et al., 2015)  

Ag NPs with citrate or PVP capping (20 & 
110 nm citrate, 110 nm PVP) (Shannahan 
et al., 2013)  

 

P02766 Transthyretin is a thyroid hormone-
binding protein which probably 
transports thyroxine from the 
bloodstream to the brain, as well as 
having a role in extracellular matrix 
organization. Also known as proalbumin. 

Other Plasma 
components 

16,001 5.40 SPIONS specifically dextran coated 
(Sakulkhu et al., 2014)  

Doxorubicin-loaded dextran- stabilized 
PBCA NPs oated with poloxamer 188 or 
polysorbate 80 in rat plasma (Petri et al., 
2007)  

Solid lipid NPs (SLNs) coated with 
poloxamine 908 or poloxamer 407 
(Göppert and Müller, 2005)  

P08697 Alpha-2-antiplasmin is a serine protease 
inhibitor whose major targets are 
plasmin and trypsin, but it also 
inactivates chymotrypsin.  It plays a role 
in blood coagulation and acute-phase 
response, as well as being involved on 
positive regulation of cell-cell adhesion 

Coagulation 54,908 5.84 110nm AgNPs with citrate or PVP capping 
(Shannahan et al., 2013)  
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mediated by cadherin. 

P19823 Inter-alpha-trypsin inhibitor heavy chain 

H2 may act as a carrier of hyaluronan in 
serum or as a binding protein between 
hyaluronan and other matrix protein, 
including those on cell surfaces in tissues 
to regulate the localization, synthesis and 
degradation of hyaluronan which are 
essential to cells undergoing biological 
processes. 

Other Plasma 
components 

10,6920 6.40 110nm AgNPs with citrate or PVP capping 
(Shannahan et al., 2013)  

 

Q13103 Secreted phosphoprotein 24 is involved 
in cellular protein metabolic process and 
has been identified in the extracellular 
exosome, suggesting a potential role in 
NP exocytosis. 

Other Plasma 
components 

24,623 8.39 polyvinyl-alcohol-coated SPIONs with 
various surface charges  

Q9UK55 Protein Z-dependent protease inhibitor 

inhibits activity of the coagulation 
protease factor Xa in the presence of 
PROZ, calcium and phospholipids. Also 
inhibits factor XIa in the absence of 
cofactors. 

Other Plasma 
components 

50,821 8.55 Uncoated PLGA nanoparticles (Sempf et al., 
2013)  

P02788 Lactotransferrin is an iron binding 
transport proteins which can bind two 
Fe3+ ions in association with the binding 
of an anion, usually bicarbonate. Binds 
specifically to the lipid A portion of 
bacterial lipopolysaccharide (LPS).  
Lipopolysaccharide-mediated signaling 
pathway and positive regulation of toll-
like receptor 4 signaling pathway, 

Tissue 
Leakage 

80,064 8.01 Didn’t find any papers other than the gold 
NPs on which the QSAR is based. 
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suggestive of role in NP uptake. 

P02775 Platelet basic protein stimulates DNA 
synthesis, mitosis, glycolysis, intracellular 
cAMP accumulation, prostaglandin E2 
secretion, and synthesis of hyaluronic 
acid and sulfated glycosaminoglycan.  

Acute Phase 14,179 9.07 30, 200 and 400 nm Fe3O4 NPs (Hu et al., 
2014)  
In coronas of 6 of 17 tested Liposomes 
compositions / sizes (positive and negative) 
(Bigdeli et al., 2016)  

P14625 Endoplasmin is a molecular chaperone 
that functions in the processing and 
transport of secreted proteins via 
receptor-mediated endocytosis. 
Required for proper folding of Toll-like 
receptors (toll-like receptor signaling). 

Tissue 
Leakage 

92,754.15 4.56  Didn’t find any papers other than the gold 
NPs on which the QSAR is based. 

Q96KN2 Beta-Ala-His dipeptidase is involved in 
metal ion binding and regulation of 
cellular protein metabolic process 
including proteolysis. 

Tissue 
Leakage 

55,090  5.23 In coronas of 3 of 17 tested Liposomes 
compositions / sizes (positive and negative) 
(Bigdeli et al., 2016)  
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3.2 Identification of Predictive Parameters  

All available parameters (13 physicochemical parameters and 129 protein fingerprints) were 

evaluated for their ability to quantitatively describe the biological response, in this case association 

with A549 cells.  All available data, including physicochemical data prior to and after exposure to 

blood serum and protein corona fingerprints, were combined to identify the subset of descriptors 

that best describes the variation of the measured NP-cell association. For this purpose, CfsSubset 

variable selection combined with BestFirst evaluator were applied on the training data to select the 

most significant descriptors. Among the available descriptors, 13 have emerged as the most critical in 

capturing the significant structural characteristics that affect the cellular association of the studied 

NPs, including the abundance of each of 10 proteins from the corona fingerprints (see Table 2 for 

details of the specific proteins and their known biological functions) and 3 physicochemical 

parameters, all of which are the parameters measured on the NPs dispersed in serum, i.e. the “with 

serum Z-Average Hydrodynamic Diameter”, the “with serum Zeta Potential (mV)” and the “with 

serum (Au) Localized Surface Plasmon Resonance (LSPR) index”.  This is a really important insight, as 

it suggests that NP characterisation in the serum medium is much more predictive up uptake than 

the same parameters characterised in the absence of serum, again confirming the important role of 

the NP corona in driving NP association with cells and subsequent internalisation. 

 

3.3 Validation of the predictive model 

Given the selected parameters, the kNN methodology was selected to best correlate the input data 

with the observed biological response, i.e., cellular association. Given the flexibility of our KNIME 

workflow to test a great number of modelling methodologies with minimum time required, the 

proposed methods were identified as the combination that best describes our data and 

outperformed various different individual algorithms that were also tested.  

 

To verify the model’s robustness and accuracy several validation tests were performed as described 

in the Materials and Methods Section to address the principles recommended by the OECD including 

robust validation of results. Based on the results for the training and tests sets, predicted values for 

cellular association of each NP are included in Table 1.  A summary of the produced results as 

extracted from the Enalos Model Validation node is given in Figure 2. As can be seen from the 

results, the significance, accuracy and robustness of the model are illustrated by the corresponding 

statistics shown in Figure 2.  
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Figure 2. Model Validation results 

 

 

 

The “Leave ten out” (L10O) cross validation procedure was also applied to the available dataset and 

the model was proven to be quite stable to the inclusion-exclusion of data. The corresponding 

statistical value was measured equal to 67%. A Y-randomization test was additionally performed to 

further test the robustness and the statistical significance of the proposed model and eliminate the 

possibility of chance correlation. After applying this technique by randomly shuffling the response 

value multiple times no statistically significant models were retrieved. 

 

3.4 Domain of Applicability 

For all NPs included in the test set, the domain of applicability was defined based on both Euclidean 

distances and leverages, as described in the Methods section. This step describes the limitations of 

the model and undertakes the important work of highlighting the structures that cannot be tolerated 

by the model and thus indicates the predictions that can or cannot be considered reliable. The 

applicability domain limit value was measured equal to 3.338 based on equation S6 described in the 

supporting information.  This value was compared to the calculated distance between a NP included 

in the test and its nearest neighbour in the training set.  Among the NPs included in the test set, one 

(ID 36 in Table 1) had a value that exceeded the applicability domain limit and therefore the 

prediction for this NP cannot be considered reliable.  All other NPs in the test set had values in the 

range of 0.326 - 2.98, less than the applicability domain limit, and therefore all predictions for these 

NPs fell inside the domain of applicability of the model and can thus be considered reliable.  

 

In addition, domain of applicability was determined based on leverages based on equation (S7) 

described in supporting information. The leverages were plotted against the residuals for each NP 

and the Williams plot can also be seen in supporting information (Figure S1). Four NPs included in the 

training set and six NPs included in the test set were identified with leverages higher than the limit 

and are plotted on the right side of the leverage limit presented in the Figure. A consensus approach 

based on both methodologies can used to assess the reliability of model’s predictions. 
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3.5  Provision of open access to the model via the Enalos Cloud Platform  

Finally, the predictive NP cellular association model was made publicly available online through 

Enalos Cloud Platform (NovaMechanics Ltd, 2017). The Enalos Cloud platform is a web service based 

solely on open source and in house algorithms and software and was developed with the purpose of 

making QSAR models available to the interested user wishing to generate evidence on adverse 

effects in the decision making framework. We have developed a ready-to-use application based on 

our QNAR model using of this open source platform that already hosts other validated and predictive 

models that can be utilized in the NPs design process. In this way our model can be immediately 

explored by anyone interested in NP design. Enalos Cloud platform provides a user friendly interface 

with no special computational skills required and a procedure with minimum time required just for 

importing and submitting the input variables.  

 

The web service is designed in a way that minimum steps are required to virtual screen a wide range 

of NPs. To initiate a prediction the user can either import the indicated parameters (i.e., 3 

physicochemical descriptors measured in serum and 10 protein Spectral Counts as determined from 

the adsorbed corona from human serum) for a set of NPs or import a CSV file (.csv, see Figure 3 for a 

screenshot of the online platform) with several sets of properties included for High Throughput 

Virtual Screening. A prediction is then generated by clicking the submit button.  

 

 

Figure 3. Screen Shot of Enalos Cloud Platform input page 
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The output is produced in the following formats: either as a summary of the results in a pdf like 

format on a different html page, or as a CSV file containing all the output information for further 

analysis.  In each case, the results include the predicted value for each NP entered and an indication 

of whether the prediction can be considered reliable based on the domain of applicability of the 

model.  A screen shot of the results page using the 26 NPs in the test set is presented in Figure 4.   

Note that the ID values in Figure 4 correspond to the test particles (with a *) from Table 1, numbered 

from 1-26 (i.e. G15.CIT to G60.SPP in order from Table 1).  The Domain column tells if the prediction 

as reliable or not, and the log2 mL/µg(Mg) is the normalized cellular association of the NPs. 

 

 

Figure 4. Screen Shot of Enalos Cloud Platform results.  Note that log2 mL/µg(Mg) is the normalized 

cellular association of NPs, using the total magnesium (Mg) content to determine the total number of 

cells (see section 2.1.1 above for details).  This method allows small changes in NP concentration (e.g. 

doubling) to be significant. 
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The web service can be easily used to produce a reliable prediction by implementing a one-step 

procedure that requires entering the requested properties, manually or as an CSV file, and 

submitting the task to initiate output generation. Any NP can be submitted individually or as part of a 

list of NPs submitted for High Throughput Virtual Screening. The predictions given by the developed 

model are generated within seconds after submission and the output appears as seen in Figure 4. 

The user can experiment with different values of the requested properties and study the 

characteristics that are responsible to induce a certain effect. The user can take advantage of the 

proposed QNAR model and immediately scan the NPs of interest for a preliminary in silico testing.  

 

 

4. Discussion 

Within this work we propose an in silico workflow that was developed in an effort to identify 

physicochemical properties and protein corona fingerprints that significantly correlate with NP cell 

association. Based on our findings, a predictive model was built that allows the prediction of cell 

association for a new given NP based on a reduced set of input (experimental) parameters. Our 

model was made publicly available through the Enalos Cloud Platform in order to maximize model’s 

usability and facilitate virtual screening processes.  

 

Experimental procedures for the biological evaluation of NPs are often costly and time-consuming, 

and full regulatory approval can often require 2-year animal studies.  Indeed it has been estimated 

that the cost of preparing a REACH dossier for approval in the EU costs between €93 and €173 million 

per substance, prior to any modifications for NPs for which additional costs are required.  These costs 

are dramatically increased in the absence of an extensive grouping and read-across approach for NPs 

reaching an additional cost between €100 and €600 million per NP (IHCP/2011/I/05/27/OC, 2013). 

 

Thus, it is clear that alternative approaches based on computational methods should be proposed in 

the literature. Quantitative Nanostructure-Activity Relationships (QNARs) have recently emerged as a 

significant field of research for the prediction of the biological effects of NPs,(Rasulev et al., 2012; 

Roca et al., 2012; Kleandrova et al., 2014; Speck-Planche et al., 2015; David A Winkler, 2016; Vrontaki 

et al., 2016; Toropova et al., 2017) and several robust and predictive models have been proposed in 

the literature as highlighted in recent reviews.(Lynch et al., 2017)  However, lack of organized 

datasets, incoherent experimental data based on different protocols, and lack of available 

descriptors for nanostructures impose several restrictions that hamper progress and need to be 

addressed as a matter of priority. Well organized international efforts among regulatory agencies, 
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industry and academia [i.e. National Nanotechnology Initiative, NanoSafety Cluster] are currently 

ongoing have already been formed to work also towards this goal.    

 

Validated QNAR models for NPs can significantly contribute to understanding of the underlying 

relationships(Gajewicz et al., 2017) among structural characteristics and biological effects, but to 

achieve this, the produced models must be available in a user friendly format.  If this is not taken into 

account, then the model cannot be directly explored by anyone interested.  In this context, a key goal 

of this work has been building a robust and validated predictive model for the prediction of cell 

association of a large set of gold NPs based on their physicochemical characteristics and protein 

corona formed on their surface that is freely disseminated via a web service with a user friendly 

interface that can give online predictions for any given set of input parameters. 

 

Our validated KNIME QNAR model, developed as described above, afforded a set of 13 variables that 

were selected as the most critical in describing the cell association of studied NMs, including 10 

corona proteins and three physicochemical parameters. The corona proteins that were identified 

within the subset of critical descriptors are the following: P01024, P02766, P08697, P19823, Q13103, 

Q9UK55, P02788, P02775, P14625 and Q96KN2.  Table 2 provides some information on the 

characteristics of these specific proteins (from UniProt), their known biological functions, and other 

NPs in whose coronas they have been identified.   Many of these proteins have recognised cellular 

adhesion and/or transport functions carrying essential metals or other ligands in and out of cells.  For 

example, Complement C3 (P01024) is a recognised opsonin (Scieszka et al., 1991) (a molecule that 

binds to the surface of a foreign object marking it for phagocytosis by macrophages as part of the 

normal immune functioning), while Inter-alpha-trypsin inhibitor heavy chain (P19823) plays a role in 

binding to cell surfaces in tissues, and Alpha-2-antiplasmin (P08697) is involved in cell-cell adhesion. 

Thus, the presence of these proteins in the NP coronae correlating strongly with NP cellular adhesion 

is not surprising.   Another group of the proteins identified in the NP coronae as correlating with NP 

cellular attachment have transport functions, meaning that the must be able to freely enter and exit 

cells.  For example, Lesniak et al., demonstrated that NP uptake is a two-step process, where the NPs 

initially adhere to the cell membrane and are subsequently are internalized by the cells via energy-

dependent pathways (Lesniak et al., 2013). The authors also confirmed that the presence of a 

biomolecular corona confers specific interactions between the NP-corona complex and the cell 

surface including triggering of regulated cell uptake (Lesniak et al., 2013). Thus, transthyretin 

(P02766), also known as proalbumin, transports hormones such as thyroxine to the brain, Beta-Ala-

His dipeptidase (Q96KN2) is involved in metal ion transport,  while Endoplasmin (P14625) is involved 

in the transport of secreted proteins via receptor-mediated endocytosis (as a molecular chaperone). 

20 
 



Secreted phosphoprotein 24 (Q13103) has been identified in the extracellular exosome suggesting a 

role in exocytosis, and Lactotransferrin (P02788) is an iron binding and transport protein as well as 

being an active component of the lipopolysaccharide-mediated signalling pathway and positive 

regulation of toll-like receptor 4 signalling pathway, suggestive of role in NP uptake. Neither Protein 

Z-dependent protease inhibitor (Q9UK55) not Platelet basic protein (P02775) have direct roles in 

cellular adhesion, being a protease inhibitor and stimulator of DNA synthesis, respectively, but as 

noted above not all proteins in the corona will be that outermost corona layer, nor all necessarily 

directly involved in the cellular attachment, since binding is based on affinity for the NP surface, 

and/or affinity for a protein already bound to the NP via protein-protein interactions.  

 

 
 

 

Physicochemical parameters within the subset that are predictive were “with serum Z-Average 

Hydrodynamic Diameter”, “with serum Zeta Potential (mV)” and the “with serum (Au) Localized 

Surface Plasmon Resonance (LSPR) index”.  These are quick and easy to measure, although their 

measurement in undiluted human serum (or the equivalent dilution of medium containing 10% 

foetal bovine serum proteins, so-called complete medium) is not always performed as standard in 

toxicological assays.  Indeed, the cellular exposures in the dataset discussed here were conducted in 

RPMI medium supplemented with 10% foetal bovine serum while the corona data is for 100% human 

serum.  Note also that LSPR measurements are only relevant for metal/metal oxide NPs, as this 

particular parameter is a consequence of quantum confinement of electrons in metal 

nanostructures.  Whether the same predictivity would result from the use of corona data determined 

using undiluted bovine serum or the more typical 10% bovine serum utilized in cell culture remains 

to be evaluated.  However, given the clear correlation between physicochemical characteristics in 

serum and cellular attachment demonstrated by the QNAR model, and the complete lack of 

correlation or predictive power from the equivalent characterisation in water, a clear 

recommendation from this work would be that experimentalists include measurements (size, zeta 

potential etc.) in the presence of the appropriate serum (i.e. human serum for human cell lines) as 

part of the routine physicochemical characterisation of their NPs, as they are most predictive of 

cellular association of the NPs.  The value of this characterisation data in the appropriate exposure 

conditions is not just to facilitate modelling, but will also allow improved dose-response 

determinations, and increase the robustness of hazard and risk assessment based on experimental 

data, which if appropriately conducted can be used in weight of evidence arguments for regulatory 

registration dossiers, for example. While we agree that it’s too easy to make recommendations to 

experimentalists, it is important to demonstrate both for enhanced modelling capacity but also for 
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accurate and meaningful risk assessment, the characterization of the NPs needs be performed under 

the conditions of the exposure in order to be able to make the sorts of clear dose-response 

correlations that are implicit in risk assessment but not always the actual case in NPs exposure.   

 

The NP-cell association model presented here incorporates information available on NP biological 

interaction after exposure to the biological medium as given by different physicochemical 

parameters as well as protein corona data and was proven accurate and reliable for the given 

applicability limits. This model can be used to generate evidence on the biological response of NPs 

and could result in the reduction of costly and time consuming experiments for determining 

bioactivity, through focussing characterisation effort on the three physicochemical characteristics 

identified and a targeted search for the 10 proteins identified.  Indeed, based on QNAR models of 

this type, there is scope for development of assays or antibody arrays to screen NP coronae for the 

presence of these specific proteins as a means to support data generation to feed into the QNAR 

models.  While beyond the scope of the current article, this is an avenue we are interested to 

explore.  Additionally, as more datasets appear, on other cell types or other NPs, we will continue to 

expand the domain of applicability of the model, and thus broaden its utility and predictive power. 

 

Further, the web service can further add on screening existing databases or virtual chemical 

structures to identify NPs with desired properties. In this effort, the applicability domain will play an 

important role as it will filter out NPs that could not be tolerated by the model, for example, particles 

sizes > 70nm, or < 5nm, or differently shaped Au NMs such as rods, pyramids etc.  Depending upon 

data availability, the model results could be further extended to different cell types and/or different 

serum sources or concentrations (bovine versus human or 10% versus undiluted).   

 

4.1 User friendly interfaces through Enalos Cloud Platform 

The dissemination of the developed predictive model to the wider community is a highly important 

aspect that is often neglected in the majority of examples presented in literature. In order to initiate 

further computational and experimental advances based on the produced results, it is of utmost 

importance that the proposed models do not remain within the developers’ group but are 

immediately released in a friendly user format so that they can be easily explored in future NP 

design. On top of that, when open source and expandable tools are used, then the model’s utility can 

be maximized since the workflow can be customized for the special needs of each project.  Thus, our 

model was made available via Enalos Cloud Platform providing a user-friendly interface to enhance 

wider usability and acceptance.  
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The Enalos Cloud platform aspires to emerge as a useful tool to promote safer-by-design NPs and 

was created to boost developments in this direction by reducing the time and cost required for 

experimental evaluation. The user friendly interface makes this platform attractive for experts as well 

as non – experts and facilitates the in silico exploitation of available databases within a virtual 

screening framework to identify a prioritized list of NPs. (Melagraki  Afantitis, A., 2013; Varsou et al., 

2017) Vrontaki et al., 2016)  In addition, the proposed workflows are easily expandable, and are 

adjustable to the specific needs of any other endpoint related to NPs adverse effects. 

 

4. Conclusions 

We have worked on one of the few extensive and well organized data sets correlating cellular 

attachment of gold NPs with their physicochemcial and acquired protein corona characteristics, and 

have presented the development of a fully validated and predictive QNAR model for cellular 

association.  The QNAR is based on just 10 corona proteins and 3 physicochemical characteristics 

(determined in serum) that can be used in NPs design and virtual screening, reducing the amount of 

characterisation required for subsequent gold NPs that fall within the domain of applicability of the 

model.  Our model was built based on open source and in house algorithms and models to perform 

all the crucial steps encountered, and is fully publicly available online through the Enalos Cloud 

platform to give immediate and easy access to the produced model and its results.   

 

Cellular association was chosen as the end-point for the original experimental study due to its 

relevance to inflammatory responses, biodistribution, and toxicity in vivo.  This model complements 

our previous efforts in developing in silico tools to promote the in silico exploration of the underlying 

correlations between nanostructures and biological effects and the development of safer-by-design 

NPs.  It can also have application in the design of nanomedicines, via the identification of those NP 

physico-chemical parameters that will lead to uptake, cellular internalization and thus overcome one 

of the first key challenges of targeted delivery. 
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