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Abstract -In this paper, the performance of different estimators in estimating the speech signal through 
Quantum parameters can be analyzed.  The main objective is to estimate the speech signal by a set of linear and 
Non-linear estimators that are proposed to be efficient in performance. The Minimax mean square error 
estimator is designed to minimize the worst-case MSE. In an estimation context, the objective typically is to 
minimize the size of the estimation error, rather than that of the data error as a cause, in many practical 
scenarios the least-squares estimator is known to result in a large MSE. A comparative analysis between MMSE 
estimator with other linear and nonlinear estimators can be performed .The analysis proved that the MMSE 
estimator can outperform both from linear and nonlinear estimator. 
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x1. Introduction 
 
 The development in the field of signal 
processing is tremendous and quantum signal 
processing in particular has motivated the rigorous 
growth and research in the past few decades[1,2 and 
3].The estimation using digital signal processing 
concepts have been the research area in the recent 
past. The quantum mechanical concepts have been 
shown more interest in the signal analysis due to its 
inherent properties [4, 5 and 6]. The introduction of 
Quantum mechanical concepts, which rely on 
estimation almost entirely on some of signal 
processing algorithms, are implemented with 
various techniques. 
 In many DSP applications we don't have 
complete or perfect knowledge of the signals we 
wish to process. We are faced with many unknowns 
and uncertainties like noisy measurements and 
unknown signal parameters [3]. We consider the 
class of estimation problems represented by the 
linear model 
    
                   (1)             

where 

wHxy +=    

  denotes a deterministic vector of unknown 
parameter, H  denotes   a known  matrix, and  mn×
w

w

 denotes a zero-mean random vector with 
covariance C . It is well known that among all 
possible unbiased linear estimators, the LS estimator 
minimizes the variance [4].   However, this does not 
imply that the resulting variance or mean-squared 
error (MSE) is small, where the MSE of an 
estimator is the sum of the variance and the squared 
norm of the bias. Various modifications of the LS 
estimator for the case in which the data model is 
assumed to hold perfectly have been proposed [5]. 
Later [6], Stein showed that the LS estimator is 
inadmissible, i.e., for certain parameter values, other 
estimators exist with lower MSE. An explicit 
(nonlinear) estimator with this property, which is 
referred to as the James–Stein estimator, was later 
proposed and analyzed [7]. This work appears to 
have been the starting point for the study of 
alternatives to LS estimators. Among the more 
prominent alternatives is the shrunken estimator 
[8].Stochastic Gaussian Maximum Likelihood (ML) 
method [9] that deals with sub-Gaussian signals. 
Because of such uncertainties, the minimum mean-
squared error and maximum posteriori estimators 
[10] cannot be used in many cases. The minimum 
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mean-squared error linear estimator does not require 
this priori density. We present several analytical and 
numerical results demonstrating the superiority of 
minimax estimators over least-squares (LS) 
estimation. The results are related to and compared 
with other LS-dominating estimators, such as the 
James-Stein estimator [11]. A minimax mean-
squared error (MSE) estimator is developed for 
estimating an unknown deterministic parameter 
vector in a linear model, subject to noise covariance 
uncertainties. The estimator is designed to minimize 
the worst-case MSE across all norm bounded 
parameter vectors and all noise covariance matrices, 
in a given region of uncertainty. The minimax 
estimator is shown to have the same form as the 
estimator that minimizes the worst-case MSE over 
all norm-bounded vectors for a least-favorable 
choice of the noise covariance matrix.  [12]. In [13], 
minimum-mean-square-error (MMSE) channel 
estimation algorithm for OFDM systems is 
proposed. The algorithm adopts two-dimensional 
Hadamard transform (TDHT) instead of the 
conventional Fourier transform, and more noise 
interference can be filtered with the proposed 
scheme. In [14] an extended version of the Order 
Statistic Least Mean Square (OSLMS) algorithm 
involving ambiguous sorting is developed for speech 
signals. In [15], the problem of minimum mean-
squared error (MMSE) estimation under convex 
constraints such as constraints on the estimated 
vector and constraints on the structure of the 
estimator there exist a simple closed form 
expression for the constrained MMSE estimator. 

To improve the performance of the LS 
estimator at low to moderate SNR, we propose a 
modification of the LS estimate, in remainder of this 
paper is organized as follows: section 2 focuses on 
least square estimation, section 3 focuses weighted 
least square estimation and section 4 emphasizes on 
minimax mean square estimation, linear and 
nonlinear estimator like James–Stein estimator, 
shrunken, MAP estimator. In which we choose the 
estimator of x to minimize the total error variance in 
the observations y, subject to a constraint on the 
covariance of the error in the estimate of x.  

The resulting estimator of x is derived as the 
minimax mean square estimation. This implies that 
for white Gaussian noise, there is no linear or 
nonlinear estimator with a smaller variance, or MSE, 
and the same bias as the MMSE estimator. In our 
method, the LS estimator resulting variance or 
mean-squared error (MSE) is small, where the MSE 
of an estimator is the sum of the variance and the 
squared norm of the bias. In comparison to the 
previous methods, the algorithm is more 

computationally efficient and highly parallelizable, 
which makes the algorithm more attractive for real 
time applications. 

 
 

2. Least Square Estimation 
  

Least squares estimation, also known as 
ordinary least squares analysis is a method for linear 
regression that determines the values of unknown 
quantities in a statistical model by minimizing the 
sum of the residuals (difference between the 
predicted and observed values) squared. A related 
method is the least mean squares (LMS) method. It 
occurs when the number of measured data is 1 and 
the gradient descent method is used to minimize the 
squared residual. LMS is known to minimize the 
expectation of the squared residual, with the 
smallest number of operations per iteration. 
However, it requires a large number of iterations to 
converge. Furthermore, many other types of 
optimization problems can be expressed in a least 
squares form, by either minimizing energy or 
maximizing entropy. 
In least squares analysis, the objective is to 
minimize the following function 

.)),(( 2

1

→→

=

−=∑ axfyS i

n

i
i           (2)                   

subject to the parameter vector. The above 
minimization explains the origin of the name least 
squares. In regression analysis, one replaces the 
relation 

ii yxf )( =     by        iii yxf ∈+=)(
           (3) 
where the noise term ε is a random variable with 
mean zero. Note that we are assuming that the x 
values are exact, and all the errors are in the y 
values. Then the linear model which when using 
pure matrix notation becomes                           

= XY δ + ∈                      (4)                    
where ε is normally distributed with expected value 
0 (i.e., a column vector of 0s) and variance σ2 In, 
where In is the n×n identity matrix. 
 
The least-squares estimator for δ is 

( ) YXXX TT 1−∩

=δ        (5) 
 
and the sum of squares of residuals is 
 

( )1)( YTT
nY XXXXIT −− .     (6) 
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3. Weighted Least Square Estimation 
 Weighted least square is a method of 
regression, similar to least squares in that it uses the 
same minimization of the sum of the residuals 

( )
2

1
)(∑

=

−=
n

i
ii xfyS      (7) 

However, instead of weighting all points equally, 
they are weighted such that points with a greater 
weight contribute more to the fit: 

( ) .)(
2

1
∑
=

−=
n

i
iii xfyS ω     (8) 

In a linear regression context, 

( ) βT
xi xxf =        (9) 

then minimizing the weighted least squares 

( )21*

1

βω T
ii

n

i
i xyS −= ∑

=

             (10) 

is the same as minimizing the ordinary least squares 

                                             (11) ( .
2

1

**∑
=

−=
n

i

T
ii XyS β )

In matrix notation, the weighted least squares 
estimator of β is 

( ) ( ) 1**1** WYXWXXYXXX TTTT −−∧
==β ,                         (12) 

Say we are trying to solve for an over determined 
system which we can denote as 

yX a = .                          (13) 
We wish to solve for a. The least squares solution to 
this problem will be 

( ) YXXXa TT 1−
=                       (14) 

similar to least squares in that it uses the same 
minimization of the sum of the residuals instead of 
weighting all points equally, they are weighted such 
that points with a greater weight contribute more to 
the fit. 
 The WLS estimator has the additional 
property that it minimizes the variance from all 
unbiased estimators. Note, however, that a smaller 
MSE may be achieved by allowing for a bias. Hence 
we present our work, which shows MMSE is 
suitable for this criterion.  
 
 
4. Minimax MSE Estimation 
 To develop an estimator that minimizes an 
objective directly related to the MSE, it is suggested 
to seek the linear estimator that minimizes the 
worst-case MSE over all possible values of x  , 
assuming that  is known. The minimax estimator wC

for the case in which , where 2UTxx ≤∗ T  is an 
arbitrary positive definite weighting matrix; for 
T I=  the estimator reduces to,    

   yCHHCH
U

UCx wwwMX
1*11

0
2

2

)()(ˆ −−−∗

+
=

γ
        (15) 

where   is the variance of the 11
0 ){ −−∗= HCHTr wγ

WLS estimator.  
 Let denote the unknown deterministic 
parameter vector in the model , where wHxy +=
H  is a known mn×  matrix, and W is a zero-mean 
random vector with covariance Cw. Let  be an Q
invertible matrix that jointly diagonalizes Cw and 

HH*, so that   for some unitary *
~

VVH ∑=
matrixV . Then the solution to problem for any 
convex set U  such that  is ,0Δ

yQZV
U

UCx
ii

m

i

wMX
1*1

2

1
2

2

)(ˆ −−

=

∑
+

=
∑ σδ

      (16) 

If is any positive definite covariance matrix then wC
the estimator  can be expressed as a )(ˆ wMX Cx
shrinkage of the WLS estimator 

yCHHCHCx wwwMX
1*11 )()(ˆ −−−∗= α                  (17)       

                
with ),.....,( 21 mdiag δδδ=Δ  and is an arbitrary Θ
diagonal matrix, and shrinkage factor α  
 

2

1
2

2

ii
m

i
U

U
σδ

α
∑ =

+
=                                (18)   

In particular, choosing  where   
^

ww CC =

*
^

0
0

QQCw ⎥
⎦

⎤
⎢
⎣

⎡
Θ

Δ
=                                            (19)

      
    
where is the minimax MSE estimator for )(ˆ wMX Cx
fixed . wC
 Next, we note that for any ∈℘wC  where  
℘ is any positive definite covariance matrix of the 
form 

}{
~

*
~

UQQCw ∈ΔΔ==℘                (20)                   

11
2

1

){ −−

=

=∑ HHCTr w
i

i
m

i σ
δ             (21) 

which is the variance of the WLS estimator with 
weight C-1

w.  
This discussion leads to find the worst-case 
covariance matrix ℘∈wC  which maximizes the 
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variance of the WLS estimator and designing a 
minimax estimator assuming known covariance 

matrix with  .As a final comment, if Q  is 
^

ww CC =
unitary.              
 
 
5. James-Stein Estimator 
 The James-Stein estimator is a nonlinear 
estimator which can be shown to dominate, or 
outperform, the "ordinary" (least squares) technique.  
The James-Stein estimator is given by 

( ) .21 2

2

Y
Y

m
JS ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛ −
−=

∧ σθ            (22)                       

       
 James and Stein demonstrated that the 
estimator presented above can be used when the 
variance σ2 is unknown, by replacing it with the 
standard estimator of the variance.  
 
 
6. Maximum A Posteriori Estimation 
 In statistics, the method of maximum 
posteriori (MAP, or posterior mode) estimation can 
be used to obtain a point estimate of an unobserved 
quantity on the basis of empirical data. It is closely 
related to Fisher's method of maximum likelihood 
(ML), but employs an augmented optimization 
objective which incorporates a prior distribution 
over the quantity one wants to estimate. MAP 
estimation can therefore be seen as a regularization 
of ML estimation. 
 Assume that we want to estimate an 
unobserved population parameter θ on the basis of 
observations x. Let f be the sampling distribution of 
x, so that f(x | θ) is the probability of x when the 
underlying population parameter is θ. Then the 
function 

( )θθ xf                 (23) 
is known as the likelihood function and the estimate 

( ) ( )θθ
θ

xfxML maxarg=
∧

             (24) 

as the maximum likelihood estimate of θ. 
The method of maximum a posteriori estimation 
then estimates θ as the mode of the posterior 
distribution of this random variable: 

( ) ( ) ( )
( ) ( ) ( )θ gx ( )θ

θθθ
θθ

θ
θθ

f
dgxf

gxf
xMAP maxargmaxarg '''

=
Θ

=
∫

∧

                      (25) 
The denominator of the posterior distribution does 
not depend on θ and therefore plays no role in the 

optimization. Observe that the MAP estimate of θ 
coincides with the ML estimate when the prior g is 
uniform. MAP estimates can be computed in several 
ways: 
1. Analytically, when the mode(s) of the 
posterior distribution can be given in closed form. 
This is the case when conjugate priors are used.  
2. By the  numerical optimization such as the 
conjugate gradient method or Newton's method. 
This usually requires first or second derivatives, 
which have to be evaluated analytically or 
numerically.  
3. From a modification of an expectation-
maximization algorithm. This does not require 
derivatives of the posterior density.  
 
 
 
7. Results and Discussion 
 The analog input is obtained through the 
channel 1 at a sample rate of 8000 and duration of 
1.25 seconds and number of samples obtained from 
the speech signal is about 10000. The signal is 
obtained as a column vector. This column vector is 
converted into a square matrix. Now Hilbert 
transform is performed on this matrix so that the 
numerical values of the signal can be obtained. FFT 
is performed on the signal so that the spectral values 
of the signal can be obtained. As the concept of QSP 
is to be satisfied, now the spectral matrix is being 
converted into orthogonal matrix using Gram-
Schmidt orthogonalization procedure. In the 
orthogonal matrix, white noise with zero mean and 
unit standard deviation added to the signal. 

Analog 
Signal 
Input 

Hilbert  
Transform  

Fast 
Fourier 
transform 

White  
Noise 

 
Orthogonal
ization 

To 
Receiver 

 
Fig 1. Block diagram for converting speech signal to 
orthogonal vectors 
 
 Input is a continuous speech signal given 
through microphone. This signal is plotted with its 
amplitude with respect to time in figure 2. After 
getting the original speech signal and the noise 
corrupted speech signal, we estimate the original 
signal using the estimation techniques.  
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Fig 2. plot for the signal input. 

 
Fig 3. Noise corrupted Input Signal 

Fig 4 shows the results of linear estimation of the 
speech signal which is compared with the result of 
the minimax mse estimator. Fig 4 and Fig 5 shows 
the comparison of the mean square error obtained 
from minimum mean square estimation and the 
other nonlinear estimators.  
 

 
 

Fig 4. Linear Estimation and MMSE 
 
 

Table 1: MSE of Linear Estimation and MMSE 
 

The plot of mean square error obtained for 
estimation of speech signal through least square, 
weighted least square ant the minimax mean square 
estimator. From the fig 4 we infer that minimax 
estimator is more efficient than the other two 
estimators considered.  
 In the other case we compared the 
performance of the MMSE with that of the most 
efficient nonlinear estimators James-stein, MAP and 
the shrunken estimators. Fig 5 shows the plot of the 
MSE of the three nonlinear estimators and the 
MMSE estimator. The plot of the MMSE estimation, 
from both the estimation schemes is inferred that the 
proposed MMSE estimation for quantum signal 
processing is still to be developed to achieve and 
perform better than the other estimation algorithms 
proposed in digital signal processing framework.  
 
 

 
 

Fig 5. Non-Linear Estimation and MMSE 
 
 

LS 9.2917 1.6502 1.1317 1.1317 
 
3.4648 
 

WLS 0.1608 0.6386 4.5294 
 0.01744 50.687 

MMSE 0.01271 0.0982 0.6133 0.00153 6.9815 
 
Table 2: MSE of Non-Linear Estimation and MMSE 
  
 
 
 
 

James-
Stein 0.00085 0.0002 3.31 8.809 7.9247 

Shrunken 0.16284 0.1053 0.066 0.066 0.0157 
MAP 1.2875 1.2374 1.614 1.378 1.3302 
MMSE 0.0127 0.0986 0.613 0.001 6.9815 
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Conclusion 
 In this paper, a comparative work can be 
performed with different estimation schemes in 
estimating the original speech signal from the noise 
corrupted signal. Considering the mean square error 
that result at the end of the estimation process as 
criteria to analyze the performance of the estimators. 
Mean square error is calculated from the difference 
between the true value and the estimated value of 
each estimator. The comparison of the performance 
of the minimax estimator with that of the other 
estimators that are proposed to be efficient in their 
performance with their own constraints. 
Furthermore, we explicitly construct estimators with 
multichannel through a set of linear transformations. 
As an application of our approach, we also develop 
Wiener type filters under certain restrictions, which 
allow for practical implementations. The present 
report shows that the proposed methods can also be 
implemented for MMSE multi-user detection for 
CDMA systems. 
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