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A Nash Game Algorithm for SIR-Based Power
Control in 3G Wireless CDMA Networks

Sarah KoskieMember, IEEE Zoran Gajic,Senior Member, IEEE

Abstract— We propose a new algorithm for distributed power
control in cellular communication systems. We define a costof
each mobile that consists of a weighted sum of power and squar
of signal-to-interference ratio (SIR) error and obtain the static
Nash equilibrium for the resulting costs. The algorithm recuires
only interference power measurements and/or SIR measuremés
from the base station, and converges even in cases where ltson
available power render the target SIR’s unattainable. Exanples
generated using realistic data demonstrate that in demandig
environments, the Nash equilibrium power provides substatial
power savings as compared to the power balancing algorithm,
while reducing achieved SIR only slightly. Additional simuations
show that the benefit of the Nash equilibrium power control
over the power balancing solution increases as receiver rgg
power or number of users in the cell increases. The algorithm
has the advantage that it can be implemented distributively
An additional benefit of the algorithm is that based on their
chosen cost function, mobiles may choose to “opt out’j.e.
stop transmitting, if they determine that the power required to
achieve their SIR objectives is more expensive to them thanat
transmitting at all.

Index Terms— Noncooperative games,
Power Control, Wireless Communications

Nash equilibrium,
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Fig. 1. Block diagram for implementation of power control GDMA

systems

SIR’s. A block diagram illustrating the power control sttue
[2] is shown in Figure 1.

A. Review of the literature

One of the most common approaches to closed-loop power
control in wireless communication networks is SIR balaggin
also called power balancing. The SIR balancing solution was

X i he interf & _QJ'FiginaIIy derived for satellite communications by Aein] [3
cations SySte”_‘ contri ute_'s_ to the interference a ec“_%d Meyerhoff [4], and adapted for wireless communications

other uSers, effectwg "’?”d efficient power cor!trol Str&'x;“’g'by Nettleton [5] and Zander [6] and [7]. Variations on the
are essential for ac_h|ey|ng both quality of service (QoSj agIR balancing algorithm have replaced the target SIR by

system capacity objectives. , L functions incorporating minimum allowable SIR [8], SIR'§ o
Closed-loop power control is used in wireless communj;

. K for fast fadi _ . other mobiles [9] and [10], and maximum allowable power
cation networks to_ c_ompensate or fast fa Ing, time-vagy| 8] and [11] among others. Variations have been developed to
channel characteristics, and to reduce mobile battery po

: ) ficorporate call admission and handoff [12], [13], and [14]
consumption. The closed loop control structure in IS—QEe(o%ase station assignment [15], and economic tradeoffs [16].
of the currently implemented standards used in wireless netSIR balancing algorithms (éBA’s) are simple and most can

works) consists of an outer loop algorithm that updates ﬂfﬁ% implemented distributively, but have the disadvanthge t

SIR threshold every 10 ms and an inner loop which calculates : .
convergence can be slow and is guaranteed only if every

required powers based on SIR measurements updated eVEY iie's target SIR is feasible
1.25ms (800 Hz) [1]. The outer loop algorithm determines the 9 . .
To address the convergence issue, a number of algorithms

target SIRy!*" based on the estimate of the frame error rate .
(FER). The inner loop algorithm generates a power conttol thave been developed that shape the dynamics of the codtrolle

yver or the convergence of the algorithm [17], [18], [19],

(PCB) based on the difference between the actual and tar§

nd [20]. To aid in establishing convergence of power cdntro
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algorithms, a framework was proposed by Yates [21] and
extended by Leungt al. [22].

Another class of algorithms seek to solve a static optimiza-
tion problem. The well known distributed constrained power
control (DCPC) algorithm maximizes the minimum attained
user SIR subject to maximum power constraints [11], [21],
[23]. Other algorithms minimize power consumption in the
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presence of large-scale fading [24] or over a set of discretdere h; is the attenuation from théh mobile to the base
available power levels [25]. station andc;; is the code correlation coefficient. The atten-
Dynamic optimization has been used to minimize powemation is calculated from the distancge between the mobile
consumption by formulating power control for log-normaénd base station to bie; = A/r® in the absence of shadow
fading channels in a stochastic framework [26] and [27] ahd fast fadingA is a constant gain and is usually between
well as to adaptively optimize quantization of fedback SIR and 6. We will provide realistic values for these constants
[28]. in the simulation section, Section lll. The code correlatio

An alternative framework for developing power controfoefficientc;; is computed from the signaturesands; to be
algorithms is based on game theory or economic formulatiofis = (s37's1)2.
requiring the specification of a utility or cost function [29 We note that this model is consistent with the general power
[30] and [31]. Various utility functions have been suggdstecontrol problem for wireless communication systems in Wwhic

[30], [32], and [16]. The use of pricing to promote efficiencghe SIR of mobilei is given by

and fairness has been discussed extensively [33], [34], [35 _ guPi GiiDi 3
and [36]. Alpcanet al. [29] recently proposed a Nash game V= L(p_i) Z#i giip; + ni )
formulation of the SIR-based power control problem in which . .

each mobile uses a cost function that is linear in power ax\ﬁth the interference given by

logarithmically dependent on SIR. They establish the erist Li(p;) == Z Giipj + 1. (4)

and uniqueness of the Nash equilibrium solution and conside 2
the effect of various pricing schemes on system performan y
P g 4 P %e have used the subscript-

@

f” to indicate that the in-
terference depends on the powers of all users except the
B. Interference Model ith, If we define a power vec_top having ith elementp;,
and an interference vectdrhavingith element/;(p_;), the
Power control for either the uplink (reverse link) or theypscript indicates that théth element of the interference
downlink (forward link) can be considered. In the formeyector depends on all but thth element of the power vector.

case, a desirable property for a power control algorithm is comparing (2) and (3), we see that for CDMA uplink power
the sufficiency of measurements available at the mobile fgpntrol,
computing the power updates. Such algorithms can be im- h; j=1i
plemented without reliance on communication with either th Gij = (5)
base station or other mobiles and hence are called distdbut
Note that it has been shown that the same problem formulatiem g;; denotes an effective link gain from thgh user to
can be applied to various types of both uplink and downlirtke base station that specifies tith user’s contribution to
scenarios so our discussion here is not exclusively aggéicathe interference affecting the signal of thig user. We will
to uplink power control. also define an effective gain mat& having (¢, j)th element
The goal in the power control of wireless systems is tei;. Note that in contrast to the case in which background
ensure that no mobile’s SIR; falls below its thresholdy{*” noise power is neglected and the diagonal elements of time gai
chosen to ensure adequate Q08,to maintain matrix are set to zero, we cannot write the interference as th
product of the gain matrix and power vectoe. I # G p.

h;(sjTsi)? otherwise

Yi Z /yfara VZ, (1)

where the subscriptindexes the set of mobiles. In 1S-95, thisC' Motivation

threshold is calculated for the individual mobile to mainta 1he standard in the literature to which other SIR-based al-

a satisfactory frame-error rate (FER). From the mobile@0rithms are compared is the DCPC algorithm for solving the
perspective, however, whether the other users meet ther G&IR balancing problem for wireless communication networks
requirements is irrelevant. For this reason, the framevadrk [11], [21], and [23]. Although various types of optimal selu
noncooperative game theory [37] is well suited for analgzinfions have been considered, most of these require prokalyiti
and solving the power control problem. large computational resources. Approaches that have been
Considering the uplink for a single cell CDMA system wittProPosed include formulating the minimization of total gow

N users, we designate the transmitted power and SIR for #g29€ given quantized power levels as an integer progragnmin
ith user byp; and~;, respectively. We denote the backgroun@roblem [25], and minimizing outage probability as a linear
(receiver) noise power within the user's bandwidthspy In Programming problem [38]. More recently, it has been shown
the deterministic formulation of the power control problesn that minimizing power usage subject to power constraints
wireless networks, the noise powey is treated as constant.OF Vice versacan be posed as a geometric programming or

We use a “snapshot’ model, assuming that link gains evol)@nlinear convex optimization problem [39].
slowly with respect to the SIR evolution. In this problem The first criterion by which a practical optimal power con-

formulation. the SIR of théth mobile is trol algorithm must be judged is demonstration of significan
performance improvement. Our simulation results presente
hipi below establish thasignificant decreases in mobile powers

2) g p

= > iz hypicij +mi can be achieved with minor effects on SIRccordingly,
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there is a need for power update algorithms that take intoThe mobile has two conflicting objectives. On the one
account power optimization. The second criterion is rafeess  hand, the higher the SIR, the better the service. On the other
to environmental changes, namely receiver noise, to reduwnd, higher SIR is achieved at the costs of increased drain

outage. on the battery and higher interference to signals of other
To motivate the need for alternatives to SIR balancingobiles. Accordingly, we define a cost function for each user
algorithms we provide the following simple example. depending on power and SIR. Since some nonzero SIR level
Motivating Example:Consider a wireless system with threds necessary for accurate communication, we consider tste co
users whose gains are given by of the difference between the actual SIR and the target SIR
1.0000 0.0882 0.0357 that is chosen based on the estimated frame error rate.

a - 0.1524 0.9500 0.3501 A cost function shoulq be convex and nonnegative to al!c_)w
existence of a nonnegative minimum. Power is always pesitiv
0.0767 0.0244  0.9900 in this application; however, the SIR error may be either
Let the receiver noise power (in appropriate units)jpe= positive or negative. To ensure positivity and convexityef
n2 = n3 = n = 0.01 and assume that we want to achieveost function, we square the SIR error term. We thus consider
ylar = qtar — slar — ~ter — 5 yia power balancing. the following candidate cost functién
Note that this quality of service (the desired SIR targetiggl

tar 2
corresponds to 7 dB. Jilpio i) = bipi + (0™ = %)%, ()
By running the power balancing algorithm for 400 iterationwhereb; andc; are constant nonnegative weighting factors.
we have obtained the following results We will show below that (7) provides existence of a meaning-
p = [6.131,12.204,3.928] ful Nash equilibrium sollution.
Since the cost function depends on parametgrand ¢;,
7= [4.998,4.998,4.998]. the results obtained will depend épandc;. It is not difficult

In Table I, we present the results for three mobiles arid derive the corresponding sensitivity functions .gf with
investigate the powers required to achieve equal and distifiespect tob; andc;. These are given by
target SIR’s. The column headings indicate the specifiegktar b,

. . . . abl/bZ tar 2 2
SIR's (in dB) for the three mobiles. The rows indicate the S, := N L+a(y™ —v) =1+alAi =1
mobile powers required to achieve these target SIR’s. The e o o
total mobile power (sum of the powers in the second columgiice at the Nash equmbnum the deviation of the actual SIR
required to achieve equal SIR’s is approximately three sim&om the target SIR is small, and
that required if we relax the SIR requirements only slightly dci/ci .
(third column). The next column of the table shows that if we TN Lt b
relax the SIR requirements further, we can again reduce the ) . .
total required power by two-thirds. This example suggdsis t respe_ctlvel_y. Hence, the chosen cogt_ls more sensitive to
significant reductions in mobile power may be achieved if w‘éaf'a“ons in the SIR error than to variations in power, sale
consider alternatives to SIR balancing algorithms, egfigci bi is taken as very smal.

those that minimize mobiles’ power while allowing reasdr-.!abth we wil see 'r:'bthte {ahnaléls: below thar:toply_ the rtatlct). of
deviations from the target SIR. € power weignb; to the ~error weignt; 1S important,

hence, thec; can be made equal to one by replacingby

I1. NASH GAME PROBLEM FORMULATION b; = b;/c;. For different applications, different ratids/c;
In the following subsections we formulate the SIR-basdd®Y be chosen. Choosirbg/c; > 1 places more emphasis on

power control problem as a noncooperative game, choosePgyVer usage whereas/c; <1 places more emphasis on SIR
appropriate cost function, and find the corresponding NES T . I
equilibrium [37], [40] power vector. We then design a power Applying the necessary conditions for a Nash equilibrium
control algorithm that uses only measured information laval’® have
able to the individual mobile, hence can be implemented 9Ji -0
distributively. We derive conditions under which we canwho op;

i
Opi

bi — 2¢i(v*" — )

K2

convergence of the algorithm within the framework of Yates = b —2¢; (7 — ) Yii . (8)
[21] and point out useful limiting behavior. Zj;éi 9iiPj + M
. L S Recalling thatZ;(p_;) := D ;, and rearrangin
A. Cost Function and Derivation of the Nash Equilibrium " Iyiglds (P—i) = X2 9iPs + 1 ging
We associate with thah user the cost functios; (p;, v:(p)) e bili(p—i) 9
where the power vector i = [p1,p2,...,pn]%. The V=T T 2¢iGii ©)

corresponding_Nash equilibrium strateg_ies_ are those POYEfollows from (9) that ash; — 0 (power expenditure ceases
vectorsp* having the property that no individual user can) pe important) that;; — ~%". On the other hand, as
lower its cost by deviating from}. In other wordsp* satisfies ! ¢ '

1we have experimented with several choices for the costifimend found
Jip7, % (P) < Jilpis 7iPT, P2 - PE1s P Pyt PN iis'to be both flexible and useful

Vp;, Vi=1,2,...,N. (6) 2The b; technically have units of inverse power.



IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. ?, NO. ??, ?2? ?? 4

TABLE |
BALANCED SOLUTION POWER REQUIRED TO ACHIEVE SPECIFIED TARGESIRVECTOR

(y1, 72, v3)t (7.00,7.00,7.00)  (7.00,6.90,6.90)  (7.00,6.75,6.75) 0Q(B.75,6.50) (7.00,6.50,6.50)
p1 6.432 2.308 1.090 0.814 0.592
P2 12.804 4523 2.078 1.532 1.080
Ps 4120 1.472 0.689 0.496 0.369

T SIR’s are measured in dB. Units of power are mW.

¢; — 0, (only power usage matters and SIR value of negligibM/e propose the following algorithm in terms of the measured

importance);y; no longer converges t/*". interference (an easily measured quantity)
Substituting fory; from (3) and isolating;, we can express \2
the required power in terms of given and measured quantities (1) 2 k) by (I if positive
as D; = Gii v 2¢i \ gii (15)
tar b:I2(p_; 0 otherwise
pi= L g (poy - WP (10)
Gii 2¢i93;

where pz(-k) is the power of theith mobile and]i(k) the
Substituting for the interference using (3) in (9), and evameasured interference experienced byithemobile at thekth

uating at the Nash equilibrium we have step of the algorithm. Recall thdf" = D it gijpg-k) + 7.
tar b (9527) if this tity | i .In |mplement§\tlon, _of course, power cannot become neg-
N = {%‘ ~ 2eign ('v—) quantity 1S nonnegative  ative so there is an implicit assumption that whenever this
otherwise. expression is negative, the assigned power will be zero.
(11) In order to analyze its convergence, we rewrite the power

Of course the equilibrium power corresponding to zero Slfgygate algorithm in the form*™ = £*) (") in terms of

is pf = 0. Otherwise (11) yields an expression for th )

fhe previous power valupl(fC and current SIR measurement

Nash equilibrium powemp; in terms of the cost weighting (k)
coefficients, the target SIR, and the Nash equilibrium $JR v as
namely , tar <p§’“>> b, (pg“)Q if defined,
pi = 3008 =) 12)  fip)= p =47 ) T2 () positive
! 0 otherwise
As expected, the Nash (noncooperative) equilibrium has SIR (16)

v; less tham!®". When mobiles cooperate, as they must in

the application of the power balancing algorithm, the targeshere we have substituted fdlfk) in (15) using %_(’“ =

SIR, if feasible will be attained by all mobiles. g™ /1™ . The initial condition associated with (16) must
Our first constraint on power arises from the fact that (1(},)3ti5fyp§0> # 0. Note that the positive term in the expression

is a quadratic equation i;(p—s). For given values 0k, in (16) for p{* ™" is identical to the power balancing solution

tar

7", andp;, (10) has a real solutioh;(p—;), if and only if  (36) and the negative term is proportional to the square®f th

e ( W)z interference (compare (15)). Since, in general, the iaterfce
p; < % (13) is small, it's square is even smaller and there is little @aing
0

that the algorithm will generate a negative power. Agaie, th
We see that if we wish to use the entire range of powepswer is, of course, also required to be nonnegative.

0 < p; < pi"**, we must choosé; andc; to satisfy As noted above algorithm (16) differs from the power
b (ylar)? balancing algorithm (34) in that, to the linear (in powernte
=< . (14) a quadratic (in power) term is added. Since the proposed
¢ 2p; algorithm is a nonlinear algorithm it has in general (much)

For p*®* = 600 mW and~/*" = 5, this yields the constraint faster convergence than the corresponding linear algorith

bi/c; < 1/48. In a recent conference paper [41], we have shown how to

It is interesting to note that the power balancing algorithse the Newton iterations to accelerate convergence for the
is a special case of the static Nash algorithm correspondip@ver updates proposed in (16) and obtain the quadratic rate

to the cost/F'B = ¢;(y!" — )2 which depends only on SIR of convergence.
error. The two formulations of the algorithm have in common

that they require only a single measurement at each step,
hence if this measurement is made available to the mobge, th
power algorithm can be used to implement a distributed power
In this section we present a numerical algorithm for solvingontrol. One minor difference between the two formulatiohs
(10). We assume that the algorithm will run in real time witlthe algorithm is that the formulation in terms of interfecen
measurements potentially updated every step of the atgorit (15) and the formulation in terms of power (16) is that the

B. Algorithm for Power Updates
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formulation in terms of power, like the power balancing algoof the design parameters/b;. Note that in Section II-A, we
rithm, cannot be initialized with zero power. The formuteti have demonstrated using realistic data that in order tohese t
in terms of interference, however, does not require anainitifull mobile power range) < p; < pi*** = 600 mW when
nonzero power as the interference, which includes the noigé” = 5, the ratioc;/b; should satisfyc;/b; > 48. Hence,
power, is never zero. the upper bound for the interference as defined by (22) is
relatively large. There is no need to lower the valuetfoand
increase this already large upper bound for the interferenc
) i _ .. By reducingb; we put less emphasis on power optimization,
(]Lalt)ei [21] (i)howe_d that if a fixed point of the algorithm, 4 i the extreme case whien= 0 (which leads to the power
p = f(p'™) exists and if the functiory satisfies three | ;13ncing algorithm)the power is not optimized at all

properties:lpositivityf(p) > 0, monotonicityp > p' = 15 getermine any conditions required to preserve scaabili
f(p) > f(p'), and scalabilityf (ap) < af(p) Va > 1, then we again use (15), obtaining
the algorithm converges to the fixed point, which is unique.

C. Convergence

tar

g - . o
We shoyv below that positivity and monoton|C|t_y_ 9Sf|mpo_se afi(p) — filap) = (= )i —
constraints on acceptable valueslpfbut scalability restricts Gii
the allowable receiver noise power level, and generatesit li b; [(a )@+ (a—1) _2]
weaker than that required for monotonicity. For readahite 2¢i92 % i
will drop the index(k) in the calculations below.
i i (o = 1)b; [eiytary, 2 o)
From (15) we see that, in terms of the observed interference, — i { Vi M T 2| .
positivity requires CiGii bi 29ii 29
tar (23)
< 2990 e g, N (17)
U ie{1,2,...,N}. Noting that
To simplify the equations, where necessary, in the follagwvin 2
derivations we define Z gijp; | = 2 — 2n; Z 9ijp; | — n? (24)
¢ = Zgijpj (18) i i
j#i we make the substitution in (23) to obtain
and (o= 1)b; [ern{™ni 7
g = gD} o) afilp) = filap) = . [ b 2gn
J# o
i iti ici (1'2 —2n,q; — 77'2)
To determine conditions that ensure monotonicity we then 2gi; " g
write, using (4), (25)
() — F(n) — e VAN The first factor on the right hand side is always positive for
filp) — fi(p") (i — q;) . .
Gii «a > 1 so we need only consider the second factor. Since the
b; 2 12 / scalability condition must hold for alk > 1, the condition
2¢;9% [q (¢:) A )} for scalability reduces to
tar
Y e/ W 2¢i9iiY; " i
- (G s 00l oo (5] = @9
b)) (@0) Z "
2¢i9% OT4)\% ) which is equivalent to
Accordingly we need 2¢: iV n;
gly (Ii—m)2+M—77?>0 (27)
i gii N A 21 bi
=ity ggw (pj +p5) 1) or sincen; > 0,
JF
. s , 2¢igiiyie" )
or, noting thatp; > p’: Vj = Ii(p) > I;(p") we see that a i < — 0 vie{1,2,...,N} (28)
sufficient condition for monotonicity is g
tar is a sufficient condition for scalability. Note thidie scalability
Lip) < G 9i g e {1,2,...,N}. (22) condition does not restrict the allowable interference but
bi rather the allowable noise poweHowever, since); < I; by
for all mobiles, which is stronger than the condition (17dlefinition, this sufficient condition is weaker than the warl
needed for positivity. condition for (17) positivity.

Condition (17) and its stronger variant (22) determine the In fact, sincer; is necessarily at most;, we see that the
upper bound for the interference that guarantees the algondition (28) is weaker than the condition (22) previously
rithm’s convergence. Note that this upper bound is propoai derived for monotonicity.
to the producty;7/*". The proportionality factor is the ratio Thus we conclude the following:
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The algorithm (15) or (16) converges to the unique fixeekist for an entire range of small values;. In conclusion,

point (12), if it exists, under the conditions that assuming thaty;; are small enough (with the standard of
B~ smallness determined by the existence of the power balgncin
I < % (29) solution), then the solution of the defined Nash algebraic
¢ equations exists.
and
ci(yfr)? .
Pi S = (30) E. Opting Out

The condition (28) can be written in an equivalent form (eincN N?]te tre:_tthe_re fmay_bs]glfl ttr)16 systtems_fotr Whr:Ch r_1|o Fra((j:u(cjal
SIR must be nonnegative) ash solution is feasi e system is too heavily loaded,

the static Nash algorithm, like the power balancing ald¢onit
tar 2b;p; (31) may Yyield unacceptably low SIR’s. Of course, those mobiles
n= ci whose SIR’s fall below a minimum QoS threshold should

These conditions seem very natural since practical apijgita be dropped because .otherw_ise they cause unnecessary inter-

require an upper limit on interference power and a lowertlimference to other mobiles using the same frequency channel.

on target SIR. For example, assuming= ¢; = 1, we have the Optimal strategies for choosing when to drop calls and which

very simple limiting conditions/; < g:i7/", p; < 0.5yt calls to drop are beyond the scope of this paper. This related
7 1 . 1 1

and~!" > /2p;, that must be satisfied to assure convergenf:%eamh topic is not specific to the Nash algorithm but rathe
to the unique Nash equilibrium. arises regardless of the algorithm used. For call-dropping

strategies for algorithms including but not limited to the
. I power-balancing algorithm, the interested reader is refer

D. Existence of A Nash Equilibrium to [6], [14], [25], [43], [44], [45], and [46]. Note that a siie

In this section we establish the existence of a solutionfer t¢g|| dropping mechanism: drop mobile if %_(k) < brytar,
Nash algorithm algebraic equations under the same conditip < § < 1, can be easily incorporated in our algorithm.
that guarantees the existence of the Unique solution for thQO\ signiﬁcant advantage of the proposed a|gorithm is that
power balancing equations. The result is established bygusin individual mobile may choose to stop transmitting rather
the Implicit Function Theorem (see for example, [42], pag@an continue to expend power to achieve unsatisfactory. QoS

128). Using (4) in (10), the considered system of algebraitwe return to the two versions of the algorithm,
equations is given by

2 k) Wy bi Ii(k) ’
~tar b; b; = EIZ T2 E (32)
0 = —pi+ - Zgijpj+77i ) Zgiijer‘
i\ i i\ Gz and
= Fipoop-t 010, 91, 935, bis i), i) e (20 b (0w 33
,j=1,2,...,N, i # j. b; =% ’Y-(k) 2, 7(,@) = filp;") (33)

According to the Implicit Function theorem the Jacobiafye can derive the conditions under which the mobile stops

matrix (the matrix of partial derivative§’: must be non- transmitting or “opts out”. We will find that these conditin

singular at the point of existence. Note that in the case gfe related to the limits determined above in showing cenver

power balancing, the corresponding algebraic equatioas &ence of the algorithm.

represented by the first two terms of the right-hand side Of othough the two versions of the algorithm are equivalent

the above formula so that the corresponding Jacobian maifiXihe sense that one can be obtained from the other using

has—1 on the main diagonal angf*’ g;; /v;; outside the main he definition of the SIR, there is a slight difference. The

diagonal. When this Jacobian matrix is nonsingular then th@erference-based form can start from zero initial povieces

power balancing solution exists. (It is customary in powgre nojse term of the interference is always nonzero. The

control literature to say that the solution is feasiblettsa ower-based form, however must start from a nonzero initial

existence and feasibility have the same meaning). power. We can use this to our advantage, by starting with the
Note that the solution mostly exists owning to the fact thgtie ference-based form of the algorithm, then switchifigra

gi; are very small quantities (order o6~ and smaller). Note 3 few iterations to the power-based form.

also that the receiver noiss;, is also very small in practice | et's examine (32). If the interference to the mobile’s

(order of 1071%) or so. The Jacobian matrix for the Nash,ansmission is too large, namely

algorithm equations given above will have in addition (te th tar

Jacobian matrix of power balancing) the terms proportional JIRES 2¢igiin " (34)

975 9ijmi» andn? (all of them coming from the third term in ’ bi

the above system of algebraic equations). These termslarettan the power will be set to zero. (This was the restriction

extremely small and will not have an impact on nonsingufarineeded to achieve positivity of the update function.) If vee u

of the corresponding Jacobian matrix. Even more, the Janobthe second form of the algorithm to update the power, we see

matrices in both cases are continuous functions with regpecthat once the interference exceeds this threshold and power

g5, which further implies ([42], page 128) that the solutionsust be set to zero. In order to reestablish communication,
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the mobile would have to restart using the interferencethas Mobie Locations

form, presumably only after detecting that the interfegent x
level has decreased to below the threshold. o8r g ’ |

We used the framework of Yates to show that the algorith | |
converges for a limited range of interference values (28 T
question arises whether we can utilize the algorithm oatsii  °*| « )
this range of values or whether we must apply some sort .| « i
ad-hoc limits when the value of the interference is outsiie t

x

range. Let us consider interference values in the range S ° )
q..~Atar 20 i tar 0.2 x =
CiGiiY; < Iz(k) < CiGii"Y; Vi (35) y
bi brL -0.4 X 1
If Ifk) is greater than the upper bound, power is set to ze -os- . L x ]
so there’s no convergence problem in that region. Between 1 | * |
two bounds, the functiom‘i(pf.k)) is positive but not monoton- y
ic(%gly increasing. Specifically, it is decreasing. In thégion Al
p; ~ decreases for all mobiles so that the interference desea.. tkm)

for all mobiles. Yates’ result [21] involves an applicatiof Fig. 2. A typical random distribution of 20 mobiles
a more general asynchronous convergence theorem [47]. This
theorem can also be applied to the sequence of decreasing

powers instead of increasing powers. In the case that {ferer is the distance from théh mobile to the base station
individual interferences are simultaneously within tregion, « = 4, andA = 10~*, corresponding to a path loss of 110 dB
(35), for all mobiles, this more general formulation can bed! at a distance of 1 km. We used random spreading sequences
for decreasing powers until the interference has decremsedf length 128. We ignored fast fading and shadow fading, and
below the monotonicity bound. Hence, the proposed algorithinterference from adjacent cells.

may exhibit desirable convergence behavior even when the

bounds established in (29) are not met. Typical Fully Loaded Cell

In this example, we used twenty mobiles whose locations
were chosen uniformly at random within the cell. The loca-
To illustrate the advantages of the proposed algorithm, wiens were shown in Figure 2. Our initial power for all molsile
compare the Nash equilibrium results with the power balan@‘aspl(,o) = 0 for the Nash algorithm (implementing algorithm
ing (also called SIR-balancing) results. The power bafemnci(30)) andpgo) = 2.22 x 107'¢ for the power balancing

IIl. SIMULATION

algorithm iteratively updates power according to algorithm. We arbitrarily defined convergence as reaching
tar values within 0.01 percent of the steady state values. \Wedou
PR = <%> (), (36) that the Nash algorithm converged in fewer iterations then t
i power balancing algorithm (29s. 51), while achieving, on

Note that since admission control is not the subject of o@¥€rage, a 42 percent reduction in power (final average power
i : copNesh — 0,401 mW versug!? = 0.692 mW) with just a five

study, we have not implemented any call-dropping algorithfh i i )

for dropping mobiles whose target SIR cannot be achievé?ficlfgt redUCt'O?aLn average S'Rgv = 4.78 as opposed

For the same reason, we have not investigated the effectd®fi ~ = 5:0 =~"*". The simulation results are compared in

changing code length or target SIR. We also did not study thidure 3 forb; =5 andc; = 1 for all mobiles.

effects of choice ob; andc¢;, since we are only attempting _

to demonstrate, as opposed to quantify, the potential of thapact of Noise

algorithm. We tested the algorithm in MrLAB simulation with!e" =

K3

We considered a 2 km square cell with base station centeesgd and b, = 0.5 (mW)~! and ¢; = 1 for a random

at the origin and mobile locations were chosen randomly frogdnfiguration of 20 users and noise power levels between
a uniform distributiod. A typical cell is shown in Figure 2. 10-13 and 10~ mW. As shown in Figure 4, the average
Power was limited to 600 mW corresponding to the legal lim§owers computed by the algorithm provide significant saving
in the US. Background receiver noise power within the userig high noise environments. In these tests, the Nash algorit
bandwidth ofy; = 2x 107" mW was used in the simulations.always converged in the same number as or fewer iterations
The channel gain was determined according to than the power balancing algorithm.

h=4 @37)

ro Effect of Increasing Number of Users
N o _ _ First, we generated a random set of 35 users and compared
Realistic values for this simulation example were providedDr. Larry

Greenstein, formerly of AT&T Bell Laboratory and currentyy WINLAB, the performance Qf the static Nash and power bal"fmf:mg algo-
Rutgers University. rithms for the entire set, as well as subsets consisting @f th
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Fig. 5. Average performance comparison of Nash and poweanbilg
algorithms for 15, 20, 25, 30, and 35 users with target SIR 5 0.05
(mW)~1L, ¢ = 1, power in units of mW

Fig. 3. Performance comparison of Nash and power balandoayitams
for 20 users withy!a™ = 5.0 for all mobiles

Nash Algorithm, b = 0.02 Power Balancing Algorithm

first 15, 20, 25, and 30 users in the set. The results are shc 70
in Figure 5. The traces represent the average SIR and po\ oo
values over the set of mobiles considered. It is apparemt tlgsoo
with a slight sacrifice of achieved SIR, a significant deceea £ 4©
in power is achieved. However, with a large number of usei £ *°
the achievable power balancing SIR and the Nash equilibric  **
SIR are decreased significantly. Accordingly, dropping son
mobiles whose SIR fell below the minimum acceptable SI
value would be necessary to achieve QoS targets in practi

100

Power Balancing Algorithm

The Opt Out Phenomenon

Examining the performance of 40 individual mobiles ir
Figure 6 one sees that a few mobiles opt out when their cost
not transmitting becomes less than their cost of transmitti
The value ofh was chosen so that the entire range of allowab

Gamma

0 20 40 60 0 20 40 60
Iteration Iteration
15
— Nash T Fig. 6. Performance comparison of Nash and power balandopgyitams
45 o : 1 for 40 users with target SIR %, = 0.02 (mW)~ 1, c=1

4+ powers would be used. The average SIR’s and powers for

this example were both 3.29, usigg’**" = 197 mW and

p"BA = 399 mW. Eliminating the 5 mobiles that opted

| out, one obtainsyV**" = 3.75 and pV*" = 225 mw.

By comparison, if we eliminate the 5 mobiles having the

worst power balancing SIR’s and rerun the power balancing

1 algorithm, we obtairg”B4 = 3.77 usingp"?4 = 359 mw,

and the base station would have to select these mobiles and

terminate their calls, whereas using the Nash algorithm, th

—— 1 mobiles themselves chose to opt out based on their own power

‘ versus SIR error costs. In this example, the mobiles 10, 12,

107 107 0™ 16, 23 and 26 opted out, whereas the base station would
have dropped mobile 4 instead of mobile 10. Note that if the

Fig. 4. Performance comparison of Nash and power balandygitams Mobiles used different choices of weighting coefficigntand

for 20 users with target SIR 5, for a range of noise values c;, the set that opted out could even be disjoint from the set

Average Power (mW)
Average SIR
N
o
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chosen by the base station.

[11]

In Section II-C we showed that if certain bounds on inter-
ference were not exceeded, the algorithm would converge{g,
the nonzero Nash equilibrium power and SIR. What we have
seen in the simulations is that, in fact, the algorithm bekav

well even when the interference exceeds these bounds.

IV. CONCLUSION

With our algorithm, we obtained lower individual pow-

[13]

[14]

ers with comparable or faster convergence by compromising)

slightly on SIR values. Exploiting this tradeoff, the preed

algorithm was able to handle many more users than the po

cases where the power balancing problem has no solution. The
algorithm can easily be implemented in a distributed ma,nn@r7
and has the advantage that mobiles choose whether or not

S. A. Grandhi and J. Zander, “Constrained power corirokllular radio
systems,” inProceedings, IEEE 44th Vehicular Technology Conference
vol. 2, 1994, pp. 824-828.

N. D. Bambos, S. C. Chen, and G. J. Pottie, “Radio link msdmon
algorithms for wireless networks with power control andiwactlink
quality protection,” inProceedings, INFOCOM '95vol. 1, 1995, pp.
97-104.

R. Jantti and S.-L. Kim, “Selective power control witiictive link
protection for combined rate and power managementPrioceedings,
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to transmit based on their own valuations of the trade-offtf]

between power usage and QoS as represented in their cost

functions.
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An interesting topic for future research is the development

of efficient algorithms for use by the base station in idgimi

when to drop calls and which mobile’s calls to drop. Adpo]
mission and dropping algorithms have received considerabl
attention in the context of power balancing type algorithms
but has not been investigated for static Nash equilibriupm

algorithms.
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