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A Nash Game Algorithm for SIR-Based Power
Control in 3G Wireless CDMA Networks
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Abstract— We propose a new algorithm for distributed power
control in cellular communication systems. We define a cost for
each mobile that consists of a weighted sum of power and square
of signal-to-interference ratio (SIR) error and obtain the static
Nash equilibrium for the resulting costs. The algorithm requires
only interference power measurements and/or SIR measurements
from the base station, and converges even in cases where limits on
available power render the target SIR’s unattainable. Examples
generated using realistic data demonstrate that in demanding
environments, the Nash equilibrium power provides substantial
power savings as compared to the power balancing algorithm,
while reducing achieved SIR only slightly. Additional simulations
show that the benefit of the Nash equilibrium power control
over the power balancing solution increases as receiver noise
power or number of users in the cell increases. The algorithm
has the advantage that it can be implemented distributively.
An additional benefit of the algorithm is that based on their
chosen cost function, mobiles may choose to “opt out”,i.e.
stop transmitting, if they determine that the power required to
achieve their SIR objectives is more expensive to them than not
transmitting at all.

Index Terms— Noncooperative games, Nash equilibrium,
Power Control, Wireless Communications

I. I NTRODUCTION

BECAUSE Because each user of a wireless communi-
cations system contributes to the interference affecting

other users, effective and efficient power control strategies
are essential for achieving both quality of service (QoS) and
system capacity objectives.

Closed-loop power control is used in wireless communi-
cation networks to compensate for fast fading, time-varying
channel characteristics, and to reduce mobile battery power
consumption. The closed loop control structure in IS-95 (one
of the currently implemented standards used in wireless net-
works) consists of an outer loop algorithm that updates the
SIR threshold every 10 ms and an inner loop which calculates
required powers based on SIR measurements updated every
1.25ms (800 Hz) [1]. The outer loop algorithm determines the
target SIRγtar based on the estimate of the frame error rate
(FER). The inner loop algorithm generates a power control bit
(PCB) based on the difference between the actual and target
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systems

SIR’s. A block diagram illustrating the power control structure
[2] is shown in Figure 1.

A. Review of the literature

One of the most common approaches to closed-loop power
control in wireless communication networks is SIR balancing,
also called power balancing. The SIR balancing solution was
originally derived for satellite communications by Aein [3]
and Meyerhoff [4], and adapted for wireless communications
by Nettleton [5] and Zander [6] and [7]. Variations on the
SIR balancing algorithm have replaced the target SIR by
functions incorporating minimum allowable SIR [8], SIR’s of
other mobiles [9] and [10], and maximum allowable power
[8] and [11] among others. Variations have been developed to
incorporate call admission and handoff [12], [13], and [14],
base station assignment [15], and economic tradeoffs [16].

SIR balancing algorithms (SBA’s) are simple and most can
be implemented distributively, but have the disadvantage that
convergence can be slow and is guaranteed only if every
mobile’s target SIR is feasible.

To address the convergence issue, a number of algorithms
have been developed that shape the dynamics of the controlled
power or the convergence of the algorithm [17], [18], [19],
and [20]. To aid in establishing convergence of power control
algorithms, a framework was proposed by Yates [21] and
extended by Leunget al. [22].

Another class of algorithms seek to solve a static optimiza-
tion problem. The well known distributed constrained power
control (DCPC) algorithm maximizes the minimum attained
user SIR subject to maximum power constraints [11], [21],
[23]. Other algorithms minimize power consumption in the
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presence of large-scale fading [24] or over a set of discrete
available power levels [25].

Dynamic optimization has been used to minimize power
consumption by formulating power control for log-normal
fading channels in a stochastic framework [26] and [27] as
well as to adaptively optimize quantization of fedback SIR
[28].

An alternative framework for developing power control
algorithms is based on game theory or economic formulations
requiring the specification of a utility or cost function [29],
[30] and [31]. Various utility functions have been suggested
[30], [32], and [16]. The use of pricing to promote efficiency
and fairness has been discussed extensively [33], [34], [35],
and [36]. Alpcanet al. [29] recently proposed a Nash game
formulation of the SIR-based power control problem in which
each mobile uses a cost function that is linear in power and
logarithmically dependent on SIR. They establish the existence
and uniqueness of the Nash equilibrium solution and consider
the effect of various pricing schemes on system performance.

B. Interference Model

Power control for either the uplink (reverse link) or the
downlink (forward link) can be considered. In the former
case, a desirable property for a power control algorithm is
the sufficiency of measurements available at the mobile for
computing the power updates. Such algorithms can be im-
plemented without reliance on communication with either the
base station or other mobiles and hence are called distributed.
Note that it has been shown that the same problem formulation
can be applied to various types of both uplink and downlink
scenarios so our discussion here is not exclusively applicable
to uplink power control.

The goal in the power control of wireless systems is to
ensure that no mobile’s SIRγi falls below its thresholdγtar

i

chosen to ensure adequate QoS,i.e. to maintain

γi ≥ γtar
i , ∀i, (1)

where the subscripti indexes the set of mobiles. In IS-95, this
threshold is calculated for the individual mobile to maintain
a satisfactory frame-error rate (FER). From the mobile’s
perspective, however, whether the other users meet their QoS
requirements is irrelevant. For this reason, the frameworkof
noncooperative game theory [37] is well suited for analyzing
and solving the power control problem.

Considering the uplink for a single cell CDMA system with
N users, we designate the transmitted power and SIR for the
ith user bypi andγi, respectively. We denote the background
(receiver) noise power within the user’s bandwidth byηi. In
the deterministic formulation of the power control problemfor
wireless networks, the noise powerηi is treated as constant.
We use a “snapshot” model, assuming that link gains evolve
slowly with respect to the SIR evolution. In this problem
formulation, the SIR of theith mobile is

γi =
hipi

∑

j 6=i hjpjcij + ηi

(2)

wherehi is the attenuation from theith mobile to the base
station andcij is the code correlation coefficient. The atten-
uation is calculated from the distanceri between the mobile
and base station to behi = A/rα

i in the absence of shadow
and fast fading.A is a constant gain andα is usually between
3 and 6. We will provide realistic values for these constants
in the simulation section, Section III. The code correlation
coefficientcij is computed from the signaturessi andsj to be
cij = (sj

T si)
2.

We note that this model is consistent with the general power
control problem for wireless communication systems in which
the SIR of mobilei is given by

γi =
giipi

Ii(p−i)
=

giipi
∑

j 6=i gijpj + ηi

(3)

with the interference given by

Ii(p−i) :=
∑

j 6=i

gijpj + ηi. (4)

We have used the subscript “−i” to indicate that the in-
terference depends on the powers of all users except the
ith. If we define a power vectorp having ith elementpi,
and an interference vectorI having ith elementIi(p−i), the
subscript indicates that theith element of the interference
vector depends on all but theith element of the power vector.

Comparing (2) and (3), we see that for CDMA uplink power
control,

gij :=

{

hi j = i

hj(sj
T si)

2 otherwise
(5)

so gij denotes an effective link gain from thejth user to
the base station that specifies thejth user’s contribution to
the interference affecting the signal of theith user. We will
also define an effective gain matrixG having(i, j)th element
gij . Note that in contrast to the case in which background
noise power is neglected and the diagonal elements of the gain
matrix are set to zero, we cannot write the interference as the
product of the gain matrix and power vector,i.e. I 6= Gp.

C. Motivation

The standard in the literature to which other SIR-based al-
gorithms are compared is the DCPC algorithm for solving the
SIR balancing problem for wireless communication networks
[11], [21], and [23]. Although various types of optimal solu-
tions have been considered, most of these require prohibitively
large computational resources. Approaches that have been
proposed include formulating the minimization of total power
usage given quantized power levels as an integer programming
problem [25], and minimizing outage probability as a linear
programming problem [38]. More recently, it has been shown
that minimizing power usage subject to power constraints
or vice versacan be posed as a geometric programming or
nonlinear convex optimization problem [39].

The first criterion by which a practical optimal power con-
trol algorithm must be judged is demonstration of significant
performance improvement. Our simulation results presented
below establish thatsignificant decreases in mobile powers
can be achieved with minor effects on SIR. Accordingly,
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there is a need for power update algorithms that take into
account power optimization. The second criterion is robustness
to environmental changes, namely receiver noise, to reduce
outage.

To motivate the need for alternatives to SIR balancing
algorithms we provide the following simple example.

Motivating Example:Consider a wireless system with three
users whose gains are given by

G =







1.0000 0.0882 0.0357

0.1524 0.9500 0.3501

0.0767 0.0244 0.9900






.

Let the receiver noise power (in appropriate units) beη1 =
η2 = η3 = η = 0.01 and assume that we want to achieve
γtar
1 = γtar

2 = γtar
3 = γtar = 5 via power balancing.

Note that this quality of service (the desired SIR target value)
corresponds to 7 dB.

By running the power balancing algorithm for 400 iterations
we have obtained the following results

p = [6.131, 12.204, 3.928]

γ = [4.998, 4.998, 4.998].

In Table I, we present the results for three mobiles and
investigate the powers required to achieve equal and distinct
target SIR’s. The column headings indicate the specified target
SIR’s (in dB) for the three mobiles. The rows indicate the
mobile powers required to achieve these target SIR’s. The
total mobile power (sum of the powers in the second column)
required to achieve equal SIR’s is approximately three times
that required if we relax the SIR requirements only slightly
(third column). The next column of the table shows that if we
relax the SIR requirements further, we can again reduce the
total required power by two-thirds. This example suggests that
significant reductions in mobile power may be achieved if we
consider alternatives to SIR balancing algorithms, especially
those that minimize mobiles’ power while allowing reasonable
deviations from the target SIR.

II. NASH GAME PROBLEM FORMULATION

In the following subsections we formulate the SIR-based
power control problem as a noncooperative game, choose an
appropriate cost function, and find the corresponding Nash
equilibrium [37], [40] power vector. We then design a power
control algorithm that uses only measured information avail-
able to the individual mobile, hence can be implemented
distributively. We derive conditions under which we can show
convergence of the algorithm within the framework of Yates
[21] and point out useful limiting behavior.

A. Cost Function and Derivation of the Nash Equilibrium

We associate with theith user the cost functionJi(pi, γi(p))
where the power vector isp := [p1, p2, . . . , pN ]T . The
corresponding Nash equilibrium strategies are those power
vectorsp∗ having the property that no individual user can
lower its cost by deviating fromp∗i . In other words,p∗ satisfies

Ji(p
∗
i , γi(p

∗)) ≤ Ji(pi, γi(p
∗
1, p

∗
2, . . . , p

∗
i−1, pi, p

∗
i+1, . . . , p

∗
N )),

∀pi, ∀i = 1, 2, . . . , N. (6)

The mobile has two conflicting objectives. On the one
hand, the higher the SIR, the better the service. On the other
hand, higher SIR is achieved at the costs of increased drain
on the battery and higher interference to signals of other
mobiles. Accordingly, we define a cost function for each user
depending on power and SIR. Since some nonzero SIR level
is necessary for accurate communication, we consider the cost
of the difference between the actual SIR and the target SIR
that is chosen based on the estimated frame error rate.

A cost function should be convex and nonnegative to allow
existence of a nonnegative minimum. Power is always positive
in this application; however, the SIR error may be either
positive or negative. To ensure positivity and convexity ofthe
cost function, we square the SIR error term. We thus consider
the following candidate cost function1

Ji(pi, γi) = bipi + ci(γ
tar
i − γi)

2, (7)

wherebi and ci are constant nonnegative weighting factors.2

We will show below that (7) provides existence of a meaning-
ful Nash equilibrium solution.

Since the cost function depends on parametersbi and ci,
the results obtained will depend onbi andci. It is not difficult
to derive the corresponding sensitivity functions ofJi with
respect tobi andci. These are given by

Sbi
:=

∂bi/bi

∂Ji/Ji

= 1 + ci(γ
tar
i − γi)

2 = 1 + ci∆
2
i ≈ 1

since at the Nash equilibrium the deviation of the actual SIR
from the target SIR is small, and

Sci
:=

∂ci/ci

∂Ji/Ji

= 1 + bip
∗
i ,

respectively. Hence, the chosen cost is more sensitive to
variations in the SIR error than to variations in power, unless
bi is taken as very small.

We will see in the analysis below that only the ratio of
the power weightbi to the SIR-error weightci is important;
hence, theci can be made equal to one by replacingbi by
b̃i = bi/ci. For different applications, different ratiosbi/ci

may be chosen. Choosingbi/ci > 1 places more emphasis on
power usage whereasbi/ci < 1 places more emphasis on SIR
error.

Applying the necessary conditions for a Nash equilibrium
we have

∂Ji

∂pi

= 0 = bi − 2ci(γ
tar
i − γi)

∂γi

∂pi

= bi − 2ci(γ
tar
i − γi)

gii
∑

j 6=i gijpj + ηi

. (8)

Recalling thatIi(p−i) :=
∑

j 6=i gijpj + ηi, and rearranging
terms yields

γi = γtar
i − biIi(p−i)

2cigii

. (9)

It follows from (9) that asbi → 0 (power expenditure ceases
to be important) thatγi → γtar

i . On the other hand, as

1We have experimented with several choices for the cost function and found
this to be both flexible and useful.

2The bi technically have units of inverse power.



IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. ?, NO. ??, ?? ?? 4

TABLE I

BALANCED SOLUTION POWER REQUIRED TO ACHIEVE SPECIFIED TARGET SIR VECTOR

(γ1, γ2, γ3)† (7.00,7.00,7.00) (7.00,6.90,6.90) (7.00,6.75,6.75) (7.00,6.75,6.50) (7.00,6.50,6.50)

p1 6.432 2.308 1.090 0.814 0.592

p2 12.804 4.523 2.078 1.532 1.080

p3 4.120 1.472 0.689 0.496 0.369

† SIR’s are measured in dB. Units of power are mW.

ci → 0, (only power usage matters and SIR value of negligible
importance),γi no longer converges toγtar

i .
Substituting forγi from (3) and isolatingpi, we can express

the required power in terms of given and measured quantities
as

pi =
γtar

i

gii

Ii(p−i) −
biI

2
i (p−i)

2cig2
ii

. (10)

Substituting for the interference using (3) in (9), and eval-
uating at the Nash equilibrium we have

γ∗
i =

{

γtar
i − bi

2cigii

(

giip
∗

i

γ∗

i

)

if this quantity is nonnegative

0 otherwise.
(11)

Of course the equilibrium power corresponding to zero SIR
is p∗i = 0. Otherwise (11) yields an expression for the
Nash equilibrium powerp∗i in terms of the cost weighting
coefficients, the target SIR, and the Nash equilibrium SIRγ∗

i ,
namely

p∗i =
2ci

bi

γ∗
i (γtar

i − γ∗
i ). (12)

As expected, the Nash (noncooperative) equilibrium has SIR
γ∗

i less thanγtar
i . When mobiles cooperate, as they must in

the application of the power balancing algorithm, the target
SIR, if feasible, will be attained by all mobiles.

Our first constraint on power arises from the fact that (10)
is a quadratic equation inIi(p−i). For given values ofgii,
γtar

i , andpi, (10) has a real solutionIi(p−i), if and only if

pi ≤
ci (γtar

i )
2

2bi

. (13)

We see that if we wish to use the entire range of powers
0 ≤ pi ≤ pmax

i , we must choosebi andci to satisfy

bi

ci

≤ (γtar
i )2

2pmax
i

. (14)

For pmax
i = 600 mW andγtar

i = 5, this yields the constraint
bi/ci ≤ 1/48.

It is interesting to note that the power balancing algorithm
is a special case of the static Nash algorithm corresponding
to the costJPB

i = ci(γ
tar
i − γ)2 which depends only on SIR

error.

B. Algorithm for Power Updates

In this section we present a numerical algorithm for solving
(10). We assume that the algorithm will run in real time with
measurements potentially updated every step of the algorithm.

We propose the following algorithm in terms of the measured
interference (an easily measured quantity)

p
(k+1)
i =







γtar

i

gii

I
(k)
i − bi

2ci

(

I
(k)
i

gii

)2

if positive

0 otherwise
(15)

where p
(k)
i is the power of theith mobile and I

(k)
i the

measured interference experienced by theith mobile at thekth
step of the algorithm. Recall thatI(k)

i =
∑

j 6=i gijp
(k)
j + ηi.

In implementation, of course, power cannot become neg-
ative so there is an implicit assumption that whenever this
expression is negative, the assigned power will be zero.

In order to analyze its convergence, we rewrite the power
update algorithm in the formp(k+1)

i = f
(k)
i (p

(k)
i ) in terms of

the previous power valuep(k)
i and current SIR measurement

γ
(k)
i as

fi(p
(k)
i ) := p

(k+1)
i =











γtar
i

(

p
(k)
i

γ
(k)
i

)

− bi

2ci

(

p
(k)
i

γ
(k)
i

)2
if defined,
positive

0 otherwise
(16)

where we have substituted forI(k)
i in (15) using γ

(k)
i =

giip
(k)
i /I

(k)
i . The initial condition associated with (16) must

satisfyp
(0)
i 6= 0. Note that the positive term in the expression

in (16) for p
(k+1)
i is identical to the power balancing solution

(36) and the negative term is proportional to the square of the
interference (compare (15)). Since, in general, the interference
is small, it’s square is even smaller and there is little danger
that the algorithm will generate a negative power. Again, the
power is, of course, also required to be nonnegative.

As noted above algorithm (16) differs from the power
balancing algorithm (34) in that, to the linear (in power) term,
a quadratic (in power) term is added. Since the proposed
algorithm is a nonlinear algorithm it has in general (much)
faster convergence than the corresponding linear algorithm.
In a recent conference paper [41], we have shown how to
use the Newton iterations to accelerate convergence for the
power updates proposed in (16) and obtain the quadratic rate
of convergence.

The two formulations of the algorithm have in common
that they require only a single measurement at each step,
hence if this measurement is made available to the mobile, the
power algorithm can be used to implement a distributed power
control. One minor difference between the two formulationsof
the algorithm is that the formulation in terms of interference
(15) and the formulation in terms of power (16) is that the
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formulation in terms of power, like the power balancing algo-
rithm, cannot be initialized with zero power. The formulation
in terms of interference, however, does not require an initial
nonzero power as the interference, which includes the noise
power, is never zero.

C. Convergence

Yates [21] showed that if a fixed point of the algorithm
p(k+1) = f(p(k)) exists and if the functionf satisfies three
properties: positivityf(p) > 0, monotonicityp > p′ =⇒
f(p) > f(p′), and scalabilityf(αp) < αf(p) ∀α > 1, then
the algorithm converges to the fixed point, which is unique.
We show below that positivity and monotonicity off impose
constraints on acceptable values ofIi but scalability restricts
the allowable receiver noise power level, and generates a limit
weaker than that required for monotonicity. For readability, we
will drop the index(k) in the calculations below.

From (15) we see that, in terms of the observed interference,
positivity requires

Ii <
2cigiiγ

tar
i

bi

, ∀i ∈ {1, 2, . . . , N}. (17)

To simplify the equations, where necessary, in the following
derivations we define

qi :=
∑

j 6=i

gijpj (18)

and
q′i :=

∑

j 6=i

gijp
′
j . (19)

To determine conditions that ensure monotonicity we then
write, using (4),

fi(p) − fi(p
′) =

γtar
i

gii

(qi − q′i) −

bi

2cig2
ii

[

q2
i − (q′i)

2 + 2ηi (qi − q′i)
]

=

(

γtar
i

gii

− biηi

cig2
ii

)

(qi − q′i) −

bi

2cig2
ii

(qi + q′i) (qi − q′i) . (20)

Accordingly we need

ciγ
tar
i gii

bi

≥ ηi +
1

2

∑

j 6=i

gij

(

pj + p′j
)

(21)

or, noting thatpj ≥ p′j ∀j =⇒ Ii(p) ≥ Ii(p
′) we see that a

sufficient condition for monotonicity is

Ii(p) ≤ ciγ
tar
i gii

bi

, ∀i ∈ {1, 2, . . . , N}. (22)

for all mobiles, which is stronger than the condition (17)
needed for positivity.

Condition (17) and its stronger variant (22) determine the
upper bound for the interference that guarantees the algo-
rithm’s convergence. Note that this upper bound is proportional
to the productgiiγ

tar
i . The proportionality factor is the ratio

of the design parametersci/bi. Note that in Section II-A, we
have demonstrated using realistic data that in order to use the
full mobile power range0 ≤ pi ≤ pmax

i = 600 mW when
γtar

i = 5, the ratioci/bi should satisfyci/bi ≥ 48. Hence,
the upper bound for the interference as defined by (22) is
relatively large. There is no need to lower the value forbi and
increase this already large upper bound for the interference.
By reducingbi we put less emphasis on power optimization,
and in the extreme case whenbi = 0 (which leads to the power
balancing algorithm),the power is not optimized at all.

To determine any conditions required to preserve scalability,
we again use (15), obtaining

αfi(p) − fi(αp) =
γtar

i

gii

(α − 1)ηi −
bi

2cig2
ii

[

(α − α2)q2
i + (α − 1) η2

i

]

=
(α − 1)bi

cigii

[

ciγ
tar
i ηi

bi

− η2
i

2gii

+
α

2gii

q2
i

]

.

(23)

Noting that




∑

j 6=i

gijpj





2

= I2
i − 2ηi





∑

j 6=i

gijpj



− η2
i (24)

we make the substitution in (23) to obtain

αfi(p) − fi(αp) =
(α − 1)bi

cigii

[

ciγ
tar
i ηi

bi

− η2
i

2gii

+

α

2gii

(

I2
i − 2ηiqi − η2

i

)

]

.

(25)

The first factor on the right hand side is always positive for
α > 1 so we need only consider the second factor. Since the
scalability condition must hold for allα > 1, the condition
for scalability reduces to

2cigiiγ
tar
i ηi

bi

+ I2
i > 2ηi





∑

j 6=i

gijpj



+ 2η2
i = 2ηiIi (26)

which is equivalent to

(Ii − ηi)
2 +

2cigiiγ
tar
i ηi

bi

− η2
i > 0 (27)

or sinceηi > 0,

ηi <
2cigiiγ

tar
i

bi

, ∀i ∈ {1, 2, . . . , N} (28)

is a sufficient condition for scalability. Note thatthe scalability
condition does not restrict the allowable interference but
rather the allowable noise power. However, sinceηi < Ii by
definition, this sufficient condition is weaker than the earlier
condition for (17) positivity.

In fact, sinceηi is necessarily at mostIi, we see that the
condition (28) is weaker than the condition (22) previously
derived for monotonicity.

Thus we conclude the following:
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The algorithm (15) or (16) converges to the unique fixed
point (12), if it exists, under the conditions that

Ii <
cigiiγ

tar
i

bi

(29)

and

pi ≤
ci(γ

tar
i )2

2bi

(30)

The condition (28) can be written in an equivalent form (since
SIR must be nonnegative)

γtar
i ≥

√

2bipi

ci

. (31)

These conditions seem very natural since practical applications
require an upper limit on interference power and a lower limit
on target SIR. For example, assumingbi = ci = 1, we have the
very simple limiting conditions,Ii < giiγ

tar
i , pi < 0.5γtar

i ,
andγtar

i ≥ √
2pi, that must be satisfied to assure convergence

to the unique Nash equilibrium.

D. Existence of A Nash Equilibrium

In this section we establish the existence of a solution for the
Nash algorithm algebraic equations under the same condition
that guarantees the existence of the unique solution for the
power balancing equations. The result is established by using
the Implicit Function Theorem (see for example, [42], page
128). Using (4) in (10), the considered system of algebraic
equations is given by

0 = −pi +
γtar

i

gii





∑

j 6=i

gijpj + ηi



− bi

2cig2
ii





∑

j 6=i

gijpj + ηi





2

= Fi(pi,p−i, gii, gij , g
2
ij , bi, ci, ηi),

i, j = 1, 2, ..., N, i 6= j.

According to the Implicit Function theorem the Jacobian
matrix (the matrix of partial derivatives∂Fi

∂pi

must be non-
singular at the point of existence. Note that in the case of
power balancing, the corresponding algebraic equations are
represented by the first two terms of the right-hand side of
the above formula so that the corresponding Jacobian matrix
has−1 on the main diagonal andγtar

i gij/γii outside the main
diagonal. When this Jacobian matrix is nonsingular then the
power balancing solution exists. (It is customary in power
control literature to say that the solution is feasible, that is,
existence and feasibility have the same meaning).

Note that the solution mostly exists owning to the fact that
gij are very small quantities (order of10−3 and smaller). Note
also that the receiver noise,ηi, is also very small in practice
(order of 10−10) or so. The Jacobian matrix for the Nash
algorithm equations given above will have in addition (to the
Jacobian matrix of power balancing) the terms proportionalto
g2

ij , gijηi, andη2
i (all of them coming from the third term in

the above system of algebraic equations). These terms are all
extremely small and will not have an impact on nonsingularity
of the corresponding Jacobian matrix. Even more, the Jacobian
matrices in both cases are continuous functions with respect to
gij , which further implies ([42], page 128) that the solutions

exist for an entire range of small valuesgij . In conclusion,
assuming thatgij are small enough (with the standard of
smallness determined by the existence of the power balancing
solution), then the solution of the defined Nash algebraic
equations exists.

E. Opting Out

Note thatthere may still be systems for which no practical
Nash solution is feasible. If the system is too heavily loaded,
the static Nash algorithm, like the power balancing algorithm,
may yield unacceptably low SIR’s. Of course, those mobiles
whose SIR’s fall below a minimum QoS threshold should
be dropped because otherwise they cause unnecessary inter-
ference to other mobiles using the same frequency channel.
Optimal strategies for choosing when to drop calls and which
calls to drop are beyond the scope of this paper. This related
research topic is not specific to the Nash algorithm but rather
arises regardless of the algorithm used. For call-dropping
strategies for algorithms including but not limited to the
power-balancing algorithm, the interested reader is referred
to [6], [14], [25], [43], [44], [45], and [46]. Note that a simple
call dropping mechanism: drop mobilei if γ

(k)
i < δγtar,

0 < δ < 1, can be easily incorporated in our algorithm.
A significant advantage of the proposed algorithm is that

an individual mobile may choose to stop transmitting rather
than continue to expend power to achieve unsatisfactory QoS.
If we return to the two versions of the algorithm,

p
(k+1)
i =

γtar
i

gii

I
(k)
i − bi

2ci

(

I
(k)
i

gii

)2

(32)

and

p
(k+1)
i = γtar

i

(

p
(k)
i

γ
(k)
i

)

− bi

2ci

(

p
(k)
i

γ
(k)
i

)2

=: fi(p
(k)
i ) (33)

we can derive the conditions under which the mobile stops
transmitting or “opts out”. We will find that these conditions
are related to the limits determined above in showing conver-
gence of the algorithm.

Although the two versions of the algorithm are equivalent
in the sense that one can be obtained from the other using
the definition of the SIR, there is a slight difference. The
interference-based form can start from zero initial power since
the noise term of the interference is always nonzero. The
power-based form, however must start from a nonzero initial
power. We can use this to our advantage, by starting with the
interference-based form of the algorithm, then switching after
a few iterations to the power-based form.

Let’s examine (32). If the interference to the mobile’s
transmission is too large, namely

I
(k)
i >

2cigiiγ
tar
i

bi

(34)

then the power will be set to zero. (This was the restriction
needed to achieve positivity of the update function.) If we use
the second form of the algorithm to update the power, we see
that once the interference exceeds this threshold and power
must be set to zero. In order to reestablish communication,
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the mobile would have to restart using the interference-based
form, presumably only after detecting that the interference
level has decreased to below the threshold.

We used the framework of Yates to show that the algorithm
converges for a limited range of interference values (29). The
question arises whether we can utilize the algorithm outside
this range of values or whether we must apply some sort of
ad-hoc limits when the value of the interference is outside this
range. Let us consider interference values in the range

cigiiγ
tar
i

bi

< I
(k)
i <

2cigiiγ
tar
i

bi

∀i. (35)

If I
(k)
i is greater than the upper bound, power is set to zero

so there’s no convergence problem in that region. Between the
two bounds, the functionfi(p

(k)
i ) is positive but not monoton-

ically increasing. Specifically, it is decreasing. In this region
p
(k)
i decreases for all mobiles so that the interference decreases

for all mobiles. Yates’ result [21] involves an applicationof
a more general asynchronous convergence theorem [47]. This
theorem can also be applied to the sequence of decreasing
powers instead of increasing powers. In the case that the
individual interferences are simultaneously within this region,
(35), for all mobiles, this more general formulation can be used
for decreasing powers until the interference has decreasedto
below the monotonicity bound. Hence, the proposed algorithm
may exhibit desirable convergence behavior even when the
bounds established in (29) are not met.

III. S IMULATION

To illustrate the advantages of the proposed algorithm, we
compare the Nash equilibrium results with the power balanc-
ing (also called SIR-balancing) results. The power balancing
algorithm iteratively updates power according to

p
(k+1)
i =

(

γtar
i

γ
(k)
i

)

p
(k)
i . (36)

Note that since admission control is not the subject of our
study, we have not implemented any call-dropping algorithm
for dropping mobiles whose target SIR cannot be achieved.
For the same reason, we have not investigated the effects of
changing code length or target SIR. We also did not study the
effects of choice ofbi and ci, since we are only attempting
to demonstrate, as opposed to quantify, the potential of the
algorithm.

We considered a 2 km square cell with base station centered
at the origin and mobile locations were chosen randomly from
a uniform distribution3. A typical cell is shown in Figure 2.
Power was limited to 600 mW corresponding to the legal limit
in the US. Background receiver noise power within the user’s
bandwidth ofηi = 2×10−13 mW was used in the simulations.
The channel gain was determined according to

hi =
A

rα
(37)

3Realistic values for this simulation example were providedby Dr. Larry
Greenstein, formerly of AT&T Bell Laboratory and currentlyat WINLAB,
Rutgers University.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Mobile Locations

(km)

(k
m

)

Mobiles
Base Station

Fig. 2. A typical random distribution of 20 mobiles

wherer is the distance from theith mobile to the base station
α = 4, andA = 10−11, corresponding to a path loss of 110 dB
at a distance of 1 km. We used random spreading sequences
of length 128. We ignored fast fading and shadow fading, and
interference from adjacent cells.

Typical Fully Loaded Cell

In this example, we used twenty mobiles whose locations
were chosen uniformly at random within the cell. The loca-
tions were shown in Figure 2. Our initial power for all mobiles
wasp

(0)
i = 0 for the Nash algorithm (implementing algorithm

(30)) and p
(0)
i = 2.22 × 10−16 for the power balancing

algorithm. We arbitrarily defined convergence as reaching
values within 0.01 percent of the steady state values. We found
that the Nash algorithm converged in fewer iterations than the
power balancing algorithm (29vs. 51), while achieving, on
average, a 42 percent reduction in power (final average power
pNash

i = 0.401 mW versuspPB
i = 0.692 mW) with just a five

percent reduction in average SIR,γNash
i = 4.78 as opposed

to γPB
i = 5.0 = γtar. The simulation results are compared in

Figure 3 forbi = 5 andci = 1 for all mobiles.

Impact of Noise

We tested the algorithm in MATLAB simulation withγtar
i =

5.0 and bi = 0.5 (mW)−1 and ci = 1 for a random
configuration of 20 users and noise power levels between
10−13 and 10−11 mW. As shown in Figure 4, the average
powers computed by the algorithm provide significant savings
in high noise environments. In these tests, the Nash algorithm
always converged in the same number as or fewer iterations
than the power balancing algorithm.

Effect of Increasing Number of Users

First, we generated a random set of 35 users and compared
the performance of the static Nash and power balancing algo-
rithms for the entire set, as well as subsets consisting of the
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Fig. 3. Performance comparison of Nash and power balancing algorithms
for 20 users withγtar

i
= 5.0 for all mobiles

first 15, 20, 25, and 30 users in the set. The results are shown
in Figure 5. The traces represent the average SIR and power
values over the set of mobiles considered. It is apparent that
with a slight sacrifice of achieved SIR, a significant decrease
in power is achieved. However, with a large number of users,
the achievable power balancing SIR and the Nash equilibrium
SIR are decreased significantly. Accordingly, dropping some
mobiles whose SIR fell below the minimum acceptable SIR
value would be necessary to achieve QoS targets in practice.

The Opt Out Phenomenon

Examining the performance of 40 individual mobiles in
Figure 6 one sees that a few mobiles opt out when their cost of
not transmitting becomes less than their cost of transmitting.
The value ofb was chosen so that the entire range of allowable
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Fig. 4. Performance comparison of Nash and power balancing algorithms
for 20 users with target SIR 5, for a range of noise values
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Fig. 5. Average performance comparison of Nash and power balancing
algorithms for 15, 20, 25, 30, and 35 users with target SIR 5,b = 0.05
(mW)−1, c = 1, power in units of mW
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Fig. 6. Performance comparison of Nash and power balancing algorithms
for 40 users with target SIR 5,b = 0.02 (mW)−1, c = 1

powers would be used. The average SIR’s and powers for
this example were both 3.29, usingpNash = 197 mW and
pPBA = 399 mW. Eliminating the 5 mobiles that opted
out, one obtainsγNash = 3.75 and pNash = 225 mW.
By comparison, if we eliminate the 5 mobiles having the
worst power balancing SIR’s and rerun the power balancing
algorithm, we obtainγPBA = 3.77 usingpPBA = 359 mW,
and the base station would have to select these mobiles and
terminate their calls, whereas using the Nash algorithm, the
mobiles themselves chose to opt out based on their own power
versus SIR error costs. In this example, the mobiles 10, 12,
16, 23 and 26 opted out, whereas the base station would
have dropped mobile 4 instead of mobile 10. Note that if the
mobiles used different choices of weighting coefficientsbi and
ci, the set that opted out could even be disjoint from the set
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chosen by the base station.
In Section II-C we showed that if certain bounds on inter-

ference were not exceeded, the algorithm would converge to
the nonzero Nash equilibrium power and SIR. What we have
seen in the simulations is that, in fact, the algorithm behaves
well even when the interference exceeds these bounds.

IV. CONCLUSION

With our algorithm, we obtained lower individual pow-
ers with comparable or faster convergence by compromising
slightly on SIR values. Exploiting this tradeoff, the proposed
algorithm was able to handle many more users than the power
balancing algorithm and to produce the Nash equilibrium in
cases where the power balancing problem has no solution. The
algorithm can easily be implemented in a distributed manner,
and has the advantage that mobiles choose whether or not
to transmit based on their own valuations of the trade-offs
between power usage and QoS as represented in their cost
functions.

An interesting topic for future research is the development
of efficient algorithms for use by the base station in identifying
when to drop calls and which mobile’s calls to drop. Ad-
mission and dropping algorithms have received considerable
attention in the context of power balancing type algorithms,
but has not been investigated for static Nash equilibrium
algorithms.
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