

INSTITUTION ERIC Information Analysis Center for Science,

AUTHOR
TITLE

PUB DATE
NOTE

AVAILABLE PROM

EDPS PRICE
DESCRIPTORS

Richmond, James M.; Morgan, Richard F.
A National Survey of the Ervironmental Knowledge and Attitudes of Fifth Year Pupils in England. Mathematics, and Environmental Education, Columbus, Ohio.
Jan 77
201p.: Not available in hard copy due to marginal legibility of original. docunent Information Reference Center (ERIC/IRC), The onio State University, 1200 Chambers Rd., 3rd Floor. Columbus, Ohio 43212 ($\$ 6.00$)

IDENTIFIERS
MF-\$0.83 Plus Postage. HC Not Available from EDSS. *attitudes; *Concept Formation: Educational Reseadris; *Environment; *Environmental Education; Natural Resources; Sciences: *Secondary Education; Social Sciences: *Surveys
*England: Research Reports

ABSTRAC.I

The primary purposes of this study vere to establish baseline data relating to the environmental knowledge and beliefs of 5 th rear secondary pupils in England and to examine relationships that ight be of interest to teachers and curriculun developers in environmental education. Instruments were developed and pilot tested to assess environmental knowledge and beliefs. A sample of 500 secondary schools was randonly selected: usable responses were received fron 383 schools (76.6\%). In general, pupils responded poorly to factual items. Pupils deronstrated a greater understanding of environmental principles and concepts. Response patterns on the belief itens indicated pupils had a moderately positive attitude toward the environment. Relationships betveen environmental knovledge, attitudes, and selected variables are included in the report. Recommendations for curriculun development and research are identified. (RH)

[^0]THE ERIC SCIENCE, MATHEMATICS AND ENVIRONMENTAL EDUCATION CLEARINGHOUSE in cooperation with
Center for Science and Mathematics Education The Ohio State University

```
    By
    James M. Richmond
    'The Ohio State University
        Columbus, Ohio
            and
        Richard F. Morgan
Preston Polytechnic School of Education
        Chorley, England
```

A NATIONAL SURVEY OF THE ENVIRONMENTAL KNOWLEDGE AND ATTITUDES OF FIFTH YEAR PUPILS IN ENGLAND

January, 1977

ERIC/SMEAC Information Reference Center
1200 Chambers Road, 3ra floor
Columbus, Ohio 43212
3
.
Ine primury purposes of this study were to astablisin baseline data relating to tae environmental knowledge and beliefs of 5 tin year secondary pupils in England and to examine relationships that migit be of interest to teachers and curriculum devolopers in enviromental education.

The survey, which involved a total of 383 schools and over 11,000 pupils, could not have jeun successfully completed without the cooperation of many veople. The authors are particularly indeited to the Chief Education fficers and neadteaciers who gave permission to conduct the survey in senools under their authority, to the theachers who administered the survey, to the pupils who responded to the questionnaires, and to Mr. K. G. Forecast of the Department of Education and Science who provided prepulication data necessary for the sample selection. Those deserving special mention for their contributions to various aspects of this research are: Dr. Robert w. Howe, Dr. Robert L. Steiner, Dr. Robert E. Roth, Aaron Supowit, Maxine Weingarth, $u r$. Ben Bohl, Dr. Cordell Perkes, Dr. Vivian Eyers, Ur. Brian Wallis and Keith Roluinson. Thanks are also due to Bettye Vicent and Jillian kichmond for typing the final document.

In tine interest of conserving space, some relevant aspects of the study were deliperately omitted from this report. Those requiring more detail should consult the following reference:

Richmond, James M. "A Survey of the Environmental
Knowledge and Attitudes of Fifth Year Students in England". Doctoral dissertation, The Ohio State Universiะy, 1976.

This document provides a more extensive discussion of related literature, copies of all letters sent to the Chief Education Officers and headteachers, instructions for the cooperating teachers, a listing of panel members and instructions to the critics of the instrument.

Any correspondence relating to this study should be addressed to the authors as follows:

```
Mr. Riciard E. Morgan
Preston Polytechnic School of Education
Chorley Campus
Union Street
Chorley, PR7 lED
England
Dr. James M. Richmond
Mount Gravatt College of Advanced Education
P.O. Box 82
Mount Gravatt
Queensland, 4122
Australia 4
```

Cnapter Page
I. LiN'RODUCTION
Perspective 1
The Recent Growtin of Environmental Education in England 3
Need fior the Study 4
Stat.iment of the Problem E
Sull Hypotheses 7
Definition of Terms 7
Desiqn of the Study : An Outline 9
II. A SUMAARY OF RELATED LITERATURE: 11
Overview 11
Studies Relating to Attitudes, Attitude Change and Behaviour 11
Studies Relating to Environmental Knowledge and Attitudes 11
Literature Relating to Environmental Education in England 12
III. DESIGN CF THE STUDY 14
Overview 14
Instrument Development 14
Initial Development 14
The Pilot Study 17
Final Instrument 17
Instrument Validity and Reliability 18
The Population 20
The Choice of the 5 th Year as the Target Population 20
Source of Population Data 21
The Sample 21
Overview 21
Sample Selection 23
Administrative and Data Collecting Procedures 3 ?
Approach to the Schools \therefore
Data Collection and Preparation for Analysis 33
Analysis of Data 34
IV. RESULTS AND DISCUSSION 35
Overview 35
Response Rate and Distribution 35
Comparison of Sampling Techniques Used in Schools 38
Comparison of Forms, A, B and C 38
Reliability of the Instrument 39
Analysis of Pupil Responses 39
Responses to Factual Knowledge Items (Part 1) 39
Responses to Conceptual Knowledge Items (Part 2) 50
Responses to Belief Items (Part 3) 55
Responses to Perceptual Items (ABCl8-20) 63
Page64
 जa：：．t．l． 60
 lest a vandables 67
－Latrmanse betwem Beliges and Selected Variables 73
ッodtionshigi Eetween PupiL Percerotion of Problems and ．alantwi＂riablo：； 75
\because lationshins setwern＂Source of knowledge＂and Puril larimmmentil fonowedge and attitudt 78
\therefore A．：ionsti：Betwen Environmertal knowledge and 入tーit？！！ 81
 85
 87
いリリ： 12 87
anthatoms and luplications 87
Ansures of Environmental knowledge and Attitudes 87
andatorain：Retween Environmental knowledge andattituin ant Solected variables89
AOl athonships between ！ivironmental Knowledge and Stさitude 90
anil Percoptions of Environmental Problems 90
bupil perceptions of＂Source of Environmental Knowledge＂ 91
\therefore ：rmuindations 92

$\therefore \quad$ She Inetrument（Forms A, B and C ）and Answer Sheets 95
\therefore URportive References for Answers to Factual Knowledge
items（Part l） 125
$\therefore \quad$ Summary of Chi Square Analyses on All Items by（a）Sex，（b）School Type，（c）School Sex，（d）School Size，
（ s ）Fegion，and（f）Sampling Metiod 131
\therefore Prequency of Correct Responses on（1）Factual Knowledge，（2）Conceptual Knowledge，and（3）Belief Items by（a）Sex，（b）School Type，（c）School Sex，（d）School Size，and（a）reterion151
：．Aditipde Regression Computer Printouts 165
3i：3i．：andray 173
Tuple Page
3.1 iumber of Pupiis in All Schools by Age (1974) 20
3.2 Secondary Pupils in England (1 April 1974) 26
3.3 Secondary Schools in England (l April 1974) 27
3.4 Jumber of Schools in Sample by School Type and Region 30
3.5 Unit Pop'ulations for Maintained Schools 31
3.6 Determination of Schools to be Sampled in Lancashire 31
4.1 Scnool Response Rates 36
4.2 Distribution of Respondents by Region 37
4.3 Distribution of Respondents by School Type 37
4.4 Distribution of Responses on Item ABCl by Forms 38
4.5 Summary of Score Statistics on Forms A, B and C 40
4.6 Frequency of Responses (as Percent) to Each Alternative on Factual Knowledge Items 41
4.7 Frequency of Responses (as Percent) to Each Alternative on Conceptual Knowledge Items 51
4.8 Frequency of Responses (as Percent) to Each Alternative on Belief Items 56
4.9 Frequency of Responses (as Percent) to Each Alternative on Perceptual Items 63
4. 10 Mean Scores on Forms A, B and C by Sex 68
4.ll Mean Scores on Forms A, B and C by School Type 68
4.12 Mean Scores on Forms A, B and C by School Sex 68
4.13 Mean Scores on Forms A, B and C by School Size 69
4.14 Mean Scores on Forms A, B and C by Region 69
4.15 Summary of Significance Levels from an ANOVA of Total factual Knowledge Scores by (1) Sex, (2) School Type, (3) School Sex, (4) School Size, and (5) Region 70
$\because 210$ Page
A. L. Aumary ot hearession Analyses Snowing Percent of Variance attrikutacle to selected Variables 7.1
$\therefore .17$ sumbury of signiEicance levels from an ANOVA of TotalConceptual knowledge Scores by (1) Sex, (2) School Type,(3) School Sex, (4) School Size, and (5) Region724. 1: Sunma of Sigaificance Levels from an ANova of Total Beliefiores by (1) Sex, (2) School Type, (3) School Sex, (4)School Size, and (5) Kegion74
-. 1 : Distrinution \because Responses (as Percent) on Item Arcl9 by Sex 76
-1. 1 Uistribution of Responses (as Percent) on Item ABC20 by Sex 76
4.21 Distribution of Responses (as Percent) on Item ABC19 by scaool Type 76
4.2. Distribution of Responses (as. Percent) on Item ABC20 by School Type 77
4.23 Distribution of Responses (as Percent) on Item ABC19 by School Se 77
4.24 Distribution of Responses (as Percent) on Item ABC20 by School Sex 77
4.25 Distribution of Responses (as Percent) on Item ABC19 by Region 79
4. 20 Uistribution of Responses (as Percent) on Item ABC20 by Region 79
4. 27 Hean Factual, Conceptual and Belief Scores on Items ABCl8 (Using Data Pooled from Forms A, B and C) 80
4.28 Sumnary of Significance Levels from an Analysis of Variance of Response Patterns on Item ABCl8 80
4. 29 Correlations Between Total Factual, Conceptual and Belief Scores on Each Form 81
Figure Page
3.1 Matrix Defining Environmental Cuncerns and Type of Questions Included in the Instrument 16
3.2 Distribution of Items Acrording to Environmental Concern Categories 19
3.3 Reigions of England 22
3.4 Local Eaucation Authorities Participating in Survey 24
4.]. Correlations Between Items. Form A 82
4.2 Correlations Between Items. Form B. 83
4.3 Correlations Between Iterns. Form C 84

Perspective

in result years there has been a growing world-wide concern for tire future , If maniliad in tile face of a rapidly deteriorating human environment. athention hets wew focuss on the effects of pollution, the exponential growti: ot ;oplations in many countries, sinortage of food and widespread Eamincs, and tio sirious depletion of natural resources resulting from sis ralli:aq demands for energy and consumer products. These well-publicized envirunnental problems have produced an increasing awareness that our survival and !roserity are dependent upon the finite resources and delicate life-support systems of "space-ship earth". The United Nations reflected tie glooal nature of tinis awareness and concern wien, in 1972, it called the international Conforence on the Human Environment in stocknol: and cnarged its members to "define what should de done to maintain tne earti as a place suitable for human life not only now, but also for future generations." (138, p. 25)

Britain, as a higaly industrialized and densely populated country, nas not been spared the deleterious environmental effects tinat commonly accompary "progress". The beautiful countryside has been encroached upon by mutorways, airports, pylons, mining operations, and the continuous spread of sities and towns. The people have been subjected to crowding and urban blignt, the discomfort and health hazards of air pollution, excessive noise, traffic congestion and the unsigntliness of derelict land and litter. In addition, the population nas outstripped the supportive capacity of domestic agriculture witi the result that Britain is dependent upon other countries for about one-half of its food supply as well as many industrial raw materials.

But these unfortunate side-effects tend to creep upon people slowly and for the most part are reluctantly accepted as the price to be paid for prosperity. More dramatic occurrences are often necessary to stimulate widespread concern and action. Perhaps events such as the notorious London smog that was responsible for about 4000 deaths in 1952, the tragedy of Aberfan on 21 st October, 1966, in which 20 adults and 116 cuildren died under an avalanche of coal sludge from a mini.،y tip, and the wreck near the Cornwall coast of the Torrey Canyon with its 117,000 tons of crude oil in March, 1967, were the catalysts required to generate a general public awareness of the disasterous environmental consequences chat can result from inadequate stewardsinip.

Growing puplic interest in environmental matters during the 1960 s gave rise to a variety of institutions and bod.es whose prime concern was environmental conservation. These includec the Countryside in 1970 movement which 'was instigated by the vuke of Edinourgh in 1963, the Conservation Society (1966), the Countryside Commission set up under the Countryside Act of 1968, the Committee for Environmental Conservation (1969), Friends

OEthe Extif (1:71) whos od jective was to restore environmental quality tarosph political and legislative action, The royal Comassion on Environnontal bolluti.: (:71), and the Dopartment of the Environment which was acurd by the government in 1971 to assume responsibility for all fancloni whilu affect the rhysical environment.

2dul' sta:ements also bugan to stress the ne d for action to reverse tine tes.d of envirenmental degradation. In its first weport in February 1971 , Gue Roval Gommission on Environmental Pollution stated that

Failiaf deliberate measures to control pollution and to repair asi damage, there is likely to to a substantial deterioration tit tomviromment in the years airal and tho quality of lift L., :3ritain will be correspondingly impoverished, despite an airearance of areater affluence...
(huotod $0 y$ ~. W. Colton et al., 36, p. 7)
Ani reme dinister Edward iteath is reported as saying in September 1969,
'ibe protection of our lovely countryside and our glorious coa::t, the prevention of pollution of our rivers and of the \therefore ir we preathe, must be one of the highest priorities of tie seventies. It is essential for any decent sort of living, it is vital for proper recreation.
(Quoted by R. W. Colton et. al., 36, P. 6)
It is now genirally accepted that environmental education can, and should, Hily in important role in developing a sense of environmental concern and responsibility. Ideally, environmental education should aim "at producing a eitizenry that is knowledgeable concerning the biophysical environm:nt midits associated problems, aware of how to solve tinese problems, ind mutivated to work toward tineir solution." (122, p. 10) At the international level, tio importance of world-wide environmental education was rusognized in the Final Report of the International Working Meeting on Environmental education in the School Curriculum, organized in 1970 by IWCN in cooperation with UVESCO. In its recommendations it stated that

Sine Working Meeting,

Gonsidering the appropriat \quad trion being a necessary preraquisite for improvemer: $\therefore \quad \therefore$ gotal critical environmental situation,
seing aware of the u : ind Eor environmental teaching and adequate training of . 1 in ersonnel,

Suljits to the Governmeal : and their responsible educational authorities as well as to the national education organizations:
L) that through a roform of the total curri.culum, the environmental education be inisuduced as an obligatory and integrated component of the school sducational system at all levols;
ik:cos :ntin actions of individual: and of socioty as a

> matat. (41, i: 16i)
> $\because \because$ dicunt Jrowth oE Envirommintal Lulucation in England
the woe of tin local onviromment for teaching children about their surroundinys and for specific learning activities as long been the practice in Britisn schools. Suci activities have usually been associated with recognized scnool suijects :such as biology and geography; with occasiondl excursions, :uch as "nature walks" and visits to 'istorical or industrial sites, jeing organized as a redief from classroom confinement. iowever environmental cducation as it is now commonly viewed, involving analytical and evaiuacive activities on topics and concerns ranging from rural to urian and local tc global, is a reiatively recent phenomenon.

It is difficult to : iupoint when school environmental actj?i.1e with declared dffertive aims began. As early as 1934 the gover :ne. 2 . through its Board of Education, expressed the view that countryside ducation was not concerned with vocational training of those who would earn their living in the countryside but with "the various ways in which schools were making the local environment contribute to the fasnioning of a good general education." (17) However, it is probable that it was not until the late 1940 s and the 1950 s, when teachers in the new secondary modern sciools (established by the 1944 Education act) were exploring new curricula for these schools, tiat affective aims about environmental education outcones were first stated. Personal recollection of rural studies syllabuses at tinis time by one of the authors includes such aims as "to develop an appreciation of the interdependence of living things" and "to promote ar. understanding of man's ralationship to the natural environment".
lowever as with most educational innovation in England, environmental education becamu tirmly establisned in response to public interest and social demand. Paralleling the changing public attitudes of the late

Abstract

$\therefore \therefore i . i$, educators becams increasingly aware of the need to deal with env:ronmental concerns in the sthool curriculum. The cmergence of irutesional orgailiations such as The socicty for Environmental Educatif ($\{t, 0$) ad the vational Association for Environmental Education in 2.7. (som:rly rib dational Rural studes Association), reflected the : $1: 1 \cdot 1$: $:$: -1 se in interest and activity in this field. it andil ai foed that the resules of a survey conducted in 1973 by lhe andryatior socitty indicated that by that time 25 of the secondary amols 1 a tio United kingdom had estawlished definite zourses in Environfratal Studiers (13, 1,4$)$. Df the remaining scnools, tise majority claimed int: tir $:$ a:lded environmentai topics within the traditional subject Av. $\because r$ "oul; tro effer specific crvironmental courses.


```
icoul for tho study
```

 "rally me. la of study has surugnt with it the need for extensive

 "شin: (i) trie :; budunts at this level already know, and what are their ttithan toward ervironmental issucs?" 'inis latter question, which is anortint in e:thlisining the starting point and scope of the course, for tis: most !urt. hus not. beon answered ofjectively by testing students in the tarfe i"ettatjor. iather, educators involved in environmental curriculum bovelopmont ham: terded to se subjertive in deciding the content and

Ir 1 ש. ilorgin, buruty wirector of froject Environment, combented on tia: wermat menitive uproacia employed in developing this ambitious rintional projranme:
leojec:t !nvironment saw the answrir to the problem of motivation de one of solecting examples in which pupils could see .. Wh the losers affectod tacir porsonal position so that they mad:rstood winat they had to gain or lospe. Groat omphasis was | beped wh thas apرrouch, and thi.: may be seen a; an attempt
 tan ouplla' pattern ol fmst: ided, and experimases. nt bost
 rrived al subjertivaly, their acoray bejng tosted on the


```
t.,就."
```



```
OrNler amt sidal wrot: taat
```


is tate status of stadent's' mowledrge and attitudes about tice

r...ivel much attentio! from rusuaren!rs. (130, ats)

:rior miormation about gonl:. ' avironmental finowledge and attitudr , tructures seems of . . 1 importance, especially in a situation $2 n$ whach coordinated or national curriculum phanimf i : contemplated. (53, [. 19)
 fine data tiat will we useful in developing effective regional and/or natıoad aroirconental edacition proqrammes in ingland. lrovidiarg thas infermation i: a pramary objective of the present study.
 br bendfbelal in otner way:. havitag established the baseline, any chances 3 br knowledge and/or attiludis may be measured by usimy tioe same instrument at some later lime, thus providing an indicalion w the eferotivence, of m.w environamental edmeation prografuns: In whition, an analysis of tate data maght wall witaliun corl lations butwina environmental knowledge and

Wook bul beyond the : Anens of this report, the survey data may wolle bu of Value Ln iollow-up stadios. By using items from similar ingtruments aready apliad an the: United btates and Nustralia, it will be pussible to emmesre tar relative environmental kncwledge abl attitudes of American, hustraliun and limbah :tudont: As other countrie: are surveyrd, more "xtuasave eres:;-cultural comparismas san be made. dinj; may tmen provide:
 -urriond.


```
tako the necessary steps to establish an international
jrogramme in environmental education... (133, p. 9)
```


Statement of the Problem

The purposes of this study were to establish baseline data relating to tic environmental knowledge and beliefs of 5 th year secondary pupils in England, and to ascertain whether significant relationships exist
(a) between the environmental knowledge of pupils and selected variables,
(b) betwaen the environmental attitudes of pupils and selected variables; and
(c) between the environmental knowledge level of pupils and their attitude toward the environment.

Yore sperificaliy, the study was designed to collect data that might assist in providing answers to the following questions:
2. What is the current environmental knowledge level of 5 th year pupils in England?
2. What is the current affective position of 5 th year pupils in England toward environmental concerns?
3. What do 5th year pupils currently perceive as the most serious local and national environmental problems?
4. Are there significant relationships between environmental know~ ledge and sex of pupil, type of school attended, sex composition of school, school size and region of school attendance?
5. Are there significant relationships between attitude toward the onvironment and sex of pupil, type of school attended, sex composition of school, school size and region of school attendance?
6. Are thore signiticant relationships between pupil perception of environmental problens (both local and national) and sex of pupil, type of school attended, sex composition of school, school size and region of school attendance?
7. Aro there significant relationships between pupil perception of "source of environmental knowledge" and the level of environmental knowledge or attitude toward the environment?
13. Is there a significant relationship between the level of enviromental knowledge and attitude toward the environment?

Null Hypotheses ${ }^{1}$

The following null nypotieses were posited for testing:

1. There are no significant relationships between the level of environmental knowledge and
(a) sex;
(b) type of sciool attended;
(c) sex composition of the school;
(d) scnool size; and
(e) region of school attendance.
2. 'Fnere are no significant relationships between expressed attitudes toward the environment and
(a) sex;
(b) type of school attended;
(c) sex composition of the school;
(d) school size; and
(e) region of school attendance.
3. Tnere are no significant relationships between pupil perception of environmental problems (both local and national) and
(a) sex;
(b) type of school attended;
(c) sex composition of the school;
(d) school size; and
(e) region of sciool attendance.
4. There are no significant relationships between pupil perception of "source of environmental knowledge" and level of environmental knowledge or attitude toward the environment.
5. There is no significant relationship between the level of factual environmental knowledge and expressed attitude toward the environment.
6. There is no significant relationship between the level of conceptual environmental knowledge and expressed attitude toward the environment.

Definition of rerms

Environment

Although the environment may be defined as all the conditions and influences that affect the life and development of an individual, this study focuses upon some of those aspects of the human environment tnat.

[^1]are commonly called "environmental concerns". These have deen identified and categorized under the headings of pollution, population, natural $r e s o u r c e s, ~ l a n a ~ u s e, ~ e n e r g y, ~ e n v i r o n m e n t a l ~ h e a l t h / s a f e t y, ~ e c o l o g i c a l ~$ relationships and social/political/economic influences.

Anv1romental knowledge

This term refers to a knowledge, awareness or understanding of facts and concopts that relate to the "environmental concerns" discussed above. "ractual knowledge" is used to indicate a knowledge of events that have occurred or conditions shat exist that can be readily verified. "Conceptual knowledge" refers to a knowledge or understanding of concepts, generalizations or "big ideas" involving relationships that have authoritative support in the literature.

Environmental beliefs and attitudes

Fur the purposer of this study the definitions of belief and attitude presented by Shaw and Wright are acceptable. The term "belief" is defined as "some level of acceptance of a proposition regarding the characteristics of an object or event" (ll8, p. 4), while an "attitude" is a "relatively enduring system of evaluative, affective reactions based upon and reflecting the evaluative concepts or beliefs which have been learned about tie characteristics of a social object or class of social objects." (118,). 3)

Al1 DElief statements presented in the instrument relate to the "environnental concern" categories descrihed above. The beliefs expressed by the individual about these environmental concerns are seen as indicative of ais or her attitude toward the environment. As stated by Shaw and Wrigit:

> The set of beliefs that the individual holds about the object ard the associated evaluations determine the individual's attitude toward that object. They lead to an enduring system of affective reactions regarding that object. The nature and strength of this system is determined by the number and strength of the evaluative concepts or beliefs formed. (118, p. 12)

Environmental Education

Lnvironmental education is the process which develops knowledge, understanding, attitudes and the formation of personal responsibility with regard to man's relationship with his socio-cultural and biophysical surroundings.

This definition is based upon ideas which include those set out in the Belgrade Charter (l34, p. 1), those adopted by the International Union for tise Conservation of Nature and Naturaj Resources (13, p. 21), and those contained in the Environmental Education Act passed by the Congr is of the United States (52).

Local Education Authority (LEA)
Local riducation Authorities form part of the metropolitan and nonmetropolitan county units of local government administration. They have

If: : ducation autioritios plan the arrangement of schooling in their areds, subject to the Secretary of State's approval, and dectio now chiluren should be allocated between scinools. Tiney build most of tie scinols, pay twacners and provide equipment chd naturials. (2ゥ, 1). 1 15
fure ure 97 aine in tingland (sed liscing on p, 24-25).
Iuintuined and ion-maintained scnools
"Malatained" schools refer to ther schoc..is that are maintained by local education autnorities from pui... funds. hlthough a variety of sciool types are maintained by LEAs, tne majority of secondary schools may de categorized as "comirehensive", with non-selective admission, and "grammar" and "secondary modern" with selection by ability.
"Jon-maintained" refers to schools that are not financially supported or controlled by the local education authorities. These include the "direct cgrant" schools which are supported by the Department of Education and Science (and are schools with selective admission), and "independent" schools which receive no public funds.
Design of the Study : An Dutline

The Instrument

The instrument d, ad for the survey consisted of three questionnaires, Forms A, B and C. . :t 1 of each form contained factual knowledge and perceptual questiois:; Part 2 dealt with conceptual knowledge, and part 3 eresented 15 statements of bulicf for jupil reaction. There were a total of 45 items on each form, with 14 common items providing the means for comparing response patterns on tie three questionnaires. 'The instrument was thoroughly tested in a pilot study in English secontary schools, and test/retest procedures were used to establish the instrument's reliailility.

The Population

The target population consisted of all 5 th yoar pupils enroled in the secondary schools of Enjland. The 5 th your was choson ince it represents the last yoar of formal schooling for a large proportion of secondary pupils.

The Sample:
A simpling procedure was used that would unsure proportional representation of the major types of school (viz. comprohensivis, secondary modern, grammar, direct qrant, independent, and "other secondary") in evary rojion of the country. i total of 500 succondary sconol.; was sulected in the sample, and within each participating scoool the anstrument was administered to a suib-sumple of about 30 pupile in tion 5 th year.
\therefore hinserative and jata collecting Procedures
It NAS Becided that the most effective method for collecting data would $\therefore \because \because: \quad$:os: tio tusting materials iirectly to scnools selected in the ande, at th a carefully worded letter of explanation to the headteacher. :. :n-: case of maintained schools, permission was received from the res.jetive Cnief ducation Cfficers before approaching schools with a : : w.st to participate in the survey.
 andren whth answer sheets enclosed inside, 30 sharpened pencils, a set i lastructions for tine cooperating teacher, a form requesting brief mitumation about the school, and a stamped, addressed envelope for the r:turn of completed answer shects.
in: majority of schools were prompt in responding to the request, and two tollow-ur letters nelped in eliciting the cooperation of many of the rumainder. Completed answer sheets returned in the mail were checked for wodracy, codod, and machine scored. The data were automatically punched wion widrar cards and later transferred to magnetic tape.
andy:3sof Data
\therefore nurficr of standard computer programmes were employed to analyze the dut. The programme STATPACS was used in the item analysis of pilot datu. ind kiOU) 30 provided test/retest correlations for establishing the reliarility of the instrument. The remaining analyses utilized various whirogrammes from the Statistical Package for the Social Sciences (100). BHE ROJramme FREXUENCIES provided frequency distributions and descriptive :tutistics, while CROSSTABS presented the number of responses (and percent raponist) on the alternatives to each item. Relationships between Jari ithes were examined by means of the subprogrammes CROSSTABS (for chi'ifurt analyses), ONLWAY (for analysis of variance), PEARSON CORR (for Purson jroduct-moment correlations between all items) and SCATTERGRAM (for corrtlations between scores on different parts of the instrument). kouresijon analyses were performed using subprogramme REGRESSION.

A SUNLAKY OF RELATED LITEFATURE

Overview

The purpose of this chapter is to list some research and literature relating to the present study and to summarize the generalizations winich arise. The summary is organized under tine neadings of: (1) Studies Relating to attitudes, Attitude Change and Behaviour; (2). Studies Relating to Environmental Knowledge and Attitudes; and (3) Literature Relating to Environmental Education in England.

Studies Relating to Attitudes, Attitude Change and Behaviour

The literature in the social sciences abounds with research dealing with attitudes, attitude change and the relationship between attitudes and behaviour. In previous large-scale surveys of environmental knowledge and attitudes, Perkes (104), Bohl (18) and Eyers (53) presented extensive and thorough literature reviews of these topics. To avoid unnecessary repetition, the research described by tinese authors will not be presented in detail. Instead, some of the more relevant studies that they examined are listed below:

```
Atman (8), Brown, J. M. (22), Brown, R. E. (23), Eaton (49), Fitzsimmons (57), George (63), Green (66), Hemmer (69), Infante (74), trle (76), Kleg (79), Leslie and Berry (86), Lyons (88), Madden (89), kender (110), Rosenberg (112), Rosenberg and Oltman (113), Semmel (116), schock (120) and Swan (127).
```


Summary

A relationshıp clearly exists between attitudes and knowledge, with greater knowledge usually associated with more positive attitudes. Further, attitudes appe?r to be more closely correlated with conceptual rather than factual knowledge. Although relationships have been demonstrated between attitudes and behaviour, stated attitudes are by no means consistently predictive of overt behaviour.

Studies Relating to Environmental Knowledge and Attitudes

A review of the literature indicates that, prior to the present survey, the only existing large-scale baseline studies relating to environmental knowledge and attitudes of secondary students were those conducted by Perkes (104) and Boh 1 (18) in the United States in 1973 and by Eyers (53) in Australia in 1974. Other studies relating to environmental knowledge and attitudes include Cohen (29), Hounshell and Liggett (\%1), and Kleinke and Gardner (80).

$\therefore i^{-a b u j}:$ r:latively few studies have been conducted relating to environrontal rajowige and attitudes, some patterns appear to be evident. For t.u : rart knowledge about environmental problems and issues is rather -1.ut.al, wile expressed attitudes tend to be quite positive. Although it ar, aold true in all cases, most studies indicate that boys have ir it r.ivi:onmental knowledge than girls; nowever sex differences in 4.:.:A! tow'ari tho environment are not readily apparent. Significant $\therefore r r: l u t i n ;$ Jotwen enviconmental l:nowledge and attitudes have also been rooriu, Hth conceptual knowledge correlating with the affective
onociuth rure strongly than factual knowledue.

iftrature kelating to Enviroumental Education in England

Nit: tor $:$ mint upsurge of interest in environmental matters and tne devיlom:ne of menironmental education courses in England, one might exisot tu find a wealth of literature and rescarch reports having direct ourisis mid impact upon environinental education programes. However, eritisin litirature in this area is still somewhat limited, particularly in the z̈inla uf experimental rescarch. The main emphasis has been upon t.." rudu'tion of resource materials aimed at helping teachers to devise wn trijemtit courses. ducn of this material has arisen from the national arrieulu: devalopment programmes set up by the Schools Council. The -unlill has listed 23 national projects wilich contribute to studies of the environment, nowever only two ("Environmental Studies" and "Project Envirumniat") are solely concerned with envjronmental education. "Environmint al stulies" (68) was developed betweer 1967 and 1971, and was designed tit \quad U. tiachers systematically to use the environment in developing skills ud cumeets in primary school childron. "Project Environment" (1s 70-73) an!lord nultidisciplinary approaches to environmental education for the " i- rang: of eight to eighteon years. The project team placed a major a.arasi; on "sducation for the environmunt" and upon chiefly affective oi.joctive. Publisited materials include Education for the Environment Learning Eron Trails (33), The Scnool Outdoor Resource Area (34), and Etilon aud Environment (35).

A number of organisations produce journals, course outlines, study guides on topics such as conservation and population, and other resource materials tur tadcncrs. Eminent among these are the Council for Environmental \therefore durition and the Conservation Society/Conservation Trust. The former produces a Directory of Environmental Literature and Teaching Aids (DELTA), whicn is updated with supplements from time to time, a periodical Review of invironmental Education Developments (REED), as well as newsletters mid information sheets. The latter has established a resource bank to whic: schools may subscribe. other organizations in this category include tir: National issociation for Envir: mental Education, the Society for Bnvirommental Education and the Town and Country planning Association.
\therefore :mall wount of liturature exists which describes methods by which currimbum jrogramnos have wren devised. Theso include the description of an ' i ' Luvel Environmuntal Ecience syllabus for the Joint Matriculation Board ($\rho^{\prime} ;$ and a similar projoct in Environmental Studies for the University of aondon Examination Board (24).

The only ;revious large-scale survey, conducted by Peter S . Berry in 1973 for the Conservation Society, collected data from over 420 middle and secondary schools in an attempt to establish the current status of environmental education in the school curriculum (13). A study at the University of Sussex is similarly concerned with the scope and nature of invironmental education in primary and secondary schools and has recently produced a draft document "A ilandbook for Analysts" which offers a model for anal \ddot{x} ing the aims, environmental orientation and pedagogy of any given course (140).

Summary

An examination of the literature reflects the fact that enthusiasm for environmental education in England has outrun supportive research. While considerable effort has been made in the field of environmental curriculum development at the national, regional and local levels, the dearth of survey and experimental research in environmental education should be a matter of concern to English educators. In particular, the absence of any baseline measures of the current environmental knowledge and attitudes of Englisn pupils provides added justification for the present study.

29

CHAPTER III

DESIGN OF THE STUDY

Overview

The primary purposes of this study were to establish baseline data relating to the environmental knowledge and beliefs of 5 th year secondary pupils in england and to examine relationships that might be of interest to teachers and curriculum developers in environmental education.

The design of the study is described in this chapter under the headings of: (1) Instrument Development; (2) The Population; (3) The Sample; (4) Administrative and Data Collecting Procedures; and (5) Analysis of Data.

Instrument Development

Initial Development

In devising an instrument to measure the environmental knowledge and beliefs of a group of pupils, it is necessary to define which aspects of the total human environment are to be included within the parameters of the study.

In the broadest sense, man's environment includes all the conditions and influences that affect his life and development and is determined by many complex interactions between the biophysical and sociocultural components. It might therefore legitimately be argued that research relating to the human environment should include such factors as the influence of television on the development of children, the psychological impact of various coloured walls in classrooms, or the sociological consequences of the common cold. However a multitude of environmental influences; such as those mentioned above, clearly cannot be examined within the scope of the present study. Rather the focus is upon those environmental factors that relate to the earth's life-supportive capacity and to the survival and wali-being of man and his societies. Such factors are often referred to as "environmental concerns".

An examination of current environmental literature and consultation with persons involved in environmental education and research in England and the United States resulted in the identification of the following broad categories of environmental concern for inclusion in the study:

1. Pollution
2. Populacion
3. Natural Resources
4. Land Use
5. Energy
6. Environmental Health/Safety

Since an objective of this research was to measure environmental knowledge and attitudes, it was necessary to select or devise both cognitive and affective questions relating to each of the above "environmental concern" categories. To assist in this process a matrix was developed as shown in Figure 3.1. In selecting questions for the instrument care was taken to include items from every cell of the matrix.

An important carly stage in developing the instrument was the creation of a pool of potentially useful items. Items were selected from a variety of inventories used in previous environmental studies. In particular, suitable, itions from the American and Australian national surveys (104, 53) were, 3 to the pool with the intent of providing the means for cross-country comparisons at a later time. Since this method did not adequately cover all of the cells in the matrix, a number of additional questions were devised by the principal author to ensure that all categories were well represented. Almost 400 items in tine resulting pool were pasted onto $5^{\prime \prime} \times 8^{\prime \prime}$ cards and coded according to the type of question (factual, conceptual, or belief) and the environmental concern to which they most closely related. Questions were then edited, simplifying the wording to an appropriate reading level and modifying terms and expressions that might not be understood by English pupils (e.g. the term "billion" was changed to "thous.ind million").

As a means of eliciting a maximum amount of information, it was decided to develop three questionnaires each containing 45 items. While any one jupil was asked to respond tc only one questionnaire, the random distribution of three different forms (containing some common items for purposes of comparison) made it possible to collect data from the sample on over one hundred items. In other words, this technique provided information on more than twice the number of items that could reasonably be presented on a single questionnaire for completion during one class period.

Items in the pool tinat were deemed to be most appropriate were assigned to the three questionnaires (Forms A, B, and C). They were distributed so that Form i dealt primarily with the environmental concerns of pollution and population, Form B with natural resources and land use, and Form C with energy and environmental health/safety. Questions dealing with ecological relationships and social/political/economic influences were distributed across the three forms. In addition, three perceptual questions relating to the pupil's source of environmental knowledge and to serious environmental problems were included as items common to all forms.

It was recognized that not all of these initially selected items would prove to be acceptable on the pilot study, and that it would be desirable to have field-tested items that could be used as suitable replacements. F'orm D, consisting of 45 "spare" questions, was therefore developed for field testing along with the other three forms.

Because of the large number of subjects involved in this national survey, it would have been extremely time-consuming and inefficient to attempt to hand-score the pupi. $1 s^{\prime}$ responses. To avoid this an answer sheet suitable for optical scanning was designed and printed.

FICUVR 3.1
 INCLDDED IV PHE INSTRMMENT

$\begin{array}{ll}17 \text { questions/Form } & 10 \text { Questions/Rorm } \\ \text { Ansver format: } & \text { Answer format: } \\ \text { Multiple Choice } & \text { True/Palse/Don't Know }\end{array}$

The Pilot Stuly
The pilot instrument (ioncisting forms A, B, C and D) was field-tested ia nine schoole in tar coulares of lancasnire, vorfolk and wiltshire during Detober, 1975. J'ner included comprehensive, secondary modern, direct grant/gramiar, inci irdop:ndent senools, and were therefore representative of che major school tyous to be included in tine study. The instrument was administiaed to a total oil 386 pupils in tire jtin yoar. of these puidis, lise answered t.u sum :mestions several days later in a test/ reterst procedure, thus !roviding duta to measure the stability of the itoms.

In addition to answering the questions, pupils were directed to underline any words or pnrases that they could not understand, and to write comments next to items that prestanted difficulties. In two schools pupils were personally in_erviewed 'y one of the authors after they had answered the questionnaires. Erom both the written and verbal responses, clear patterns emerged that identified the words that were too difficult for the majority a.d the items that were gemerally misunderstood. These problem areas, were corrected by substituting simpler words, extensively rewriting the question, or by eliminating the item altogether.

It was evident from the pilot indy that most pupils were able to complete the questionnaire witinin 30 mirutes, and it. therefore seemed reasonable to retain 45 items on each form of the final instrument.

The answer sheets completed during the ficld testing were returned to The Ohio State Univerrity where they were macline-scored, with the data being automatically funched onto computer cards. Computer analyses were then performed on the datia. The programe BMDC3D was used to determine correlations between the test and retest data (as a means of determining the reliability or coefficient of stability of items), and an item analysis was performed using the program STATPACK. This analysis provided the following measures on each item: percent correct, relative difficulty, phi coefficient, point biserial correlation coefficient, discrimination index, and efficiency. Only items that exhibited acceptable levels on these measures, and showed a test/retest correlation significant at the 0.05 level, were retained on the final instrument.

Copies of the pilot forms together with a set of instructions were sent to a total of 18 educators for critical examination. These critics included environmental and srience educators working at the secondary and tertiary levels in England, Australia and the United States. Their written feedback was used to modify questions, and was valuable in deciding which items were inappropriate for inclusion in the survey. A smaller group of seven "experts", who were more intimately involved with the study, served as a panel to decide the correct answers on the conceptual items and the "onvironmentally positive" response on the belief items. Complete agreement by the panel was necessary for a pilot question to be retained. Items deleted as a result of the computer analyses and critical feedback were replaced with suitable alternatives from Form D.

Final Instrument

Tir final forms of the instrument and answer sheet were thus the product O_{i} thorough field-testing and critical analyses by pup. Ls and "experts".

Whe reading level for the three questionnaires was determined to be at abult the 3 th grade level (approximately equivalent to the English 4th Yoar), usi:?g both the Fry Graph for Estimating Readability (6l) and the Flesin scale of Readability (59).
je the 107 items used in the final product, 50 were developed by the Erincipal author, 27 were selected from inventories used in America (104) Lid dustralia (53), while the remaining 30 items were drawn from a variety of sources such as Steiner (123), Roth (114), Cohen and Hollingsworth (31), Kleinke and Gardner (80), Bowman (20), and Tinsley (128). Tn: questions selected from these previously-developed inventories were modified to make them appropriats: for the English target population.

I: constructing the factual knowledge questions presented in Part 1 of each form, care was taken to ensure that only one of the four alternative resionses could reasonably be considered "correct". At least two authoritative sources were required to verify the correct response to each item, and these supportive references are listed in Appendix B. The acceptable answer to tine conceptual questions in Part 2 of each forn was determined by unanimous agreement of the panel. Although there are no "right" or "wrong" answers to the belief items (Part 3), the panel was asked to identify on each question the response reflecting "a viewpoint compatible with the maintenance of an environment that will promote the well-being and survival of Homo sapiens as a species, rather than one which is beneEicial only to an individual or limited group of individuals". Using this criterion, the panel members were in complete agreement in selecting an "environmentally positive" response for each belief item used in the final inventory.

The distribution of qut itions (Figure 3.2) was similar to that on the pilot ?uestionnaires. Items on Form A dealt primarily with the environmental concerns of pollution and population, those on form B with natural resources and land use, while the emphasis on Form C was on energy and environmental health/safety. The other environmental concerns were distributed across the three forms. A total of 14 common items provided the means for comparing response patterns on the different questionnaires. It should be noted that some questions could reasonably be assigned to more than one category of environmental concern; e.g., C6, C9, and C4l have been assigned to "Environmental Health/Safety" although they might equally well have been placed under "Pollution". Since these categories are not meant to be mutually exclusive, some questions are bound to cut across boundaries; however the assignment of items as shown in Figure 3.2, is useful in providing a framework for discussing the results in Chapter IV.

Instrument Validity and Reliability
That the instrument has content validity can be argued from the procedures used in its development. A clearly defined rationale se Figure 3.l) was used to select questions from a large pool of about 4 items that had been designated as relevant to the study. The final instrument was examined by the panel and it was agreed that the nature of the specific items, and the proportion of items devoted to each area, were appropriate to the rationale and objectives of the study.

80\%	Part	Pollution	Population	Natural Recourcen Land Use	Burgy	Lnvor 1 //	Bc.	S00/801/80
I	1	$\begin{aligned} & 5,6,7,8,9 \\ & 10,12,15 \\ & 16 \end{aligned}$	11,13,17				14	
1	2	24,29	30				25,26 27,28	
	1	$\begin{aligned} & 36,37,38 \\ & 39,44 \end{aligned}$	10,42,45				35	41,43
	1		16	7,8,9,10 6,12,13			5	
Pom				4,14,17 15				
B	2			$\begin{aligned} & 24,25,26 \quad 26 \\ & 27,29,30 \end{aligned}$				
	3			$\begin{array}{cc} 35,37,40 & 36,39 \\ 43,44,45 & 41,42 \end{array}$				38
	1	14,16			\$,10	6,7,8	15	11119
Pon						9,13		
c	2				26,28	24,25,29	30	21
		45			37,39	36,41		35,38,40
					43,44			
Pona	1		1,2	3	;			
$\lambda_{1}, \mathrm{~B}, \mathrm{C}$ camon	2		22	21	23			
Items	J		31,39	34	32			
Comon "parcuptual" Itam			ABC18 Source of enviromental knoviedge agCl9 Woat serious local problen aBC2O Most serious national problem					

It was decided that the most suitable method 三or determining the reliability of the instrument would be the test/retest procedure. Arrangements were therefore made ia seven representative schools to dminister tiee instrument to the same pupils on two occasions, several days apart. A total of 164 pupils provided test/retest data on the three forms. The computer programme BMDO3D was used to generate correlation coefficients between the two sets of data for both individual items and total scores. The results of this analysis and the reliouility coefficients are presented in Chapter IV (page 39).

The Population

ine population examined in this study was defined as all the 5 th year punils enroled in the secondary schools of England.

Me noice of the 5 th Year as the Target Population
The majority of pupils in the 5 th year are 15 or 16 years old ${ }^{2}$, and this grade represents the last year of formal education for a considerable proportion of the population. The rapid attrition in school enrolment after attaining the school leaving age of 16 years is clearly illustrated by the figures in Table 3.1.

TABLE 3.1

NUMBER OF PUPILS IN ALL SCHOOLS BY AGE. (1974)

Age at beginning of January:	14	15	16	17	18
No. enroled in school	731,323	721,219	354,036	140,388	44,553
Percent of age group	99.8	99.2	49.8	20.3	6.6
Reference: Statistics of Education	(44) pp. $12-13$				

The choice of 15 year old pupils for the survey would have been disruptive to schools since pupils would have to be drawn from different classes for administration of the instrument. However, designating the 5 th year as the target population enabled schools to use intact classes for testing with a minimum of inconvenience, and at the same time provided a group that was not yet biased by attrition toward the academically more competent. In addition, this level is comparable to the loth year in American and Australian schools, making it possible to compare the results on some items with data collected in studies conducted in those countries.

[^2]At the time that this'survey was being planned, the most recent published data relating to school enrolment were to be found in Statistics of Education. 1973 Schools, Vol. l. However this infomnation proved to be inadequate for the purposes of drawing the sample, since the counties and Local Education Authorities had been reorganized with new boundaries after those data had been compiled. Fortunately, the Director of Statistics of the Department of Education and Scie. e (Mr. K. G. Forecast) made available the pre-publication proofs of Statistics of Education. 1974 Schools, vol. 1 (44) and a computerized listing of all maintained secondary schools in England. These materials, together with the List of Independent Schools in England and Wales Recognised as Efficient (45), provided the information necessary to draw a stratified, random sample from the population. The names and addresses of the headteachers of schools selected in the sample were elicited from the Education Committees Year Book. 1974-75 (132).

The Sample

Overview

The objective in drawing a sample was to select a smaller, manageable group of pupils that would be representative of the target population. The sample selection procedure was based upon the method used by Bohl and Perkes (104) in the American environmental study.

Stage l in the sampling procedures involved the random selection of representative schools, while Stage 2 involved the further selection of pupils within those schools. It was decided that approximately 30 pupils from 500 schools, or almost 10% of all secondary schools in England, would more than adequately represent the target population.

The Stage 1 selection procedure, which will be described in detail in the next section, required knowledge of the distribution of pupils within the different types of school in each Local Education Authority (LEA) and region. For the purposes of this study, school types and regions were defined according to the following categories used by the Department of Education and Science (DES):
$\left.\begin{array}{lll}\text { School Types } & \begin{array}{l}\text { Comprehensive } \\ \text { Secondary Modern } \\ \text { Grammar } \\ \text { Other (including technical) } \\ \text { Direct Grant } \\ \text { Independent }\end{array} \\ \text { Regions } & & \text { Maintained } \\ \text { by LEAs }\end{array}\right]$ Non-maintained
(See Figure 3.3)

LEGEND

1. North
2. Yorkshire and Humberside
3. iNorth West
4. East Midlands
5. West Midlands
6. Easc Anglia
7. Greater London
8. Other South Eisst
9. South West

Letters were written to tine Chief Education Officers ${ }^{3}$ of all 97 LEAs in England asking their permission to approach the schools under their jurisdiction which wert selected in the sample. As shown in Figure 3.4, 82 authorities agreed to cooperate in the survey, with only 15 being omitted from the sample as a result of their dissention or late repponse. In the cases of LEAs not participatı..g in the survey, the schools initially assigned to them were reallocated to adjacent LEAs in the same region, thus causing minimal change in the representativeness of the sample.

Sample Selection

a. Sample selection of schools

Having decided upon a sample size of 500 secondary schools, it was necessary to determine the distribution of these schools in terms of school type and region (and LEAs within regions). The number of schools allocated to each region was calculated on the basis of the ratio of their secondary school enrolment to the total secondary enrolment of England. School enrolments, rather than the number of secondary schools in each region were used in these calculations to avoid introducing a bias due to variations in the enrolment pattern. For example, a region having a large number of secondary schools with low enrolments would not be allocated schools at the expense of a region having few schools with large enrolments.

The data on pupil enrolments and school distributions which were used in the sampling calculations are snown in Tables 3.2 and 3.3. The major steps used in these calculations were as follows:
(1) Determining the number of maintained versus non-maintained schools.

Of a total of $3,657,212$ pupils in the secondary schools of England, a simple computation indicated that 91\% were enroled in maintained schools winile 9% were to be found in non-maintained schools. Based upon these proportions, the distribution of the 500 sample schools was as follows:
$\begin{array}{ll}\text { Numier of maintained scinools (91\%) } & =455 \\ \text { Number of non-maintained schools (9\%) } & =45\end{array}$
Of the 45 non-maintained schools, 16 (or 36%) were direct grant and 29 (or 64\%) were independent.
(2) Determining the number of schools to be sampled in each region.

This calculation was based upon the formula:

[^3]LOCAL EDUCATION AUI:IORITIES PARTICIPATING IN SURVEY

Region		LEAs Participating	LEAs Not Participating
1.	North	Cleveland Cumbria Durham Northumberland Gateshead Newcastle-upon-Tyne North Tyneside South Tyneside Sunderland	' .
2.	Yorkshire and Humberside	Humberside North Yorkshire Barnsley Doncaster Rotherham Sheffield Bradford Calderdale Kirklees	Leeds Wakefield
3.	North West	Cheshire Lancashire Knows ley St. Helens Sefton Wirral Bolton Bury Manchester Oldham Rochdale Salford Stockport Tameside Trafford Wigan	Liverpool
4.	East Midlands	Derbyshire Leicestershire Lincolnshire Northamptonshire wottinghamshire	
5.	West Midlands	Hereford and Worcester Salop Stafercenire Narwicke:i. , Bi.:... Solıhull 35 Wolverhampton	Sandwall *Walsall

FIGURE 3.4 (CONT.)

Region		LEAs Participating	LEAs Not Participating
6.	East Anglia	Cambridgeshire Suffolk	Norfolk
7.	Greater London	Inner London Barnet Brent Bromley Haringey Havering Hillingdon Hounslow Kingston-upon-Thames Merton Newham Redbridge Richmond-upon-Thames Sutton Wal tham Forest	Barking *Bexley Croydon Ealing Enfield Harrow
8.	Other South East	Bedfordshire Berkshire Buckinghamshire East Sussex Essex Hampshire Hertfordshire Isle of Wight Kent Oxfordshire Surrey	West Sussex
9.	South West	Avon Devon Gloucestershire Isles of Scilly Somerset Wiltshire	Cornwall Dorset

[^4]
SECONDRRY PUPILS IN ENCLAND (1 APRIL 1979)

Adapted from Statistics of Bducation (44) pp. 6.7 .

TABLE 3.3

SECOVDARY SCHOLS IN ENGLALD (I APRIL 1974)

Adapted from Statistics of Education (44) pp, 6-7.

$$
v_{\text {region }}=\frac{x_{\text {region }}}{x_{\text {total }}} \times N
$$

Where

$$
\left.\begin{array}{rl}
\mathrm{N}_{\text {region }}= & \begin{array}{l}
\text { number of maintained secondary } \\
\text { schools to be sampled in a region }
\end{array} \\
\mathrm{X}_{\text {region }}= & \begin{array}{l}
\text { enrolment in maintained secondary } \\
\\
\text { schools of a region }
\end{array} \\
\mathrm{X}_{\text {total }}= & \text { total enrolment in maintained } \\
& \text { secondary schools in England }
\end{array}\right\}
$$

As an example, the computation to determine the number of schools assigned to the North West reginn was carried out as follows:

$$
\begin{aligned}
N_{\text {region }} & =\frac{X_{\text {region }}}{X_{\text {total }}} \times 455 \\
N_{\text {North }} \text { We:st } & =\frac{496,669}{3,326,713} \times 455 \\
& =67.93
\end{aligned}
$$

L.e. the number of maintained secondary schools to be sampled in the North West was 68.

Determining the number of each type of school to be sampled in each region.
llaving assigned the number of schools to be sampled to nach region, their distribution according to school types was calculated by the formula:

$$
N_{\text {scinool type }}=\frac{Y_{\text {school type }}}{Y_{\text {total }}} \times N_{\text {region }}
$$

Where

$$
\begin{aligned}
& \text { N:shool type }=\text { number of schools of each type to be } \\
& \text { sampled for a region } \\
& Y_{\text {school }} \text { type }=\begin{array}{c}
\text { number of } \\
\text { region }
\end{array} \\
& \text { Y total , total number of maintained secondary } \\
& \text { schools in a region } \\
& N_{r .} \quad N_{\text {a }} \text { number of maintained secondary schools } \\
& \text { to be vampled in a region }
\end{aligned}
$$

Using the North Woat once again as an example, the number of secondary modern schools to be sampled in this region was :omputed as:

$$
\begin{aligned}
N_{\text {modern }} & =\frac{Y_{\text {modern }}}{Y_{\text {total }}}=N_{\text {region }} \\
& =\frac{292}{658} \times 68 \\
& =30.18
\end{aligned}
$$

i :. the number of secondary modern schools to be sampled in til vorth West was 30.

A summary of all computations to date, showing the distribution of sample schools by region and school type, is presented in Table 3.4.
(4) Determining the number of each type of school to be sampled in each LEA.

The first step in determining the assignmentof schools to Local Education Authorities was to calculate a "unit population" for each schcol type in all regions. The unit population is the number of pupils represented by one sampled school of a given type in a given region.

These values were computed as follows:
Unit population $=\frac{Z_{\text {School type }}}{N_{\text {a chool type }}}$
Where

$$
\begin{aligned}
\mathrm{Z}_{\text {school }} \text { type }= & \begin{array}{l}
\text { enrolment in a given school type for a } \\
\\
\text { given region }
\end{array} \\
\mathrm{N}_{\text {school }} \text { type }= & \begin{array}{l}
\text { number of schools of a given school } \\
\\
\text { type to be sampled in a given region }
\end{array}
\end{aligned}
$$

Again, using the North West as an example, the unit population for secondary modern schools was calculated as shown:

$$
\begin{aligned}
\text { Unit Population } & =\frac{Z_{\text {modern }}}{N_{\text {modern }}} \\
& =\frac{179,493}{30} \\
& =5983
\end{aligned}
$$

In the same way, the unit populations for all types of maintalned secondary schools were computed. These values are presented in Table 3.5.

PMBEB 3.4
wuberr or schools in shuple by schol mpe and recion

UNIT POPULATIONS FOR MAINTAINED SCHOOLS

	Modern	Grammar	Comprehensive	Other
	4596			
North	5165	5917	9743	4128
Yorks and Humb.	5983	6866	8373	5114
North West	5593	5943	8990	5784
East Midlands	5784	5746	9077	6185
West Midlands	6152	7274	9700	5868
East Anglia	5252	5131	8744	--
Greater London	5743	60018	9065	5781
Other South East	5552	5764	8642	7268
South West			9419	6812

Using this information, the number of schools of each type to be sampled from an LEA was determined by dividing the total number en roled in a given school type for the LEA by the unit population. Table 3.6 illustrates this procedure for the LEA of Lancashire in the North west region.

TABLE 3.6
DETERMINATION OF SCHOOLS TO BE SAMPLED IN LANCASHIRE

	No. of pupils enroled	Unit population	Number of schools to be sampled	Actual number sampled
Modern	34,992	5983		
Grammar	10,920	6866	5.85	6
Comprenensive	50,885	8990	5.59	2
Other	0	5784	0	6

The last two columns in Table 3.6 indicate that it was necessary to "round" fractions to the nearest whole number. When the value for a given school type was "rounded up", as far as possible the value for the same school type in an adjacent LEA was "rounded down". And as mentioned earlier, the schools assigned to LEAs that did not. wish ${ }^{-}$to participate were reallocated to adjacent LEAs in the same region. Thus every effort was made, within the restrictions imposed by practical consider'ations, to produce a sample of schools truly representative of the total school population.

Once, the sampling calculations were completed the stage was set for randomly sampling schools from the total population. Computerized listincs of all maintainod socondary schools were arranged so that schools wore ordered by size categories within their respective LEAs. The first school of a given type was identified by means of a random numbers table, and subsequent schools of the same typo were selected at fixed intervals
down the list. The intervals were determined for each school type within eag: Exi from tre ratio of the number of schools to be sampled to the coral nowner of sinools of that type in the LEA.

La the eise af direst grant and independent schools, the sample was drawn Erom listings contained in tile Education Committees Yearbook, 1974-75 (132) ry means of a random numbers table and calculated fixed intervals.
L. Sclection of pupils within schools.

As indicated earlier, Stage 2 of the sampling procedures involved the sclection of pupils within the sample schools. Cooperating teachers were given the choice of two methods for identifying a group of about 30 pupils within the 5 th year. Method A required an intact heterogeneous class representative of the whole ability range of the 5 th year, while Method B involved a random selection procedure from an alphabetical listing of all pupils at that level.

Administrative and Data Collecting Procedures

Approach to the schools

Since confidence in the results of the survey would be enhanced by a high response rate from sample schools, every effort was made to employ procedures and teciniques that would encourage cooperation. Some of the factors that are believed to have contributed to the high level of cooperation may be considered under the following headings:

```
a. Timing
```

The time at winch schools were approached during the school year was important. It was not possible to administer tic survey before the New Year because of the time required to develop and print the instrument and answer sheets after the pilot study results had been analysed. By March, nowever, pupils in the 5 th year throughout the country become preoccupied with preparation for the General Certificate of Education "O" level and Certificate of Secondary Education public examinations. Since the packages wert posted to schools on 15 th January, the majority were able to administer the task before examination preparation became a priority.
b. . Permission of Chief Education Officers

A:; described earlier, the sample was only drawn from schools in the 32 LEAB in wilich the Chief Education Officers had indicated support of the survey. Requesting their permission to approach schools was not only a courtosy, but may have provided greater incentive for headteachers to coopurate. It must be recorded, however, that the majority of the Chief Eduration officers made it clear that the final decision about cooperation resteu with headtechers in the light of commitments within their schools.

```
\because Lettirs to Headtrachors
```

It. was recomizerl that a lettor sent to hoadteachers requesting their participation in the survey would be very time consuming and would probably
resilt in a large perentage of refusals. Instead it was decided to send the packaye of materinls togetiner with a carefully constructed letter of uxplanation.

Each letter was persorially addressed to the headmaster or headmistress and was signed by the authors. The lettors briefly explaired the importance of the survey, stressed that administration of the instrument was simile and could be completed within one class period, and indicated that participation would involve no expense to the school.
d. Packages of Materials.

The 500 packages were put together and addressed at The Ohio state University, then air-freighted to England where they were sealed and posced to headteachers of the selected schools. In addition to the personal letter described above, each package contained 30 instruments (10 of each form) with answer sheets enclosed inside, 30 sharpened pencils inscribed with the words ENVIRONMENTAL SURVEY (which the pupils were able to keep), a set of instructions for the cooperating teacher, a form requesting iurief information about the school, and a stamped, addressed envelope for the return of the completed answer sheets. Examples of instruments and answer sheets are presented in Appendix A (p. 95).
e. Follow-up Procedures

Within one month of sending out the packages, completed answer sheets had been returned by 648 of the sample while 68 responded that (for various reasons) they were unable to assjist in the survey. Follow-up letters were posted on 16th February to headteachers of the schools which had not responded, providing additional information about the study and urging their cooperation. During the next two weeks replies were received from about one-half of these schools. On 27th February a second follow-up letter with a stamped, addresscd sard enclosed was sent to the remaining 158 of the sample that had not responded. The card made it possible for headteachers to indicate whether or not they intended to participate in the survey by simply ticking a box on the card and dropping it in the post. At the completion of the survey responses had been received from all but 16 schools or 32 of the total sample. Details of the response patterns are presented in the following chapter (p. 35).

Finally, a printed card was sent to the headteachers of all participating schools, thanking them for their cooperation and indicating that further information regarding the results of the study would be provided at a later date.

Data Collection and Preparation for Analysis

The completed answer sheets were returned in the post to Preston polytrechnic School of Education, Chorley Campus, where they were sorted and allocated a school code number. Schools that did not provide all of the requested information were contacted by telephone for clarification. The answer sheets were then packed into boxes and returned to The ohio State University in the company of the principal author.

Each sheet was examined to make sure that the response marks in pencil wete satisfactory for machine scoring. In addition, they wre coded with
an identification number and with information relating to the type of school, school size, sex composition of the school, and sampling method used.

The answer sheets were then optically scanned and the data automatically punched onto computer cards. After checking for accuracy, the data were transferred from cards onto a computer tape for convenience.

Analysis of Data

The analysis of data was greatly facilitated by the use of standard computer programmes available at The Ohio State University. The programe STATPACK, developed by the Center for Measurement and Evaluation at The Ohio State University, was employed in the item analysis of the pilot data, and BMDO3D from Biomedical Computer Programs (48) provided test/retest correlations for identifying reliable items on the pilot instrument and tine reliability of the final inventory.

The remaining analyses untilized various subprogrammes from the Statistical Package for the Social Sciences (SPSS) by Nie et al (100). The subprogramme FREQUENCIES presented the frequency of responses on each form, and the frequency of responses by each region, school type, school size, school sex, pupil sex, age category, and sampling method. CROSSTABS tabulated the number of responses (and percent response) on the alternatives to each item.

To determine if significant relationships existed between pupil responses and the independent variables of region, s wol type, school size, school sex, puyil sex, age and sampling method, a number of chi-square analyses were performed using the subprogramme CROSS"ABS. Chi-square was also used to demonstrate the similarity of response patterns on common items on the three forms. Relationships between total scores on the three parts of each questionnaire (factual, conceptual, and belief) and the independent variables mentioned above were examined by , alysis of variance, using the subprogramme ONEWAY. Regression analyses, tc investigate relationships between the independent demographic variables and criterion variables, were performed by means of subproframme REGRES IION.

Correlations between total scores on the f tual, conceptual and belief sections of each form were esta.iis'ier y ins of the subprogramme SCATTERGRAM, while the Pearson proiuct-moment coxrelations between all items were provided by PEARSON CURP.

It should be noted that in all analyses involving "total belief scores", the score used was the number of responsc.s in agreement with the panel. Since the panel used a criterion (previously described on page 18) to identify the "environmentally positive" response on each item, the composite belief score is seen as being indicative of the pupil's environmental attitude.

RESULTS AND DISCUSSION

Overview

An analysis of the data obtained in the survey is presented in this chapter in both descriptive and tabular form. The results and discussion are organized under the following headings:

```
1. Response Rate and Distribution
2. Comparison of Sampling Techniques
Used in Schools
3. Comparison of Forms \(A, B\) and \(C\)
4. Reliability of the Instrument
5. Analysis of pupil Responses
6. Relationstips Between Variables
```


Response Rate and Distribution

Table 4.l summarizes the pattern of returns received by the cut-off date of l5th May, 1976. A total of 383 schools, or 76.6% of the sample, returned packages of completed answer sheets. Of the remaining schools, 98 (19.68) replied that they were not able to participate in the survey, three (0.6%) indicated that the materials must have been lost in the post, while 16 (3.2\%) failed to respund in any way. Five of the 98 schools listed as "refusals" were in fact no longer in existence as a result of the recent reorganization of the school system.

The cooperating schools returned a total of 11,009 usable answer sheets. These were distributed as follows:
$3740(34.0 \%)$ were in response to Form A
$3669(33.3 \%)$ were in response to Form B
$3600(32.7 \%)$ were in response to Form C

Tabl. $4 . \ddot{\iota}$ simss the number of fupil responses received from each region, and als: LJlustrates that the regional distribution of respondents corrosponds closely to the regional distribution of schools allocated in the sampling procedure. Similarly, the percentage of returns received from cach school type closely approximates the distribution of school types sclected in the sarnple (Table 4.3). Variations may have resulted from different response rates among school types, and from the changed status of some schools through reorganization.

TRBLE 4.1

SCHOOL RESPOISE RMRES

TABLE 4.2
DISTRIBUTION OF RESPONDENTS BY REGION

	Number of answer sheets received from respondents	Distribution of respondents (percent)*	Distribution of sample schools (percent)*
North	731	6.6	6.8
Yorks. and Humb.	1,108	10.1	9.4
North West	1,606	14.6	13.6
East Midlands	827	7.5	7.8
West Midlands	1,350	12.3	10.6
East Anglia	370	3.4	3.0
Greater London	1,083	9.8	13.4
Other South East	2,117	7.2	18.6
South West	846	8.8	7.8
Ind. and Dir. Grant	971		9.0

*Rounded to nearest tenth.

TABLE 4.3
DISTRIBUTION OE RESPONDENTS BY SCHOOL TYPE

	Number of answer sheets received from respondents	Distribution of respondents (percent)*	Distribution of sample school (percent)
Comprehensive	4,710	42.8	43.2
Secondary Modern	3,650	33.2	29.8
Grammar	1,592	14.5	13.4
Ind. and ir. Grant	971	8.8	9.0
Other	86	0.8	4.6
Total		11,009	

*Rounded to nearest tenth.

Additional frequency cijunts indicated that 5,510 (50.0\%) of the respondents were male and 5,446 (49.5\%) were female. The remaining 53 (0.5\%) pupils did not state their sex. As expected, the majority (67.5%) attended coeducational or "mixed" schools, while 15.3% were from "allboy" and 17.28 attended "all-girl" schools. The second stage sampling conducted by cooperating teachers resulted in a mean class size of 28.7 pupils.

Comparison of Sampling Techniques Used in Schools

: Th: two methods used for selecting pupils within the 5 th year of the Gopriatiag schools, 63.9 of the subjects were members of a "representa-
 srocedure from an alphaisetical listing of the entire 5 th year (Metinod B).

In orter to ascertain whether the selection procedure influenced the :uttern of responses, a chi-square analysis of sampling method versus Eupil response was performed on all items (Appendix C, p. 131). The results of this analysis clearly indicate that the method of selecting subjects within sc.ools had no significant influence upon pupil responses.

Comparison of Forms A, B and C

Rusponses to the 14 common items were subjected to a chi-square analysis to determine if there were significant differences in responses to the same items on different forms. An examination of the response distributions and chi-square values indicated no significant differences between forms on the common items. As an example, the distribution of pupil resporises to 1 tem $A B C l$ is shown below in Table 4.4:

TABLE 4.4

UISTRIBUT LON OF FESPONSES ON ITEM ABC1 BY FORMS

In this example, an examination of tine row percentages shows a strikingly timi iar respons: pattern on the threc forms, and the chi-square value intiontes tiat any observed differences may be attributed to chance.

$$
53
$$

In the survey approximately one-third of tine total sample responded to each of the three forms (A, B and C). The results of this comparative analysis of common items gives confidence in the assumption that the response pattern on every item would be essentially the same if they had been answered by all 11,009 subjects in the sample.

Reliability of the Instrument

As previously described on page 20 , the reliability of the instrument was determined using the test/retest procedure in seven representative schools. Correlation coefficients between the test and retest data were computed for both indiv' : al items and total scores.

Of the 107 items in the instrument, 100 showed correlations beyond the 0.01 level of significance, and only one (B28) was not significant at the 0.05 level. This item, however, showed a significant correlation at the 0.02 level on the pilot study.

The test/retest reliability coefficients for the three forms were:

> Form $A=0.84$
> Form $B=0.83$
> Form $C=0.89$

Analysis of Pupil Responses

A statistical summary of the overall pupil performance, giving the mean score, standard deviation, and range of scores for each section of the three forms, is provided in Table 4.5. It should be noted that the scores reported on Belief Items (Part 3) in these tables, and throughout the following analyses, are based upon the number of responses "in agreement with the panel."

Responses to Factual Knowledge Items (Part I)

Table 4.6 shows the frequency of responses to each alternative on tile factual knowledge items, and gives the number of pupils attempting each item. To facilitate the examination of response patterns, the percent selecting each alternative will be listed against the questions, with the correct answer indicated by an asterisk (*). This will be followed by a brief discussion of pupil responses to factual items in each of the categories of "environmental concern."

ABCl. The present population of Britain is about

45.9	*a)	57 million
30.0	b)	67 million
16.4	c)	77 million
7.7	d)	87 million

TABLE 4.5
SU.LWiKY OF SCORE STATISTICS ON FORYS A, B, AND C

	Max. Score	Range	Mean	S.D.
Factual Itent (Paxt 1)				
form A	17	16	7.54	2.66
Form B	17	16	7.81	2.49
Fom C	17	15	8.12	2.85
Concortual Itoms (Part 2)				
Form A	10	10	6.46	2.15
Form B	10	10	5.99	2.16
Forn C'	10	10	5.88	1.93
30l2ut Itens (Part 3)				
Form A	15	15	9.04	2.66
Form 3	15	15	9.39	2.75
Form ${ }^{\text {c }}$	15	15	8.45	2.91

AEC2. The population of Britain is growing at a = te: which is

| 21.7 | a) more than that of the world ave: $:$, |
| ---: | :--- | :--- |
| 42.1 | b) about the same as the world average |
| 34.2 | *C) less than that of the world average |
| 1.9 | d) zero |

ABC 3. At the present time Britain
B. 2 a) produces more food than it uses and ioorts the surplus
7.7 b) produces just enough food to satisfy home needs
29.4 c) must import about 5% of its food supply
56.7 *ij must import about 50% of its food supply

ABC. Which of the following is most likely to be an important world-wide source of energy for the future?

13.6	*a)	solar radiation
13.3	b)	tidal flow
12.2	c)	geothermal sources
4.9	d)	wind power

FREQUEINCY OF RESPONSES (AS PERCENT) TO EACH ALTERNATIVE ON FACTUAL KNOWLEDGE ITEMS

Item	เง	Alternative			
		a	b	c	d
${ }^{\text {ABCl }}$	10994	45.9*	30.0	16.4	7.7
${ }^{\text {ABC }} 2$	11000	21.7	42.1	34.2*	1.9
ABC 3	10979	6.2	7.7	29.4	56.7*
ABC4	109^{-}	9.6*	13.3	12.2	4.9
A5	37%	9.3	14.9	47.4*	28.4
A6	3726	15.5	24.9*	3.1	56.4
A7	3729	8.9	10.8	33.4	46.8*
A8	3721	25.8*	27.3	27.7	19.2
A9	3728	44.8	29.2	16.3*	19.2 9.3
Al0	3722	32.3	7.6	15.3	44.8*
All	3731	6.8	19.8	47.1*	26.3
Al2	3691	16.7	41.8*	26.9	14.6
Al3	3737	19.9	3.0	4.7	72.5*
Al4	3719	19.0	20.9	41.9*	18.2
Al5	3730	24.1	20.2*	8.5	47.2
Al6	3726	74.5*	11.8	7.5	6.3
Al7	3735	20.3	44.0*	26.6	9.1
85	3626	44.7*	37.9	11.1	6.3
B6	3659	9.8	16.0	57.9*	16.2
B7	3661	14.8	11.7	38.6	34.9*
B8	3665	46.6	40.2*	10.5	2.7
B9	3666	9.2	10.7	4.6	75.5*
B10	3666	14.9	42.9*	31.8	10.5
Bll	3666	48.5*	28.9	19.4	3.2
B12.	3662	8.6	45.0*	40.4	6.0
B13	3638	15.6	10.3	21.7	51.9*
B14	3658	3.8	40.2	47.8*	8.2
B15	3662	16.8	46.0	30.3	6.8*
B16	3662	2.6	20.7*	42.0	34.7
B17	3663	19.1	10.9	60.3*	9.7
C5	3593	21.8	50.1*	14.7	13.4
C6	3581	65.3*	13.3	12.3	9.1
C7	3588	16.9	16.3	33.4	32.9*
C8	3584	12.1	46.1	17.6	24.2*
C9	3537	27.1	12.8	35.6*	24.4
Cl0	3591	9.5	42.9*	41.1	6.7
Cll	3587	5.2	7.4	20.1	67.3*
Cl2	3592	6.7	45.1*	26.7	21.5
Cl3	3592	10.7*	38.6	17.0	33.8
Cl4	3573	8.5	16.1	7.6	67.8*
Cl5	3578	12.7	4.9	57.5*	14.9
Cl6	3587	22.4	54.9*	14.9	7.9
Cl7	3591	26.7	27.0	45.8*	10.5

A5. On several recent occasions in various parts of the world, the sale of fish has been stopped because the fish have been found to contain high levels of

1.3	a)	thalidomice
$1: .3$	b)	chlorine
47.4	c)	mercury
28.4	d)	lead

\therefore A5. Since ablut 1950 birds of prey (such as the peregrine falcon, golden eagle and sparrow hawk) have seriously declined in numbers. Evidence sioggests that this is because the pesticide DDT causes
a) the birds to lose their ability to breed
*b) the birds to have eggs with shells that are thin and easily break
3.: \quad.) baby birds to lose their appetite
50.4 d) immediate death to these birds if they eat food with DDT in it

A7. As a . ?sult of burning coal and oil the amount of carbon dioxid in the atmosphere is
a) decreasing, but will not affect the earth's environment
b) decreasing, with possible serious effects on the earth's environment
c) increasing, but will not affect the earth's environment
*d) increasing, with possible serious effects on the earth's environment

A8. S.me people object to the use of detergents and soap powders that contain phosphates. The main reason for this is because phospinates
*a) cause the rapid growth of algae in lakes and rivers
b) are poisonous o bacteria that help to break down sewage
c) are harmful to the health of young children
d) cause birth defects in fisu and other aquatic animals

A9. Once DD': has been spread to kill insects, it usually

44.8	a)	remains toxic for a few weeks only
29.2	b)	remains toxic for about one year
16.3	(c)	remains toxic for many years
9.8	d)	remains toxic forever

Al0. Torrey Canyon
32.3
7.6
a) is the site of a large dam in the United States
b) is an area of scenic beauty in Wales

15.3 | c) is the site of recent discoveries of vast oil |
| :--- |
| reserves |

All. The population of the world increased from 2 thousand million in 1930 to about
6.8 a) 2.5 thousand million in 1975
19.8 b) $\quad 3.0$ thousand million in 1975
$47.1 \quad *$ c) $\quad 4.0$ thousand million in 1975
26.3 d) 5.0 thousand million in 1975

Al2. A temperature inversinn can be harmful because it

16.7	a)	puts more carbon dioxide into the air
$4 . .3$	b)	keeps air pollutants near the ground
$\therefore .7$	c) prevents horizontal air flow	
$\therefore .6$	d) produces pollutant par: :s	

Al3. The size of a population is affected by
19.9
3.0
4.7
72.5
a) the birth rate
b) the death rate
c) the rate of immigration and emigration
*d) all of the above

Al4. Many organic wastes are broken down in water. In the process, what substance is taken out of the water?
19.0 a) carbon dioxide
20.9 b) hydrogen
41.9 *c) oxygen
13.2 d) sulphur

Al5. Solid particles that contribute to air pollution (such as soot and dust) tend to
24.1
20.2
8.5
47.2
a) increase the earth's temperature
*b) decrease the earth's temperature
c) keep the earth's temperature steady
d) have no effect on the temperature

Al6. The major air pollutant (measured by weight) discharged by motor vehicles is
74.5 *a) carbon monoxide
11.8
b) nitrogen dioxide
c) sulphur dioxide
d) particulate matter

Al7. At its present rate of growth, the population of the world will double in about
$\begin{array}{lrl}20.3 & \text { a) } & 15 \text { years } \\ 44.4 & \text { *b) } & 35 \text { years }\end{array}$

20.6	c)	60 years
9.1	d)	100 years

ir. Basic chemical materials would be locked up and would not be available for reuse by plants and animals if it were not for the activities of
*a) decomposer organisms

4.4	*a)	decomposer organisms
$3 \% .4$	b)	photosynthetic organisms
11.1	c)	herbivores

ll.1 c) herbivores
6.3 d) carnivores
. During the next 25 years the amount of good quality agricultural land in Britain is expected to

* 9.8
15.0
57.9
Li. 2

B7.
14.8
:1.7
33.6
34.9
a) increase as a result of better planning
b) increase as a result of reclaiming waste land
*) decrease as a result of urban and industrial expansion
(d) remain about the same

The nighest average annual rainfall in Britain is recorded in
a) the south-west of England
b) the Midlands
c) the Lake District
*d) the north-west of Scotland

Bo. The average amount of water used per person per day in British homes is about
$\begin{array}{ll}46.6 & \text { a) } \quad 4 \text { gallons } \\ 40.2 & \text { b) } \quad 40 \text { gallons }\end{array}$
10.5 c) 80 gallons
2.7
d) 160 gallons

B'. Several species of whale have become endangered because of
a) pollution of the oceans by industrial wastes
10.7
4.6
75.5

B10.

It is estimated that at today's rate of use, known world reserves of resources such as zinc, lead, tin, oil and copper will be used up, or will be at a very low level in about

14.9	a)	10 years
42.9	b)	40 years
31.8	c)	80 years
10.5	d)	180 years

B1L. It is estimated that Britain will be self-sufficient in oil from the North Sea by (or soon after) the year

48.5	*a)	1980
28.9	b)	1990
19.4	c)	2000
3.2	d)	2010

Bl2. Approximately what percentage of the land surface in the United Kingdom is covered with forests and woods?

8.6	a)	0.5 percent
45.0	*b)	7.5 percent
40.4	c)	27.5 percent
6.0	d)	47.5 percent

Bl3. The number of hedgerows in Britain is
15.6
10.8
21.7
51.9

B14. Taking into account the increasing use of fossil fuels for energy, the known world supply of coal is estimated to be enough to last for
a) about 5 years
b) about 25 years
*c) more than 100 years
d) more than .000 years

B15. Approximately what percentage of the land surface in the United Kingdom is used for agriculture (crops, pasture, and rough grazing)?
a) 20 percent
b) 40 percent
c) 60 percent
*d) 80 percent
At the present time, the world population is growing at a rate of
a) less than one percent each year
*b) bout two nercent each year
c) wout five percent each year
d) about ten percent each year

B17. Which country currently consumes the largest amount of oil and natural gas?
19.1
10.9
a) USSR
b) Japan

60

```
60.3 *c) USA
    9.7 d) United Kingdom
    :5. Most of the electrıcal energy used in Britain is produced by
    21.9 a) nuclear power plants
    50.1 *b) coal-burning power plants
    14.7 c) oil-burning power plants
    13.4 d) natural gas power plants
C6. Carbon monoxide is a serious air pollutant because it
\begin{tabular}{rll}
65.3 & *a) & is poisonous to humans \\
13.3 & b) & causes atmospheric haze \\
12.3 & c) & is harmful to vegetation \\
9.1 & d) & is corrosive to metals
\end{tabular}
C7. Most of the radiation to which people in this country are
    exposed is due to
    a) the normal hazards of work
    b) TV sets and luminous watches
    c) medical sources (X-rays, etc.)
    *d) natural sources
    The largest single source of man-made radiation to which the
    British are exposed is due to
```

12.1
46.1
17.6
14.2

C9.
16.8
33.4
32.9

Có.
12.
12.8
35.6
24.4

Cl!.

```
a) the fallout from bomb tests
b) nuclear power-plant radiation
c) IV sets and luminous watches
*d) medical sources (X-rays, etc.)
Studies have shown that the pesticide DDT is present in the body tissues of pople around the world. Most of this DDT in our bodies comes from
a) the air we breathe
b) the water we drink
*c) the food we eat
d) being directly exposed to aerosol sprays containing DDT
About how much of the energy stored in coal is converted into electrical energy in modern power plants?
9.5
a) 10-20 percent
42.8
*b) \(30-40\) percent
41.1
c) 60-70 percent
6.7
d) 80-90 percent
Cll. Since 1958 the smoke concentrations in Central London have decreased by \(80 \%\), and sulphur dioxide in the air has decreased by 40\%. This improvement in air quality is mainly the result of
```

5.2	a) a decline in the population of central London
7.4	b) the voluntary action of citizens to reduce air
pollution	

Cl2. Nuclear power plants are built near bodies of water because the water is
a) an added safety factor in case of fire
6.7
45.1
26.7
21.5

Cl 3.
*b) a coolant
c) an alternative power source
d a disposal place for radioactive waste

Bronchitis is a common respiratury disease. The death rate from bronchitis in Britain is
10.7
38.6
17.0
33.8

Cl4.
Which of the following materials is not biodegradable?
a) leaves
b) bread
c) wood
*d) glass
Cl5. Most of the oxygen found in the earth's atmosphere is the result of
a) the slow decomposition of silica $\left(\mathrm{SiO}_{2}\right)$ in the earth's crust
b) the action of volcanos
67.5
14.9

Cl6. Which of the following is not a potential problem with nuclear power plants?
a) thermal pollution
22.4
*b; smoke pollution
54.9
14.9
7.9
c) waste disposal
d) radiation pollution

Cl 7.
At present, the cheapest way to dispose of solid wastes : collected from homes is by
26.7
17.0
45.8
10.5
a) incineration
b) recycling
$\left.{ }^{*} c\right)$ dumping in pits and covering with soil
d) composting

Pollution (Items A5, A6, A7, A8, A9, Al0, Al2, Al5, Al6, Cl4 (16).

The level of factual knowledge relating to pollution appeared to be very variable. As many as three-quarters of the pupils correctly responded that carbon monoxide is the major air pollutant discharged by motor vehicles, and two-thirds understood the meaning of the term "biodegradable". The only other question correctly answered by a majority was Cl6, in which 54.9 indicated that smoke pollution is not a potential problem with nuclear power plants. Since the Torrey Canyon remains as one of the most serious examples of massive pollution in recent history, it is perhaps surprising that only 44.8% were able to recognize the name of this oil-tanker that ran aground off the southern coast of England. Of greater concern is the fact that only one-quarter of the respondents knew that phosphates contribute significantly to water pollution by increasing the growth rate of algae in lakes and rivers. The most poorly answered questions in this category related to the pesticide DDT. Fewer than one-quarter knew that DDT affects the proper developmeat of eggs in birds of prey, while the vast majority underestimated the persistence of this chemical. Only 16.38 responded that DD' usually remains toxic for many years.

Population (Items ABCl, ABC2, All, Al3, Al7, Bl6).
A clear majority of pupils (72.5\%) were aware that the factors affecting the size of populations include birth and death rates, and the rates of immigration and emigration. Less well known were some basic population statistics. The present world and British populations were correctly estimated by 47.1% and 45.9% of the pupils respectively, while 44.0% selected the most asceptable projection for the doubling time of the present world population. Knowledge relating to population growth rates appeared to be weak, with pupils tending to over-estimate the values. Only 20.7% knew that the world growth rate is about 2% each year, and 34.2% correctly responded that the British population is growing at a rate which is less than the world average.
(3) Natural Resources (Items B7, B8, B9, Bl0, Bll, Bl4, Bl7).

It was well known that whales have become endangered by overhunting by man (74.5\%) and that the United States is the world's largest consumer of oil and natural gas (60.3%). The remaining questions in this category were answered correcly by less than one-half of the pupils. Between 40 and 50 percent were correct in their responses to known world reserves of minerals and coal, and in estimating that Britain will be self-sufficient in oil by 1980. A large proportion of the sample (46.6\%) thought that British homes use only four gallons of water per day, while 40.2% selected the correct answer of about 40 gallons.

Land Use (Items ABC3, B6, Bl2, Bl3, El5).
With one exception, these questions were answe $:$ wih racery greater success. The vast majority recognize:i wi.at Brit in must import food, with 56.7% aware that about one-half of the food supply comes from overseas. It was also generally understood that good agricultural land is diminishing (57.9\%) and that hedgerows are being removed with detrimental effects on the environment (51.9\%). The response pattern on Bl5, however, indicated a serious misconception about the amount of land devoted to agriculture in the United Kingdom. A majority of respondents were of the opinion that 40% or less of the land is used for agriculture, while only 6.8% knew the correct answer of approximately 80%.

Questions relating to carbon monoxide and DDT were answered in a similar fashion to questions on the same topics in the pollution category. Over 65% knew that carbon monoxide is a pollution problem because it is poisonous to humans, while only 35.6% were aware that most of the DDT found in our body tissues is ingested in our food. Sources of radiation were not well knowi. Strangely enough, the most frequent response on item C7 incorrectly identified the source of radiation to which most people are exposed as "medical sources" (33.4\%), whereas on item C8 pupils tended to avoid the correct answer of "medical sources" as the largest single man-made source of radiation affecting the public. On this question a misconception was evident, with 46.1% selecting nuclear power plants compared to only 24.2% who correctly recognized that we are more frequently exposed to medical sources of radiation. The serious nature of bronchitis was greatly under-estimated. Although item Cl3 was a difficult question with only 10.7% making the correct: selection, it should be of concern that one-third of the respondents did not know that bronchitis can be a fatal disease.

Ecological Relationships (Items Al4, B5, Cl5).
Two-thirds knew that most of the oxygen in the earth's atmosphere is the result of the photosynthetic action of plants. However, the two questions relating to function of decomposer organisms, and the removal of oxygen from water during the decomposition of organic materials were less well understood, with a little over 408 choosing the correct answers.
(ध) Social/Solitical/Economic Influences (Items Cll, Ci7).
The importance of legislative action in curbing pollution, as opposed to voluntary measures, was recognized by two-thirds of t'o respondents. Fewer showed knowledge of the economics of dis. sing of solid waste.

Resjories to nceptual Knowledge Items (Part 2)
Fiequencie: ?f responses to conceptual knowledge items are presented in Tacle 4.7 and against the alternatives to each question. This is followed by a discussion of response patterns under each category of "environmental concei:.".

ABC21. If sufficient water were available, virtually all of the land suriace of the world could be economically used to produce focd.

31.2	a)	True
30.2	*b)	False
3.2	c)	Don't Know

ABC2. \quad The interaction of environmental, biological and social factors determines the size of human populations.
5.1.0 *al True
20.6 b) False
23.4 c) Don't Know

ABC23. There is an unlimited supply of energy available to man from fossil fuels (such as coal and oil).

22.6	a)	True
72.0	*b)	False
5.3	c)	Don't Know

A24. Pollution caused by man may give rise to irreversible changes in the environment.
75.5 *a) True
11.1 b) False
13.4 c) Don't Know

A25. In any environment, one component like water, air, or food may limit the type of life which can survive.
77.4 *a) True
12.2 b) False
10.4 c) Don't Know

A2F. A natural body of water (such as a river or lake) will always have sufficient dissolved oxygen to support aquatic animal life.

39.3	a)	Truc	$\mathbf{6 3}$
47.2	*b)	False	
12.9	c)	Don't Know	

FREQUENC'Y OF RESPONSES (AS PERCENT) TO EACH ALTERNATIVE ON CONCEPTUAL KNOWLEDGE ITEMS

ltem	\therefore	Alternative		
		a	b	c
ABC21	11005	31.6	60.2*	8.2
ABC22	10995	51.0*	20.6	28.4
ABC2 3	10998	22.6	72.0*	28.4 5.3
A24 ${ }^{\text {. }}$	3738	75.5*	11.1	13.4
A25	3736	77.4*	12.2	10.4
A26	3740	39.8	47.2*	12.9
A27	3736	69.3*	17.6	13.1
A28	3735	20.9	49.1*	30.0
A29	3735	75.3*	11.6	13.0
A30	3736	71.0*	16.8	12.2
B24	3666	18.3	59.0*	22.7
B25	3667	77.5*	6.4	16.1
B26	3665	74.4*	10.4	15.3
B27	3661	376	36.8*	25.6
B28	3665	77.5*	13.1	25.4
B29	3658	42.0*	39.1	18.9
B30	3667	39.9	45.5 *	14.6
C24	3594	21.2	62.3*	16.5
C25	3594	89.7*	4.5	5.8
C26	3594	49.8*	36.8	13.4
C27	3589	30.6	25.6*	13.4 43.8
C28	3592	76.8*	12.6	10.6
C29	3591	52.9*	23.4	23.7
C30	3589	50.9*	23.7	25.4

*Correct Response

66

B28. Maintaining, improving, and in some cases restoring soil productivity is important to the welfare of people.

77.5	*a)	True
13.1	b)	False
9.4	c)	Don't Know

B29.
Minerals are non-renewable resources.
42.0 *a) True
39.1 b) False
18.9 c) Don't Know

B30. The oceans represent a limitless source of food and resources for the future.
39.9 a) True
45.5 *) Faise
14.6 c) Don't Know

C24. There is no relationship between the incidence of bronchitis and the level of air pollution
21.2
62.3
16.5

C25.
a) True
*b) False
c) Don't Know

Safe waste disposal is important if the well-being of man and the environment is to be preserved.
89.7 *a) True
4.5 b) False
5.8 c) Don't Know

C26. The ultimate source of most of the energy that we use is the sun.
49.8
36.8
13.4

C27.
30.6
25.6
43.8

C28.
*a) True
b) False
c) Don't Inow

There is a tendency for people to select long-term environmentai benefits, often at the expense of short-term economic gains.
a) Trues
*b) Faise
c) Don't Know

Life as we know it is dependent upon the transformation of energy from one form into another.
*a) True
b) False
c) Don't Know

Chemical substances may be concentrated as they pass through food chains, and become a haz : e to human health.

52.9	*a)	True
23.4	b)	False
23.7	c)	Don't Know

$\because 30$ An organism is a product of its heredity and environment.

50.9	*a)	True
23.7	b)	False
25.4	c)	Don't Know

(1) Pollution (Items A24, A29).

Three-quarters of the pupils responded correctly on these two questions, indicating a sound understanding of the role man plays in causing pollution and the irreversible environmental effects that may result.

Population (Items ABC22, A30)
Pupils appeared to recognize that human social behaviour can be affected by population density (71.0%), but were less aware of the factors determining the rise of human populations (51.0\%).
(3) Natural Resources (Items B24, B25, B26, B27, B29, B30).

Concepts relating to the importance of wild-life refuges (77.5\%), the need for long range planning in the management of natural resources (74.4\%), and the unequal distribution of natural resources (59.0\%), were generally well understood. Less well established were concepts concerning the non-renewable nature of minerals (42.0\%) and the relationship between technological development and the consumption of natural resources (36.8%). Perhaps the most disturbing result to emerge from these questions was the fact that only 45.5% of the respondents refuted the notion that "the oceans represent a limitless source of food and resources for the future".

Landuse (Items ABC21; B28).

A clear majority of pupils recognized that human welfare is dependent upon productive soil (77.5\%), and that factors other than sufficient water are essential for food production (60.2\%).
(i) Lingrgy (Items ABC23, C26, C28).

The concepts that life is dependent upon the transformation of energy (76.88) and that energy available from fossil fuels is finit.: (72.0s) were well established. However, fewer than onehalf of the rospondonts knew that the ultimate source of most of our enorgy is the sian.
(こ) Environmental Health/Safety (Items C24, C25, C29.).
Although the importance of safe waste disposal was strongly endorsed (89.7\%), almost one-half din not know that chemical substa..ces can be concentrated in food chains and become hazardous to human health. Over 60% knew that a relationship exists between bronchitis and the level of air pollution.
(7)

Écological Relationships (Items A25, A26, A27, A28, C30).

The concepts of limiting factors (77.4\%) and the interdependence of $l \perp v i n g$ things and their environment (69.3% ! were well understood. At the other extreme, only $47.2 \% \mathrm{knew}$ that dissclved oxygen is not always available in sufficient quantities to support aquatic life.
(8) Social/Political/Economic Influences (Item C27).

The concept expressed in this question was poorly understood. Only 25.68 correctly refuted thr assertion that people tend to eelect long-term environmental benefits, often at the expense of short-term economic gains. The most frequent response was "Don't Know" (43.8\%).

Responsts to Belief Items (Part 3)
The response frequencies on the belief items are presented in Table 4.8 and noxt to the alternatives on each question. As vefore, this is followed by a discussion of response patterns under each "environmental concern" iategory.
aBC31. Planning which will limit the size of families is; important if over-population is to be avoided.

80.0	*a)	Agree
15.2	b)	Disagrec
4.7	c)	No Opinion

ABC 32. The demand for enerry is critical enough to justify relaxing some of the environmental restrictions which hinder energy rroduction.

25.1	a)	ngroe
45.5	*b)	Disariree
29.1	o)	No Opinion

Abre33. The tax sy:stom should be rodnsignod to onr vage amall familios rather than large onres.

5). 2	*, 1)	Arroe
27.1	b.)	Wisacrao
13.3	(.)	No Gpinion

TABLE 4.8

FREVUEJCY OF RESPONSES (AS PERCENT) TO EACH ALTERUITIVE OA BELIEF ITEMS

	\because	Alternative		
		a	b	c
11	10991	30.0*	15.2	4.7
	i0967	37.1	45.5*	29.4
	10976	29.2*	27.0	13.8
-	10973	27.6	58.0*	14.4
	3724	34.5*	7.5	8.0
	3729	76.4*	9.0	14.6
, !	3730	51.3*	34.3	14.4
,	3731	23.6	69.2*	7.2
. ${ }^{\text {d }}$	3726	37.7	38.2*	24.1
$\therefore \cdots$	3724	44.7*	45.0	10.2
\therefore	3722	36.5	22.1*	41.4
.	3724	11.6	77.8*	10.5
-	3724	59.5*	22.9	17.6
\therefore	3724	9.5	83.9*	0.6
1.5	3726	56.5*	24.9	18.6
	3563	38.5*	41.5	20.1
,	3657	58.5*	28.5	13.0
$\cdots \prime$	3661	9.2	84.6*	6.3
',	3656	30.7	$44.9 *$	24.4
[. ${ }^{\text {, }}$	3657	75.8*	12.8	11.4
:	3659	49.2*	38.8	12.0
i. 11	$\bigcirc 560$	72.0*	12.6	15.4
:	,661	8.0	86.6*	5.5
i..	3661	60.4*	20.2	19.4
$\therefore 1$	3662	69.1*	24.5	6.3
	3661	26.8	58.2*	15.1
- 35	3589	58.8	35.2*	6.0
- ?	3589	67.2*	17.1	15.7
.	3584	30.9	54.4*	14.7
-	2589	64.2*	25.7	10.1
,	3588	52.2*	19.0	28.8
1	3583	41.9	39.4*	18.6
1	3586	$69.0 *$	14.4	16.5
i.	3585	19.3	$64.5 *$	16.2
1.	350.4	55.6"	22.\%	21.7
H:	3579	16.0	55.4*	28.7
;	$3!5856$	49.3*	39.6	11.2

-"1 w111 1.ancl

ABC34. Large-scale famines are not likely to occur in the near future.
27.6 a) Agree
58.0 *b) Disagree
14.4 c) No Opinion

A35. Man has a moral responsibility to protect the natural environment.

84.5	*a)	Agree
7.5	b)	Disagree
8.0	c)	No Opinion

A 36.
International agreements with legal and economic sanctions are neceisary to prevent industries and oil-tankers from extensively polluting the oceans with their wastes.
*a) Agree
b) Disagree
c) No Opinion

A37.
People should only be allowed to burn smokeless fuels in their fireplaces at home.
*a) Agree
b) Disagrue
c) Ho Opinion

A38. Farmers should be allowed to use any pesticide that they wish in order to control the pests that eat their crops.
23.6
69.2
7.2
a) Agree
*b) Disagree
c) ivo Opinion

A39. A community's standards for pollution should not be so strict that they discourage industrial growth and development.
37.7
38.2
10.2
a) Agree
*b) Disagree
c) ilo Opinion

A40.
Sincu population is a critical problem facing mankind, nost couples ahould not produce more than two children.
44.')
45.0
10.2

N41.
*a) Agrao
b) Disagroo
(:) No opinion
Continuous growth of British industry and the ciross ivational Eroduct (GNP) is highly desirabla.
a) Aproe
36.5
22.1
*b) D sagruo
41.4 C) No Opinton

A42. There is no need to worry about over-population because science and technology will solve the problem before it becomes tor. serious.

11.0	a)	Agree
77.3	*b)	Disagree
10.5	c)	No Orinion

A43. Controls shodld be placed on industry to protect the environment from pollution, even if it means that things will cost more.
*a) Agree
b) Disagree
c) No Opinion
444. The oceans represent an unused area where man should dispose of his wastes.
9.5
83.9
$\therefore 6$

Ar;
56.5
24.9
18.6

B3:

3 3. r	*a)	Agree
4.,	b)	Disagrec
2(.	c)	No Opinion

636. Where scenic and recreation areas are being damaged by large numburs of visitors, there should be restrictions on the number of peonle who are allowed to visit at any one time.
'u.'. *.1) ngree

1.0 (a) No optaion
83%

$$
\begin{array}{rrl}
1.2 & n) & \text { ngron } \\
.1 .6 & \text { (n) } & \text { Disagrace } \\
6.1 & G) & \text { No opluion }
\end{array}
$$

I would oppose laws that would restrict my standard oi living, uvon throlug such lawes might improve the standnrd of living for socicity as i wholo.

```
30.7 a) Agree
44.9 *b) Disagree
24.4 c) No Opinion
```

B39. The remaining forests in Britain should be conserved at all costs.
75.8 *a) Agree
12.8 b) Disagree
11.4 c) No Opinion

B40. In order to reduce our use of oil, people should only be allowed to own cars that have a low petrol consumption.
49.2 *a) Agree
38.8
b) Disagree
c) No Opinion

B41. A national land-use plan should be prepared and enforced to prevent housing and industry from using much of the best agricultural land in Britain.
*a) Agree
72.0
12.6
15.4

B42. When companies have finished surface-mining land that they own, they should be allowed to leave it in any condition they wish.
a) Agree
8.0
86.6
*b) Disagree
c) No Opinion

B43. In order to keep raw materials from being used up too fast, an international authority should be established to ration them.
60.4 *a) Agree
20.2
19.4
b) Disagree
c) No Opinion

B44. A person who buys a new leopard skin coat is just as responsible in bringing about the extinction of the leopard as the person who kills the animal.
*a) Agrec
69.1
b) Disiagree
c) No opinion
345. Industry sholinc not use recycled materials when it costs less to make the jane product from new raw materials.
26.8 a) Arr.a
58.2 *b) Disagree
15.1 c) No Opinion

C3ラ. The most important thing to consider about bringing new industry into your area is the number of new jobs it will create.

58.8	a)	Agree
35.2	*b)	Disagree
6.0	c)	No Opinion

C36. We should question the construction of all nuclear power reactors because of the harmful by-products they produce.
67.2 *a) Agree
17.1
15.7
..$c 37$.
30.9
54.4
14.7

C38. Strong controls by Government are the most effective way to
reduce pollution problems.
*a) Agree
b) Disagree
c) No Opinion

C39. Priority should be given to developing alternatives to fossil and nuclear fuel as primary energy sources.
52.2 *a) Agree
19.0 b) Disagree
28.8 c) No Opinion

C40.
64.2
25.7
10.1
b) Disagree
c) No Opinion

Rather than rationing petroleum products, more oil should be imported from overseas to meet our growing energy needs.
a) Agree
*b) Disagree
c) No Opinion

It is more important to preserve the freedom of the individual. choice than to enforce laws to protect the quality of life in the future.
a) Agree
41.9
39.4
18.6
641.

Pesticides tiat remain toxic for a long period of tim should be banned.

69.0	"a)	Agree
14.4	b)	Disagree
15.6	c)	iv opinion

c4\%. Most of the concern aboit elvironmental icotlems has been overexaygerateci

$$
75
$$

19.3	a)	igree
54.5	*b)	Disagree
16.2	c)	No Upinion

C43. The Government should give generous financial support to ressarch related to the development of solar energy.
55.6 *a) Agrec
22.7 b) Disagree
21.7 c) No Opinion

C44. Government regulations for the approval of new nuclear powe: plants are too strict.

16.0	a)	Agree
55.4	$\star \vdots)$	Disagree
28.7	c)	No Opinion

CH5. Gonsidering the problems of pollution and crowding, we ier io decrease the use of the car as a major means of transpuriotic'?.

49.3	*a)	Ayree
39.6	b)	Disagrec
11.2	c)	No Opinicn

:1) Follution (Items A36, . 37, a $38, \mathrm{~A} 39, \mathrm{~A} 44, \mathrm{C} 45$).
Tere was very strong disac, reement with the propositions tira
"The oceans represent an urused area where man should rijspree of hi: wastes" (83.9t) and that "Farmers should be a....swit to :'se any pest cide that they wish in order to contro! tre pests that ert their crops" (69.28). There was also a strin', con• census that international agreements with legal and : sonomic sanciions are necessary to prev.nt extensive polluti", of the oceans (7c.4も). On the ctior hand, a relatively small 51.3i brliove thit only smokeless fuels should be used in home fireplacis, 49.3 exprersed the ner. 1 to der-ease the use of the ar as a major means of transportation, and oni. 14.2 felt that community itandards for pullution levels are mor \because portant than industrial yrowth and development. It is clear from the above responses that pupils' environmental attitaies are stinngly positive when n : ohect cf oncem does nict impinge die tly on timer lives, wit are red, tively negative when some p.isonal saryifi’r: may bu requirec (such as using on! smokeless fuels, rebucin; rthe us, of cars or docoreasing local industrial (rowt:h).
(2) Fonulation (Itom: ABC'31, ABC33, A40, A42, A45).

Fowr thr: - - iuarters of the respondents expressed thoir belief that family iolaming is important in avoiding over-population, mil that we sifould not rely upon soience and technolocy to solve the svormequlation prothlom. bess enthusiasm was shown for reanioning the tix 3 :item to encourage small families; (59.22). Th. simgo: t:ion that "Rost coupies should not produce more than
two children" resulted in an equal division of opinion, with 44.9\% in agreement and 45.0\% disagreeing. Once again, positive er.vironmental attitudes were less evident when personal interests became threatened.

Natural Resources (Items B35, B37, B40, B43, R14, B45).

Pupils appeared to be positive in their : tituies toward endangered animals, with 84.6% objectinij utie sale of skins and furs of endangered wildlife, and 69.1% expressing the belief that a person who buys a new leopard skin coat shares in the responsibility for bringing about the extinction of this species. Beliefs relating to the importance of recycling materials (58.2\%) and only allowing the use of cars that are efficient in their petrol consumption (49.2\%) were less pronounced. The response pattern to item $B 35$ should elicit some concern, in that a majority of pupils do not appear to be aware of the long-term value of fossil fuels as a cnemical resource for mankind.

Land Use (Items ABC34, B36, B39, B41, B42).

Environmentally positive beliefs were expressed on all questions in this category. The importance of reclaiming surface-mined land (86.6%), conserving Britain's remaining forests (75.8\%), and preventing the loss of good agricultural land to housing and industry (72.0\%) were well recognized. Fewer pupils believed that large-scale famines are imminent (58.0\%) or that visitors should be restricted in their access to scenic areas (58.5各)
(5) inergy (Items ABC32, C37, C39, C43, C44).

On these questions approximately one-half of the responses were "ir. agrfement with the panel". An unusually high selection of "No Opinion" on these items may reflect that pupil beliefs relating to energy are relatively poorly established.
(1) Environmental llealth/Safety (Items C36, C41).

General concern for public health and safety was shown in the answers to these items. Sixty-nine percent agreed that pesti"idos which remain toxic for a long period of time should be Waned, and 67.2 w would question the construction of all nuclear power plants kecause of the hazard of radioactive byproducts.
(7) Ecological Felationships (Item A35).

The only item in this category elicited a high level of agreement (84.5%) that "Man has a moral responsibility to protect the natural envirorment". However, it should be noted that many of the same pupils, in responding to other items on the inventory, chose responses that were not compatible with the protection of the natural environment. C35, C38, C40, C42).

A majority of pupils expressed their belief that most of the concern about environmental problems has not been over-exaggerated (i4.5\%), that strong government controls are the most effective way to reduce pollution (64.2%), and that industry should be suijected to surn controls even if it means an increase in costs (59.5\%). When asked if the continuous growth of British industry and the GNP is highly desirable, the largest group of respondents selected "No Opinion" (41.4\%), perhaps reflecting the complex considerations involved in this topic. The effect of selfinterest was once again evident in the responses to several statements in this category. Answers to items B38 and C40 indicate that fewer than one-half of the group would be supportive of laws restricting their standard of living in the interests of society as a whole, or protecting the future quality of life at the expense of their personal freedom of choice. And only 35.2% refuted the contention that new jobs are the most important consideration in bringing new industry into their community.

Responses to Perceptual Items (ABCl8-20).
The frequency of responses to each alternative on the perceptual questions is shown in Table 4.9 and in the following discussion.

TABLE 4.9

FREqUENCY OF RESPONSES (AS PERCENT) TO EACH ALTERNATIVE ON PERCEPTUAL ITEMS

Item	:	Alternative								
		a	b	c	d	e	f	9	h	i
ABC 18	10980	31.5	6.9	48.1	13.5					
$A B C$ (1)	10987	14.4	12.2	10.4	¢. 5	11.3	8.2	4.1	14.5	16.3
ABC:20	10987	9.1	9.4	12.2	8.3	6.6	26.4	5.2	22.0	0.9

A3c:18. Which otue of the following best describes the way in which you hav: gained most of your knowledge about the onvironment?

32.5	a)	general reducation at school
6. ${ }^{19}$	(1)	special environmental courses at school
48.1	(.)	private reading, tine radio, and TV
13.5	d)	talking with paronts; frionds and other

It i.s interessting to note that loss than 40 of the pupils believed tinat thoy fanod moset of their envircnmental fonowlodge from thoir formal
schooling, while over 60% indicated that this knowledge had been gained from activities that might be described as "self-education". In the perception of these children, the media appears to have played the most important role while special environmental courses have made a relatively small impact.

ABCl9. Which one of the following problems do you think is the most serious in the community where you live?

14.4	a)	Land use
12.2	b)	Traffic accidents
10.4	c)	Air pollution
3.5	d)	Nater pollution
11.3	e)	Rubbish disposal
8.2	f)	Over-crowding
4.1	g)	Public health
14.5	h)	Crime
16.3	i)	None of the above are problems in our community

A somewhat surprising outcome on this question was the fact that the most frequently selected response was "Lone of the above are problems in our community". The next most popular choice was "Crime", indicating that tiis societal problem is of more pressing concern in the minds of many young people than the problems of their local physical environment.

ABC20. Which one of the following problems do you think is the most serious in Sritain?

9.1	a)	Land use
9.4	b)	Traffic accidents
12.2	c)	Nir pollution
8.3	d)	Water pollution
6.6	e)	Rubbish disposal
26.4	f)	Over-crowding
3.2	g)	Public health
22.0	h)	Crime
0.9	i) None of the above are problens in Britain	

\therefore :ome interesting observations emerge in comparing the responses of items ABCl9 and ABC20. Uver-crowding which was of little concern in local romunities, clearly merges as the major concern for Britain as a whole. Although crime rated inghly as a local problem, it was selected by a significantly ingher proportion of pupils as being the major problem in Britain. dud while lb.3\% felt that none of the listed concerns were probloms in their community, only 0.9 F were prepared to state that they were not serious problems for the country as a whole. It would appear that a :izabla number of pupils recognize that their country is afflicted with enviromential problems, but they do not perceive tarat these problems ar': serious in their home commurities.

Pelationships Botween Variaibles

lha.j section is devoted to analyses of the rolationships between variajles, and [rovilos the information necessary to answer the null hypotheses posited sn wart 7.

The following statistical procedures were employed to determine whether significant relationships existed between both environmental knowledge and attitude and the independent variables of sex, type of school attended, sex composition of the school, school size and region of school attendan:e:
(a) SPSS subproqramme CROSSTABS was used to conduct chi-square analyses between the response patterns on cach item on the inventory and the independent variables listed above. When chi-square is performed sith a large number of cases, very small differences show significance at the commonly-accepted 0.05 or 0.01 levels. Since the number of subjects responding to each item in this study was always i.t excess of 3,000 , a 0.0001 level of signiricance was deemed appropriate for all chi-square analyses. The results of these analyses are presented in Appendix C (p. 131). In addition, the frequency of correct responses on each item by sex, school type, school sex, schonl size and region (together with chisquare values) are listed in Appendix D (p. 151).
(b) To determine whether significant relationships existed between total scores (on factual knowledge, conceptual knowledge and beliefs) and the independent demographic variables stated above, analysis of variance procedures (SPSS subprogramme ANOVA) were utilized. Since the chance of committing a Type I error is increased by performing multiple analyses on the same data, a rigorous level of significance was chosen (0.001'. In all cases involving the multiple comparison of means, the fust hoc Scheffé test was used to indicate which differences between the means could be considered significant at the 0.01 level. To assist in the interpretation of data, mean scores on Forms A, B and C by sex, school type, school sex, school size and region are presented in Tables 4.10 through 4.14; and summaries of all. AvovA results are provided in lables $4.15,4.17$ and 4.18.
(c) Regression analyses (SPSS subprogramme REGRESSION) were used to ascertain the amount of variance that could be attributed to the independent variables of sex, school type, school sex and school size. Region was not included as a variable, since the data from non-maintained schools was excluded from the regional category and would therefore have been treated as "missing data" in all the regression analyses. Computer printouts of these aralyses are presented in Appendix E (D . 165) , with Table 4.16 (p. 71) providing a summary of the percent of variance attributable to each variable.

Chi-square was also used to examine the relationships botwoen pupil percoption of environnential problems, as expressed on itum: $A B C 19$ and ABC 20 , and the independent demographic variables. And ANOVA was ejain smployed to investigate relationships between puiil perception of "sourc. ": envirommental knowledge" (Item 14) and level of enviromet: a knowledge and attitude toward the environment.

Finally, as a mons of rovealing eelationships that might exist betweon fartual knowledge, conceptual knowledge and beliefs, correlation coefficients wro computed botweon all items on each
form and between total scores on each part of Forms A, B and C. SPSS subprogramme PEARSON CORR was used to generate the correlations, and tabulated results are presented in Table 4.29 on page 81.

Fielationships between Factual Knowledge and

Selected Variables

An examination of the ANOVA results presented in Table 4.15 and the chisquare analyses on individual items (Appendices C and D) indicated sigaificant differences in the response patterns on factual items with respect to sex, school type and school sex, and less pronounced differences with respect to school size and region.

Regression analyses, summarized in Appendix E and Table 4.16, made it clear that most of the observed variance could not be attributed' to the demoyrapnic variables measured in this study, but was probably due to other factors such as intelligence and home-background. Only the variables of "sex" and "secondary modern school" accounted for more than five percent of the variance and could therefore be considered meaningful predictors of factual environmental knowledge.
(a) Sex. Males scored significantly higher than females on factual knowledge items on all three forms (Table 4.10). Regression analyses (Table 4.16) showed that approximately five to ten percent of the variance may be attributed to sex differences. Thus, of the five independent variables under consideration, sex appears to be the strongest predictor of factual environmental knowledge.
(b) Scinool Type. Mean scores in Table 4.11 showed considerable differences in the fuur school types, with non-maintained echools consistently producing the highest scores, followed by grammar, comprehensive and secondary modern schools in that order. post hoc Scheffé tests on the three forms indicated that the differences between non-maintained and grammar scores were not significant at the 0.01 level, however these two school types did perform significantly better than comprehensive schools which in turn produced significantly higher scores than secondary modern schools. With the variance attributed to sex removed, a little over five percent of the variance is accounted for by :scondary modern schools, while the other school types make virtually no contribution (Table 4.16).
(c) School Sex. Post hoc Scheffé tests demonstrated that "all boy" schools produced significantly higher scores on factual knowledge, wile no significant difterences were detected between "all girl" and "mixed" schools. Since school sex accounted for very little of the variance the variables "all boy" and "all yirl" did not enter the prediction table with any appreciable anount of variance), it would appear that the "all boy" superiority was primarily a function of s.x and school type, i.e. "all boy" sishools reflected the higher awievoment of males over females, and cenerally wore not penalized by the lower purformance of secondary modern schools.
(d) School Size. Significant differences were detected on Forms 3 and C, and the post hoc analyses indicated that the smaller schools of under 400 pupils did nct perform: as well as the three larger school categories. Since school size was found to account for less than one percent of the variance (Table 4.16) the significantly poorer performance of the smaller schools can be attributed to other factors such as sex and school type.
(e) Region. Significant regional differences were detected on Forms A and B at the 0.001 level, with Form C barely falling short of significance at this level. Based on pooled data from the three forms, the highest mean score on factual items was achieved by the South East (8.07) followed by West Midlands (7.81), Greater London (7.76), East Anglia (7.57), East Midlands (7.52), Ycrkshire and Humberside (7.50), North West (7.49), South West (7.39), and the North (7.25).

While the post hoc analyses differed on each form, the overall pattern indicated that the South East region performed significantly better than the Nortn. However, it should be noted that a frequency count of the distribution of sexes by region revealed some departure from the expected ratio of 49% males to 51% females. Since males have been shown to score significantly higher than females, a preponderance of males would tend to inflate the regionai mean. Thus the North, with 47.4% males in its sample, was slightly penalized while the South East, with 51.83 males, gained a slight advantage. The most pronounced deviations in the proportion of males to females were in the West Midlands (57.0\% males) and Greater London (38.6% males).

In a similar way, a frequency count of school types by region revealed departures from the expected ratin of 47% comprehensive, 37% secondary modern and 15% grammar inon-maintained schools being excluded from regional distributicins). Since it has already been shown that "secondary modern" pruduced significantly lower scores than other school types, regions with a high proportion of secondary modern schools would be penalized compared to regions with a lower proportion. Thus the North West, with 47.5% secondary modern schools was at a disadvantage when comfrared to Yorkshire and Humberside with 17.3 secondary modern.

After correcting for the effect of unequal sex and school type distributions in each region, a general pattern of achievement emerges. It appears that the highest levels of factual environmental knowludge are centered in the South East and Greater London regions, with decreasiny knowledge levels as one proceeds toward the more distant regions of the North aiu south west.

Felationships between Conceptual knowledge and Selected variables

As in the previous section, ANOVA ('l'able 4.17) and chi-square analyses (Appendices and 0) were dised to determine significant rolationships between variables. It was found that response patterns a conceptual items diffiered significantly with rosperet to school type and school sex,

82

MEAN SCORES ON FORMS A, B AND C BY SEX

	Factual Itema (Part 1)			Conceptual Items (Part 2)			Belief Items (Part 3)		
	λ	B	c	A	B	c	A	B	C
Male	8.25	8.33	8.97	6.58	6.22	5.96	9.14	9.42	8.63
Foma :	8.513	7.28	7.27	6.34	5.76	5.81	8.95	9.38	8. 26

־ABIE 4.11
HEAR SCORES UN FORMS A, B AND © gV SCHOOL TYPE

	Pactual Iteman (Part 1)			Cot:captual Items (Part 2)			Bellef Items (Part 3)		
	λ	B	c	λ	B	c	λ	B	C
Comprehensive	7.36	7.74	7.86	6.27	5.80	5.67	8.96	9.39	8.29
Sec. Modern	6.78	7.02	7.33	5.78	5.33	5.39	8.47	8.80	7.71
Gramar	8.78	8.91	9.60	7.75	7.21	6.93	10.05	10.25	9.86
Mon-mintained	9.15	9.17	9.94	7.68	7.25	7.03	9.85	10.13	9.67

TABLE 4.12
MEAN SCORES ON FORMS A, B AND C BY SCHOOL SEX

	```Factual Iteme (Part 1)```			Conceptual Items (Part 2)			Belief Items (Part 3)		
	A	B	C	A	B	c	$\lambda$	B	c
A11 BCy	9.20	9.06	10.14	7.33	5.97	6.79	9.64	9.71	9.41
A11 Girl	1.18	7.78	7.64	6.83	6.31	6.14	9.29	9.77	8.76
Mixed	7.25	7.53	7.79	F 16	5.68	5.62	8.84	9.22	8. 15

TABLE: 4.13


	Factual Items ;Part 1)			Conceptual Items (Part 2)			Bellef It, ma (Part 3)		
	$\wedge$	B	c	$A$	B	c	$A$	B	c
Under 400	7.18	7.07	7.57	6.16	5.59	5.53	8.67	9.07	8.01
400-799	7.62	7.92	0. 25	6.59	6.09	5.97	9.02	9.33	8.48
800-1199	7.56	7.80	8.19	6.36	5.83	5.96	9.16	9.48	8.54
nver 1200	7.45	7.91	7.97	6.39	c.08	5.72	9.12	9.62	8.48

TABLE 4.14
MEAN SCORES ON FORMS A, B AND C BY REGION

	Factual Items (Part 1)			Cunceptual Items (Part 2)			Belief Items (Part 3)		
	A	B	C	A	B	c	A	B	C
Morth	7.14	7.10	7.53	6.17	5.43	5.52	8.78		
Yorks and Humb	7.18	7.59	7.74	6.00	5.83	5.76	8.78 8.69	9.00 9.34	7.97
North Weat	7.13	7.55	7.79	6.21	5.80	5.77	8.81	9.34 9.30	8.96
East Mid.	7.24	7.50	7.83	6.34	5.55	5.60	8.62	9.30 9.10	8.31
West Mid.	7.44	7.78	8.22	6.41	5.96	5.77	9.08	9.37	8.22
Sast Anglia	7.30 7.41	7.52 7.77	7.90	5.96	6.06	5.92	9.10	9.36	8.82
Greater London	7.41	7.77	8.14	6.58	5.92	6.12	9.06	9.36	8.53
Other S.E. South West	7.88 7.18	8.13 7.33	8.20 7.69	6.68 6.09	6.27 5.45	5.85	9.26	9.61	8.52
South West	7.18	7.33	7.69	6.09	5.45	5.50	9.01	8.97	8.16

84

## TrisLE 4.15

GMMARY AF GIGIFICANCE LEVELS FROM A: AMVA OF TOTAL FACTUAL ROONLEDGE SCORES BY (1) SEX, (2) SCHOOL TYPE, (3) SCHOOL SEX, (4) SCHOOL SIZE, AND (5) REGIOIA

	Form	Degrees of Freedom	F Ratio	Level of Significance
Stex	A	1:3720	285.0	$0.000 *$
	B	1; 3644	168.5	$0.000 *$
	C	1; 3585	348.8	$0.000 *$
School T $\mathrm{in}^{\prime \prime}$	A	3; 3707	126.8	0.000*
	H	3:3636	118.0	$0.000 *$
	C	3;3567	138.8	$0.000 *$
Somont Sex	A	2;3737	140.9	0.000*
	13	2; 3666	90.9	$0.000 *$
	C	2;3596	177.6	0.000*
Sohool size	A	3;3736	$3.0{ }^{\prime}$	0.029
	13	3; 3665	12.2	$0.000 *$
	C	3; 3595	6.2	n.001*
Region	A	8;3407	4.7	0.000*
	B	8;3333	6.0	$0.000 *$
	C	8;3271	2.8	$0.004 *$

* $E \leq 0.001$


##  



Tra arcacted from computer printouts in Appondix $H$

 (-1) SCHOL SIZE, A: $\because$ (5) REGION

	Eorm	Degrees of Freedom	$F$ Ratio	Level of Significance
Stx	A	1;3720	12.1	0.001*
	B	1;3644	40.1	0.000 *
	$C$	1; 3585	5.6	0.017
School ryme	A	3;3707	165.8	1 n'.)*
	E	3;3636	151.7	$\therefore$ "0*
	C	3;3567	134.3	0.900
	A	2;3737	83.7	0.C.00*
	E	2:36.6	93.9	0.0004
	C	2; 3596	92.5	0.000:
Ethout Si.ut	A	3;3736	5.2	$0.00 \%$
	H	3;3655	6.5	0.000*
	C	3;3595	7.0	$0.000{ }^{\text {\% }}$
Rejion	$\ldots$	8;3407	5.5	0.000*
	3	8;3333	6.9	0.000 *
	C	8;3271	3.1	0.002

* $\mathrm{p} \leq 0.001$
ilth less pronounced significant differenc associatea with sex. school Size and region. Reqression analyses (Ap) ndix E and Table 4.10) agair. indicated that most of the variance prona;" ssulted from factors not aeasured in tilis study. The only variables appreciably contributing to th: variance were "sccondary modern school" with about six percent, and 'mixod school' 'with approximately four pereent.
(1) U2x. Males scored significantly higher than females on conceptual knowledge on Forms $A$ and $B$, and ṁrginally hıgher on Form C. However, since tins variable accounted for less than one percent of the variance ( $T . i l e 4.16$ ) it cannot be considered a reliable predictor of conc tual environmental knowledge.
(i) Solpol Type. The highest concerptual scores were consistently lonioved by non-maintained and granmar ahools, while mean :cores of the secondary modern schools were always lowest. lost hos tests on the three forms demonstrated that nonmaintained and grammar schools prerformed significantly better than comprehensive schools, and comprenensive schools in turn

$$
\begin{aligned}
& \text { 'All by' asun!s scored simnificanty ingher than " } 11 \\
& \text { He" scionls, wici } 12 \text { turn achutod significantly buttor than } \\
& \text { "... \%n" sionl.o. Gince "mixal" scioole acounted fo: about }
\end{aligned}
$$

> t... t:an.. formi, it was alme that schools of between 400 and If wis i"rfomad significanty better than the smaller A601; with enrolnents bulow 40n. Sinte tir regression analysen :now! that :bacol size acromted for less than ore :necent of 1..6: Jande, it wonld appear tinat the poorer performance of wa. smallus schools was to a large extert a function of other wriblers sha as shoul type and school sex.
> (t) : Sfo.: Sifaificint reqional differences were evident on Forms A L. U, with Forin : not quite azinieving significance it tr U.oni ironl. Based upon polea data from the three furms, the Gouth but : raluond the higiest mean scores on concepicual items with b.27, tollowod hy Greater London (6.22), West Midlands (6.05), East Anglia (5.93), North West (5.93), Yorksinire and Mamberside (5.67), East Midlands (5.33), North (5.70), and $\therefore$ ath thet (5.6s). An examination of the post hoc analyse shawed that pupils in the south East possessed significantly ane conceptual myiromental knowledge thar pupils in the Bobith Nes = and iortia.
> $\therefore$ regional pattern of achievenent on conctual idens mpeared to b: similar to the pattern noted foe f.rtinal knowledge. \% algiest concoptual knowledge scores were fone in the South East and sreater indon regions, while the mone remot: North and south wost produced the lowest seeres.

R:1at-ionsips betwoun seliefs and - lectol Yariables
 D) were dsed to examine tio relationships botwern variables. Si gnificant difterne:- $i$ it the response waterns on belief 1 tems were found with "sin...t to s.enool troe and school sex, however no differences were Wtuthe it the B.onl lovel with respect to sex (on Foms $A$ and B). school "at med waion. The variakles mater cosidaration in this stady were
 4. [., , with "socondary modorn school" accomtinf for less than five percont mi "nixul ;,:m" weoneting for wous one percent.

TABLE 4.18



```
 (+ EMOUL SICE, NW% (5) WEGION
```

	Form	Degrees of Fresdom	F Ratio	Level of Significance
36	4	1;3720	4.8	0.026
	B	1; 3644	0.2	0.620
	$\because$	1; 3585	14.8	0.000 *
$\therefore$ rhoos ty	A	3:3707	58.1	0.000 *
	F	3:3636	44.9	0.000*
	c	3;3567	92.0	$0.00{ }^{*}$
$\because 80 \%$ ¢	A	2; 3737	24.9	$0.000 *$
	13	2;3666	14.6	0.00 :
	C	2;3:96	46.8	$0.000^{*}$
	$A$	3;3736	3.1	0.034
	5	3:3665	3.5	0.014
	C	3;3595	3.0	0.026
K $\therefore$ irs.	A	8:3407	2.7	0.006
	B	8;3333	2.2	0.023
	C	8;3271	2.4	0.013

* $\mathrm{F}-0.001$
() $\quad \therefore \therefore$ Altiougn males scored slightly higher than females on ?uironmental beliefs, only the means on Form $C$ were deemed to b: significantly different. Since the differences on two of the Ghree forms did not exceed the accepted level of significance, t:r. $\therefore$-ated hypothesis that "there are no significant relation$\because \vdots H_{p}$ between expressed attitudes toward the environment and scx" was retained. Regression analyses indicated that sex did $n:-$ meribute apmeciably to tin variance on belief scores $\because$ itit 4.!n).
$\therefore \therefore$ Anol ry: As in the case of fartual and conceptual knowledge, Gst hoc: Suffe tosts dunom:ry t that urammar and nonnulntain*d schools !roduce : : : , ficantly aigher belief scores tin comirehensive schools, :Ah in turn achieved significantly intter Lun sccondar: moderil scanols. of all the variables, "woniary modern" accounted for most: "f the variance on beliefs.

 $\therefore \therefore$ it sures.
N: the "all wy" and "all arl" schools produciny significant:y
"norembur moms than tis "mixed" sefools. Only about one
"urnt , it as varianoe was contributed by "mixed shools"
anntal anl:oE: .
let anl wita remeret to senool size.
aroiromental beliof scores.
 aribum und baLocta Variables

Itum niol; asiod funils to identify from d list of common envirommental OOD $\because$ as the ont that they thought to be most serious in their home wnumity. Similarly, itom ABC20 asked pupils to indicate the problem that they perceived to be most serious in Britain. In order to determine whoticer siquificant relationships existed between pupil perception of anvirunaratal problems and the independent variables of sex, school type, suoul jex, , inool size and reqion, cili-square analyses were performed on tire data pooled from the three forms. The results of these analyses (and the werent $E$-sponse on each alternative' are provided in Tables 4.19 t:songi: 4.26. It should bo noted that lata from a very large number of iujjext: !in excess of 10,000 ) were used in these analyses, with the cosult tiat rather imall variations in the response pattern (which may HVW ac :ractianl imilications) are reported as being significant at tho

 the responso of males and females to these perceptual questions. dales appeared to be more concerned than females about land use lid water pollution, while females expressed greater concern bout traffic accidents and crime (especially for the nation).
(b) School iyere Sianificant differences in response patterns by whool type were detected (Tainles 4.21 and 4.22). Pupils in non-maintained and grammar schools expressed greater concern over land us: and water pollution than their pess in compre. hensive and secondary modern schools. Non-maintained school iupils were also more concerned about local over-crowding but less worried about crime as a national problem. Comprehensive sohool respondents emphasized local c. $\perp$ me, while those in scoondary modern schools were more concerned about traffic acoidonts than their peers in other schools. Tine most frequently selected response of secondary modern school purils to item ABCl, was "mone of the above are prok lems in our community".
( $\because$ ) Gchool Sox. Tables 4.23 and 4.24 uxhibit significant differences in response patterns by school sex. "iill boy" scnools emphasized the problems of land use and water pollution to a greater extent tian the uthrer schools, while "all girl" schools showed greater oncorn for crime and local traffic accident. Pupils in "mixed"

TABLE 4.19


	Response Altermatives								
	a	$b$	c	d	-	1	9	h	$i$
Male	15.5	9.5	10.6	9.4	10.9	8.3	4.3	13.9	17.6
Pemale	13.4	14.8	10.1	7.7	11.8	8.1	4.0	15.2	15.0
$N=10.934$	- 99		8	ees	Ereedo		Signif	nce	. 0000

TABLE 4.20
USOKIBLTLON OF MESPONSES (AS PERCENT) ON ITEA ABC20 BY SEX

	Response Alternatives								
	a	b	c	d	-	1	9	h	1
Male	10.4	8.8	12.6	10.4	7.4	26.0	5.5	17.9	1.1
Female	7.8	10.1	11.6	6.2	5.8	26.9	4.9	26.1	0.7
$N=10,934$	$x^{2}$			eses	reed		gnif	ance	0000

TABLE 4.21
JISTRIBUTION OF RESPONSES (AS PERCENT)
ON ITEM ABCI9 BY SCHOOL TYPE

	Response Alternatives								
	5	$b$	c	d	e	1	g	h	1
Comprahensiva	14.3	12.6	11.0	7.6	10.9	8.6	4.1	16.1	14.9
Sec. Modern	13.7	12.9	9.3	8.0	11.7	7.7	4.5	13.9	18.4
Grammar	16.7	11.5	10.6	10.8	11.5	6.9	3.5	12.8	15.7
Non-maintained	14.4	9.0	10.1	11.:	11.7	10.1	3.8	12.5	17.0
$N=10,902$	$x^{2}=93.3$		24	rees	freed		Signi	ance	. 0000

TABIE 4.22
OLSTRLBLEELON OF RESPONSES (AS PERCENT)
ON ITEA ABCOO BY SCHUOL TYPE

	Response Alternatives								
	a	$b$	c	d	e	f	g	h	1
Comprehens ive	9.3	9.1	11.8	8.0	5.6	25.8	5.8	22.6	1.0
Sec. Modern	7.2	11.8	11.8	6.3	-6.8	27.4	5.1	22.5	1.2
Grammar	10.4	7.2	13.7	:1.0	5.2	26.4	4.0	22.0	0.2
Non-maintained	12.5	5.7	12.8	12.7	8:1	25.5	4.3	17.5	0.9
$N=10.901$	- 17		24	ees	reedo		gnif	ance	0000

TABLE 4.23
UISTRIBUTION OE RESPONSES (AS PERCENT) ON ITEM ABC19 BY SCHOOL SEX

	Reaponse Alternatives								
	a	$b$	c	d	e	f	g	h	1
$\lambda 11$ Boy	15.9	9.1	11.9	10.2	10.5	8.9	4.1	12.5	16.9
All Girl	12.4	15.1	10.2	9.0	10.4	8.5	4.1	15.9	14.5
Mixed	14.6	12.1	10.1	8.1	11.7	8.0	4.2	14.6	16.7
$\mathrm{N}=10,987$	$x^{2}=64$		16	rees	freed		Signif	ance $=$	. 0000

TABLE 4.24

DISTRIBUTION OF RESPONSES (AS PERCENT)
ON ITEM ABC20 BY SCHOOL SEX

	Response Alternatives								
	a	b	c	d	e	1	$g$	h	4
A11 поу	13.3	6.5	11.2	11.9	7.3	27.1	5.1	16.4	1.1
All Gixl	8.5	8.3	11.7	7.0	5.3	29.3	4.4	24.9	0.6
Mixed	8.2	10.4	12.5	7.8	6.8	25.5	5.4	22.5	0.9
$N=10,987$	$=15$		16	5098	reed		Signi	ance	0000

## 93

jchools chose traffic accidents as a national problem more freiuently than their peers in schools segregated by sex. These differences noted for "schorl sex" appear to be largely liu to the variable "sex".
(1) Sciool size. Significant differences in pupil perceptions were not detected with respect to school sizc. Tables giving response latterns are therefore not presented for this variable.
(:) Kegion. Significant regional differences were evident in responses to items ABCly and ABC20 (Tables 4.25 and 4.26). With respect to local problems, the most striking result was the popularity of the response that "'one of the above are problems in our community". In fact this was the most frequently selected alternative in East Anglia (23.0\%), the South West (21.18), the East Midiands (19.68) and the Wesc Midlands (16.7\%). Land use :roblems were emphasized by the South East, East inglia and the Bouth West; traffic accidents by Greater London; air poliution by the West Midlands and North; water pollution by Yorkshire
 anl orime by ©reater London, the North, Yorkshire and Humberside, ti?: South East and North West.

In the case of item $A B C$ ? pupils in every region identified the two most serinus problems in Britain as "orer-crowding" and "crime".

Belationships Detween "Source of Knowledge" and Pupil Avironmental ñowledge and Attitude

Item ABClB asked pupils to identify whetier they gaired most of their knowledge about the environment from general education at school ("regular sourses"), special environmental courses at school ("special courses"), Erivate reading, the radio and IV ("reading-media"), or talking with parents, friends and other people ("discussion"). Analysis of variance procedures were used to determine whether significant relationships existed bistween pupils' perception of their "source of environmental knowledge" and their levol of environmental knowledge or attitude toward the environment. Mear factual, conceptual and beliefs scores of pupils responding io the four altematives on this item are given in Table 4.27, and an $\therefore i j$ VA sumary (from the three forms) is presented in Table 4.28.

EOSL nog $\therefore$ ineffe tests showed that on factual items the "reading-media" ar seorel significantly higher than the "regular courses" and "disGision" groups, whilc the "reading-media" and "regular courses" groups rerformed significantly better than the "special courses" group. On both tie conceptaaj nuwledge and belief scztions tine "reading-media" group ; Yored significantly higher than botit t. "discussion" and "regular courses" groups, and they in turn pro": al significantly ${ }^{\prime \prime}$ fher means than tia "seechal courses" group.
 :凶itit: aciitules of pupils who identified t., .r major source of environmental know!elge as "roading, the radio and $\because$, and the significantly :oorr : nowlelge and attitudes of rupils who identified their major source


IBUSLA A. $\therefore$


	Response Alterratives								
	a	$b$	c	d	e	f	$g$	h	1
North	12.9	11.0	14.2	8.6	10.7	4.4	5.1	18.9	14.2
Yorks a Humiu.	10.3	13.4	11.4	12.8	10.1	6.2	3.9	16.1	15.8
North West	13.5	11.2	10.2	10.6	12.5	6.3	5.4	15.2	15.1
East Mid.	11.4	10.0	10.2	8.7	13.3	9.3	3.8	$\bigcirc 3.7$	19.6
Hest Mid.	15.2	11.7	14.4	5.9	12.9	8.5	5.0	9.8	16.7
Eagt Anglia	17.3	7.9	7.0	12.2	12.2	8.9	3.3	8.1	23.0
Greater London	11.9	17.3	11.4	5.1	7.8	11.4	3.3	19.5	12.2
other S.E.	18.2	13.0	7.7	6.0	11.0	9.0	3.6	16.0	15.5
South West	16.9	13.1	6.7	9.2	11.1	7.8	3.3	1 n .7	21.1
$N=10,018$	- 4		64	reas	freed		Signif	ance	. 0000

TABLE 4.26

DISTREBUTION CE RESPONSES (AS PEPCENT) ON ITEM ABC20 BY REGION

	Response Alternatives								
	a	b	c	d	e	1	$g$	h	$i$
North	7.7	11.5	14.4	8.5	5.9	23.5	4.7	23.4	0.5
Yorks \& Humb.	5.4	10.4	13.7	8.2	5.9	22.2	4.3	27.3	1.5
North West	7.2	11.4	12.0	7.9	4.7	23.8	5.7	26.6	0.7
East Mid.	5.5	10.3	9.7	8.4	8.6	29.8	4.7	22.3	0.7
West Mid.	8.7	9.7	11.4	7.8	80	27.0	5.8	20.9	0.8
East Anglia	8.7	12.3	15.5	7.1	1.6	29.4	5.2	16.6	0.5
Greate: London	9.5	7.4	11.6	5.6	5.4	31.6	4.7	22.7	1.4
Other S.E.	12.5	7.5	11.2	8.0	6.5	28.6	5.4	19.4	1.0
South west	8.5	12.1	12.9	9.4	8.4	22.6	6.3	19.3	0.5
$N=30.011$	24		64 d	ses	reedo		gnis	ance	. 0000

## 95

TABLE 4.27
Wh: ENGT:ML, UNCEPTUAL AND BELIEF SCORES ON ITEM ABCI8 (USI:S DATA POOLED FROM FORMS A, A AND C)

	Factual Items (Part 1)	```Conceptual iters (Part 2)```	Belief ILems (Part 3)
R.alar courses	7.48	5.80	8.62
swacial coursos	7.06	5.44	8.18
Wadinember ia	8.29	6.49	9.40
	7.33	5.85	8.62

TABSE 4.28
$\therefore$ MULG St SIf NIFICAMCE LEVELS FROH AN ANALYSIS OF GAINACE JF RESPONSE PATOERNS ON ITLM ABC18

	Form	Degrees of Freedom	F Ratio	Level of Significance
Eactual	A	3:3729	53.8	0.000*
	B	3; 3653	37.8	0.000*
	C	3;3536	32.?	0.000*
Conctsuri	$\therefore$	3:3729	59.0	0.000*
	b	3:3553	33.3	0.000*
	C	3;3586	27.2	0.000*
- ¢ ¢ ¢	A	3; 3729	$3 \%$;	0.000*
	B	3;3653	13.	0.000*
	C	3;3586	35.5	0.000*

## 96












```
! :a!!! N:!,w!..!!.
```




``` \(\therefore\) m. \(\quad\) thal know dul wid attitudes, correlation coefficients were computec buth... a the toral sores on the factual, conceptual and betief sections
```




``` ort•lation eonftisients between all items on forns \(A\), \(B\) and \(C\).
Whe: th amber Jf (ajos heing in excess of 3500, a correlation coefficient
```



``` tiai sorsubation cocfficiunt accounts for an extremely sma:l amount of the
```



``` Euprsinted it luait one percent of the varience. Thus, in examining relationsilys betwem items, only curreiation coefficients exceeding 0.10
```



``` \(\therefore\) at oorcelution butwenn i ioms was therefore considerably less than one ! ! a thonsmal.
I: Currelation onfeicients (significant at tie 0.00001 level) between tutal sorres on tha factual, conceptual and belief sections of each form ar.e :r.3.ontol ielow in Taile 4.2.3.
```

TABLE 4.29

- MREEATANS BETWEEN TOTAL FACTUAL, CONCEFTUAL A:ID BELIEF SCORES ON EACH FOHM

	Corr. Coefficient.      Conceptual Scores	Corr. Coefficient   Between Conceptual   ard Belief Scores	Corr. Coefficient   Between Factual   and Belief Scores
Form A	0.445	0.466	0.359
Form	0.455	0.482	0.349
Form C	0.433	0.494	0.451

 acris:s the threw forms and to show that the differences between these


RACTULL ROOLLEDEE
$1231569891011121314151617212223242526272829303132333435: 303739404142434445$


average correlations were significant. The results indicated that the strongest relationsin exists between conceptual knowledge and attitude (composite belicf score), with a slightly weaker relationship between factual and conceptual knowledge. The jowest correlation was found to be between factual knowledge and attitude.

Figures 4.1, 4.2 and 4.3 provide a visual impression of the items that correlate positively with each other ( $r>0.10$ ) on the three forms. It is immediately apparent that the relationships between individual items support the results described above, in which total scores were correlated. When tie results shown in Figures $4.1,4.2$ and 4.3 were pooled, significant correlations were found to exist between $36.9 \%$ of the conceptual and belief items, $23.3 \%$ of tife factual and conceptual items, and $15.0 \%$ of the factual and belief items. This reinforces the earlier finding that the strongest relationship exists between conceptıal knowledge and attitude while the weakest relationship is hetween factual knowledge and attitude.

## Results of Testing the Null Hypotheses

Based upon the preceding examination of relationships between variables, the following decisions were made to retain or reject each of the null hypotheses stated on page 7 .

## Hypothesis

1. There are no significant relationships between the level of environmental knowledge and
a) sex;
b) type of school attended;
c) sex composition of the school;
d) school size; and
e) region of school attendance.
2. There are no significant relationships between expressed attitudes toward the environment and
a) sex;
b) type of school attended;
c) sex composition of the school;
d) school size; and
e) region of school attendance.
3. There are no significant relationships between pupil perception of environmental problems (both local. and national) and
a) sex;
b) type of schuol attended;
c) sex composition of the school;
d) school size; and
e) region of school attendance.

Decision

Rejected
Rejected
Rejected
Rejected
Rejected

Not rejected
Rejected
Rejected
Not rejected
Not rejected
4. Tiere are no significant relationships between pupil perception of "source of environmental knowledge" and level of environmental knowledge or attitude toward the environment.
3. Tnere is no significant relationsinip between the level of factual environmental knowledge and texprossed artitude toward the environment. Rejected
5. There is no significant relationship between the level of conceptual environmental knowledge and expressed att.tude toward the environment.

Rejected

Rejected.

Although many of the null hypotheses were rejected, it should be reemphasized that the variables of sex and school type ("secondary modern") accounted for most of the variance. Thus for practical purposes it should be remembered that differences noted in school sex, school size and region were to a large extent a function of the variables sex and senool type.

SUMMARY, CONCLUSIONS AND IMPLICATIONS, AND RECOMMENDATIONS

## Summary

In response to the recent upsurge of interest in environmental matters, there has been a flurry of activity in England to develop environmental education programmes and introduce them into the school curriculum. Much of this curriculum development has been somewhat subjective and intuitive and has taken place without the benefit of having objective measures of the pupiss' current environmental knowledge and attitudes. Thus the major purpose of this study was to establish baseline data relating to the environmental knowledge and beliefs of English teenagers in the final year before the majority leave school. An additional objective was to examine the relationships between variables that might be of interest to curriculum developers and educational decision-makers.

The instrument developed for tile survey consisted of three questionnaires (Forms A, B and C) with each questionnaire containing a total of 45 factual knowledge, conceptual knowledge, belief and perceptual items. All items used in the instrument were thoroughly tested in a pilot study conducted in representative English secondary schools.

A sample of 500 secondary schools was randomly selected to proportionately represent the major types of school in every region of the country. Packaged materials were posted to the selected schools with instructions to administer the instrument to 30 pupils in the 5 th year. $\Lambda$ total of 383 schools ( $76.6 \%$ of the sample) returned completed answer sheets, providing information from over 11,000 pupils. The answer sheets were machine scored, with pupil responses being automatically punched onto computer cards. The data were then transferred to magnetic tape and analyzed by standard computer programmes.

## Conclusions and Implications

In this section the major conclusions derived from the analyses of data will be summarized. In addition, the findings will be related to past: research, and implications which can be drawn from this study will be discussed.

## Measures of Environmental Knowledge and Attitudes

(1) In general, pupils responded poorly to factual knowledge items. Only 14 of the 43 factual knowledge items were correctly answered by more than $50 \%$ of the pupils, and the overall correct response rate was approximately 46\%.
(i) Pupil: demonstrated a greater understanding of environmental concepts, with a uverall correct response rate of a little over 608. Seventwen of the 24 conceptual knowledge items were correctly answered by mos' tha 50 of the respondents.
(3) Respons: patterns on the belief items indicated that pupils have a nu, lerat:ly positive attitude toward the environment. About $60 \%$ of all responses on this section were "in agreement with the panel"; and on 27 of the 37 items more than 50 \% of the pupils selected the environmentally positive alternative.

The results described above are strikingly similar to the response patterns observed by Bohl (18) and Perkes (104) in the United States and by Eyurs (53) in Australia. In these studies, pupils at the equivalent yrade level were reported to have a generally poor grasp of factual environmental knciwledge (with higher levels of conceptual knowledge evident in the United States), and yet they tended to express positive environmental attitudes on the affective questions. This led Bohl to ronclude liat secondary school pupil environmental attitudes could be considered "learned responses", and since they lacked "a strong base of comitive iniormation, these attitude responses on the part of the student should not bo considered firm beliefs." (18, p. 166)

The ratier low level of environmental knowledge revealed in this survey should in a matter of some concern to the educational community. Although it mighi be argued that many of the factual questions were difficult, they never-the-loss relate to issues of great consequence to the health and woll-b:ing of the English people. Since responsible decision-making is sapendent upon a firm foundation of factual information, it is of importance to tonorrow's society that today's youth be provided with a sound basis of environmental knowledge. This study has revealed a number of misconceptions about aspects of the environment; and it is these areas of general misunderstanding that should receive the close scrutiny of those involved in developing environmental education programmes.

Although it has been reported that pupils generally appeared to have positive attitudes toward the environment, this should be no cause for complacency. It was also noted in Chapter IV that pupils' environmental attitudes tend to be strongly position when the object of concern does not impinge directly on their lives, lit are relatively negative when some personal sacrifice may be requi . . For example, a large majority agreed tinat "man has a moral responsini.i.t:" to protect the natural environment" ( 34.53 ), while fewer then one-half elieved that we need to decrease the use of the car as a major sans of transportation, that community standards for pollution are $\mathrm{m} \cdot \mathrm{m}$ important than industrial growth and developmont, and that most coup shoul: not produce more than two children. ?rke: :roomized a simi $: \quad$ en of responses to affective items and enci. : : tiat
...ervironmental attitudes whic:. nd te be broad in nature and :ossess little persorial commitment are vinsed :avorably. However, when these attitudes become more specifis inc an obvious change in persotal actions logically follow:, . .anals tend to remove the dissonance by not making the trans Erom general to specific or by changing personal attitudes to correspond with their present actions. (104, p. 138-139)

If a prinary educational goal is to be the development of positive
 that levolve some iremal commitment and sauxifice), then much effort and rejouren must is. direotwl toward establisning effoctive means for achiev-
 rejounsi: $\because$ scicial inariour, it would aporar that these attitudes should be loeply ronted and busod upon rinowledge, axperience and conviction, rather tnan duerficially "learned" or instilled by indoctrination.

Whatonsinins betwen knvironmental knowledge and
Ittitude and Solected Variailes
(1) Un Eactual knowlodge scores, significant differences were found with sespect to sex, schoul type, school sex, school size and region. However regression analyses indicated that the differences observed on :shool sex and school size could to a large extent be attributed to the aigh performance of males over females and the poorer achievement of pupile in secondary modern schools.
(2) The resionse jatterns on conceptual knowledge items differed significantly with respect to school type and school sex, with less pronounced significant differences associated with sex, school size and region. Of the variables under consideration, most of the variance could be attributed to "secondary modern" and "mixed" schools, with voth categori.ss performing relatively poorly.
(3) On total belief scores, significant differences were found with respect to school type and school sex; however differences in sex, school size and regional scores did not appear to be significant. Some variance could again be attributed to the variables "secondary moderi" and "mixed", with pupils in these schools expressing significantly poorer environmental attitudes than their peers in other schools.

Regression analyses indicated that most of the observed vari.... muld not be attributed to the demographic variables measured in this stu:? but was probably due to personal factors such as intelligence and hro. bickground. Of the variables under consideration, only "sex" and "secondari modern" (and to a lesser extent "mixed") accounted for an appreciable amount of the variance.

It is not surprising that pupils in secondary modern schools did not perform as wall as their peers in other school types, since children of lower ability are channeled into the "modern" schcols. Pernaps of greater interest is the fact that males performed significantly better than females on factual environmental knowledge, although differences in environmental attitude did not appear to be dependent upon sex. This result supports the findings of ocher researchers mentioned in Chapter II. Perkes sugyested that such findings "might be explained in terms of differences in scientific background of males and females" (104, p. 139), since many topics involving facts about the environment are studied in science courses, and science subjects are elected by males more frequently than females. Eyers, on the other hand, favoured the suggestion that the "generally poorer performance of females at the secondary level might be due to a decline in motivation brought about by their view of the role of females in society" (53, p. 118). Both of these explanations have merit.




 sdaciation erogramses.

Relationshij Dutween Environmental Knowledge and Attitude
in cxuiniri the relationships between the responses on the factual knowlrafo. :onarjtual mowledge and bolief sections of thr anstrument, it was

(1. tir. :Erongest relationsinip exists between conceptual knowledge and atthtide (r $=0.48$ on total scores) ;
(2) a sli'phtly wraker relationship exists betwoen factual and conceptual knowledge ( $:=0.44$ on total scores) ; and
(3) the w.....: relatiombif is between fagsual knowledge and attitude ( $r=3$. $3 a$ motal srara).
 Majter. II and provide a more precise measure of the strengths of these relationifil: than iny of the prcvious studies concerning environmental knowledge and attitudes. Wi.thout dirninishing the value of factual environmental knowledge (which was mentioned earlier as a prerequisite for responsibl: docision-miting, these results appear to underline the 1 mortion of conceptual knowlodga in the development of positive environmontal attitudes. Althoufin no causative relationship has been demontratod, the relatively strong corr stion between the conceptual and iflinf soction: shige:st:; that th. lovalopment of sound concepts might be a groductive means of loading to hive costablishment of positive attitudes. The importance of conceptual dovelopment has been stressed by many educators, arid those tindinge not only support their position but are a rimandur thist conceptual understanding should be a prime objoctive of "noiromental education proframmes.

## Pupin precoptons of linvironmental problems

(1) With respect bo local environmental prots Lemes, the most fequently sulerated resgrons" (l6. st) was "inone of the above are wroblems in गur community". Thus; a sibable: number of pupils dad not perceive those common protslome to we of conceren in their immediate surroundings.
(!) 'in the mational tome, all but a fow pupil: (0.94) woro propared
 little concesn in loosil communitioes, emerged ant the mafor concorn for writain as a wrolla, clomaly followed liy urtac.




 that ion larfoit at the mands of young reople. For the country as a wrole, socistal proislems suci as overcrowding and crime wore considered more surlous than proolems relating to the physical environnent (such as water ard air mollution). The fact that an appreciable rume ef pupils brlaved that none of the listed environmental problems wer serious in treir home communties (but were problems for the nation), ay indicate tite newd for un lncreas:d emphasis on local studies.

Eui 1 frecetionsiot ";ource of Environmental Knowledge"
(1) Fiwer than 40: of the respondents believed that thr, had gained most of their environmental knowledge from their formal schooling, while over $60 \%$ indicated that this knowledge has been gained outside of the classroom in "self-educational" activities. In the perception of theses pupils the media appers'; to have been the most important source of their knowledge (48. while special education courses have made a relatively small impact (6.9\%).
(2) Pupils who identified their major source of environmental knowledge as "reading, the radio, and TV" scored significantly higher than the otsier groups on factual knowledge, conceptual knowledge and beliefs. Thoss: who indicated that their major source of knowledge was 'special environmental courses at school" produced significantly Lower factual, conceptual and belief scores than the other groups.

Bince thas item was designed to elicit the pupils' perceptions of where they hive gained most of their environmental knowledge, and does not necessarily indicate the true source, some caution should be observed in interpreting the response pattern. For example, the fact that fewer than one-half of the pupila believe that. they have gained most of their knowledge in the classroom does not. necessarily imply that schools are not doing an adequate jok in environmentul education; however it does tend to raise that suspicion. Pririans the most interesting outcome from this fuestion is the importance attributed by pupils to the media as a source ot environmental knowledge. While attitudes developed through the passive recuption of information may not hava the same influence on behaviour 1s attitudes arisincs from personal investigation and involvement, it never-the-luss seems wise to look afresh at the potential of the media in this area. In addition to improving the quality and quantity of environmental education in tho school curriculum, it would appear to be a fruitful werateyy to intenesfy the coverage of environmental matters in now:spapers and on the radio and television.

The: question on the "source of environmontal knowledgo" was first used by fyors if the iustralian study, and it is interosting to note tho simiLarlty of responso pattorns in the two countrios. Nustralian und English pupile renponden to mach altornative within a few porcentago points of "dih other, ferlaps roflecting the stinilaritias of the two socicetios and thee eurrent state of develepment of their environmental ediciation prostanme:s.
 t.:. : tare devenmont of environmental education programmes in :nlit. قrrriculum developers should particula: :. . ar in mind the follow:9g:
(i) The baseline data collected in this survey pinpoints areas of inadequate information and negative attitudes that may require additional emphasis in the curriculum.
(ii) IIthout neglecting factual information, particular emphasis should be placed on promoting conceptual understanding.
(ii:) Differences relating to sex and school type should be recognized, especially in local curriculum development.
(iv) It would appear from the analysis of pupil perceptions that there is a need to identify and study local problems to a greator extent.
(V) Educators should capitalize on the mass media (especially t. . levision) as a means of promoting sound knowledge and wisitive anvironmental attitudes.
(2) The instrument used in this study (or a modified version) might well be uisul by individual schools or LEAs to establish their local coynitive and affective baselines prior to developing environmental
urses.
(3) Using data collected in the sur sy, it would be possible to isolate schools with pupils having high levels of environmental knowledge and/or positive attitudes. By examining these schools (subject to their permission) it might be possible to identify programmes, teaching practices or other factors that have contributed to these derired outcomes.
(4) Niditional research on a number of topics peripheral to this study is neoded. For example, we need to know more about the relationships between knowledge and attitudes, and perhaps even more importantly, the relationships between attitudes and behaviour. Further research might : $x_{p}$ lore why pupils who perceive that most of their environmental knowledge comes from media sources have higher levels of information and more positive attitudes; while another study might examine why males possess more factual information than females without having more positive attitudes.
(5) : Anw that shmilar studtes have been conducted in the United States, Alutralia and lingland, comparisons should be made between the environumental knowledge levels and attitudes of these pupils. Such information would provide some insight into the "exportability" of existiny (and possibly future) environmental education curricula.
 :nvironmental survors in other countries. The data generated by

111
surveys in a number of diverse cultures could provide the basis for developing models for an international environmental education curriculum, as recommended by the United Nations Conference on the Human Environment.
(7) The instrument used in this study should be readministered to 5th year pupils in England at an appropriate time in the future, perhaps several years from now. In this way changes in the environmental knowledge and attitudes of secondary pupils could be measured, and trends that have curriculum implications might be identified.

## APPENDIX A

1. The Instrument* : Forms A, B and C
2. Answer Sheets** : Forms A, B and C

Answers coded on Part 1 are supported by references shown in Appendix $B$

Answers coded on Parts 2 and 3 were selected by the panel using criteria presented on page 18.

* Photo-reduced by 15\% from the original
**Photo-reduced by $23 \%$ from the original
113 response which youbelieve provides the best answer. Mark your choice in li.e appropriate box on the Answer Sheet provided.

1. The present population of Britain is about
a) 57 million
b) 67 million
c) 77 million
d) .87 million
2. The population of Britain is growing at a rate which is
a) more than that of the world average
b) about the same as the world average
c) less than that of the world average
d) zero
3. At the :resent time Britain
a) Firoduces more food than it uses, and exports the surplus
b) produces just enough food to satisfy home needs
c) must import about $5 \%$ of its food supply
d) must import zbout $50 \%$ of its food supply
4. Which of the following is most likely to be an important world-wide source of energy for the future?
a) solar radiation
b) tidal flow
c) geothermal sources
d) wind power
5. On several recent occasions in various parts of the world, the sale of fish has been stopped because tice fish have been found to contain high levels of
a) thalidomide
b) chlorine
c) mercury
d) load

## 114

## A 2

6. Since about 1950 birds of prey (auch as the peregrine falcon, golden eagle and sparrow hawk; have seriously declined in numbers. Evidence suggests that this is because the pesticide DDT causes
a) the birds to lose their ability to breed
b) the birds to have eggs with shells that are thin and easily break
c) baby birds to lose their appetite
d) immediate death to these birds if they eat food with DDT in it
7. As a result of burning coal and oil the amsunt of carbon dioxide in the atmosphere is
a) decreasing, but will not affect the earth's environment
b) decreasing, with possible serious effects on the earth's environms:nt
c) increasing, but will not affect the earth's environment
d) increasing, with possible serious effects on the earth's environment
8. Some people object to the use of detergents and soap powders that contain phosphates. The main reason for this is because phosphates
a) cause the rapid growth of algae in lakes and rivers
b) are poisonous to bacteria that help to break down sewage
c) are harmful to the health of young children
d) cause birth defects in fish and other aquatic animals
9. Onrc DDT has beenspread to klll insect pests, it usually
a) remains toxic for a few weeks only
b) remains toxic for about one year
c) remains toxic for many years
d) remains toxic forcver
10. Torycy Canyon
a) is the site of a large dam in the United States
b) is an area of scenic beauty in Wales
c) Is the site of recent discoveries of vast oil reserves
d) is the name of an uil-tanker that ran afround
$\rightarrow$

## 115

;

## A 3

11. The population of the world increased from? thousand million in 19 ? 0 to about
a) 2.5 thousand million in 1975
b) 3.0 thousand million in 1975
c) 4.0 thousand million in 1975
d) 5.0 thousand million in 1975
12. A temperature inversion can be harmfu! because it
a) puts more carbon dioxic intu the air
b) keeps air pollutants near the ground
c) prevents horizontal air flow
d) produces pollutant particles
13. The size of a population is affected by
a) the birth rate
b) the death rate
c) the rate of immigration and emigration
d) all of the above
14. Many organic wastes are broken down in water. In the process, what substance is taken out of the water"
a) carbon dioxide
b) hydrogen
c) oxygen
d) sulphur
15. Solid particles that contribute to air pollution (isch as soot and dust) tend to
a) increase the carth's temperature
b) decrease the carth's ternperature
c) kecp the earth's temperature steady
d) have no effect on the temperature
16. The major air pollutant (rneasured by weight) discharged by motor vehictea ie
a) carbon monoxide
b) nitrogen dioxide
c) sulphur dioxide
d) particulate matter

## 116

## A 4

17. At its present rate of growth, the population of the world will double in about
a) 15 years
b) 35 year:
c) 60 years
d) 100 years
18. Which one of the following best describes the way in whicl you have gained most of your knowledge about the environment?
a) general education at school
b) special environmental courses at school
c) private reading, the ratio, and TV
d) talking with parents, friends and other people
19. Which one of the following problems do you think is the most serious in the community where you live?
a) L-nd use
b) Trafflc accidents
c) Air pollution
d) Water pollution
e) Rubbish disposal
f) Over-crowding
g) Public health
h) Crime
1) None of the above are problems in our community
20. Which one of the following problems do you think is the most serious in Britain?
a) Land use
b) Traffic accidents
c) Air pollution
d) Water pollution
e) Rubbiah diaposal
f) Over-crowding
g) Public health
h) Crlme
i) None of the above are problems in Britain

## A 5

## Part 2

Directions : Carefully read items 21-30, and in each case decide whether the statement is true or false. If you cannot decide, you should respond "Don't Know". Mark the answer of you. choice on the Answer Sheet.
21. If sufficient water were available, virtually all of the land surface of the world could be economically used to produce food.
a) True
b) False
c) Don't Know
22. The interaction of environmental, biological and social factors determin: s the size of human populations.
a) True
b) False
c) Don't Know
23. There is an unlimited supply of energy available to man from fossil fuels (auch as coal and oil).
a) True
b) False
c) Don't Know
24. Pollution caused by man may give rise to irreversible changes in the environment.
a) True
b) False
c) Don't Know
25. Ls any environment, one component like water, air, or food may limit the type of life which can survive.
a) True
b) Falge
c) Don't Know
26. A natural body of water (such as a river or lake) will always have sufficient diasolved oxygen to support aquatic animal life.
a) True
b) Falae
c) Don't Know

113

A 6
27. Living things are interdependent with one another and with their environment.
a) True
b) False
c) Don't Know
28. The rate of adaptation in organisms always keeps pace with the rate of change in the environment.
a) True
b) False
c) Don't Know

2- Increasing human populations and dersands for greater industrial and agricultural productivity have resulted in increasing levels of environmental pollution.
a) True
b) False
c) Don't Krow
30. The social behavior of humans can be affected by population density.
a, True
b) False
c) Don't Know

119

## A 7

## Part 3

Directions: Foritems 31-45 there are no "right" or "wrong" answers. Simply select the response which best expresses your belief about each statement, and mark it on the Answer Sheet.
31. Planning which will limit the size of families is important if over-population is to be avoided.
a) Agree
b) Disagree
c) No Opinion
32. The demand for energy is critical enough to justify relaxing some of the environmental restrictions which hinder energy production.
a) Agree
b) Disagree
c) No Opinion
33. The tax system should be redesigned to encourage small familles rather than large ones.
a) Agree
b) Disagree
c) No Opinion
34. Large-scale famines are not likely to occur in the near future.
a) Agree
b) Disagree
c) No Opinion
35. Man has a moral responsibility to protect the natural environment.
a) Agrec
b) Disagree
c) No Opinion
36. International agreements with legal and economic sanctions are necessary to prevent industries and oil-tankers from extenalvely polluting the oceans with their wastes.
a) Agree
b) Disagree
c) No Opinion
37. People should only be allowed to burn smokeless fucla in their fireplaces at home.
a) Agrec
b) Disagree
c) No Opinion
120
38. Farmers should be allowed to use any pesticide that they wish in order to control the pests that eat their crops.
a) Agree
b) Dlaagree
c) No Opinton
39. A community's standards for pollution levels should not be so strict that they discourage industrial growth and development.
a) Agree
b) Disagree
c) No Opinion
40. Since population is a critical problem facing mankind, moat couples should not produce more than two children.
a) Agree
b) Disagree
c) No Opinion
41. Continuous growth of British industry and the Grosa National Product (GNP) is highly desirable.
a) Agree
b) Disagrce
c) No Opinion
42. There is no need to worry about over-population because science and technology will solve the problem before it becomes too serious.
a) Agree
b) Disagree
c) No Opinion
43. Controls should be placed on industry to protect the environment from pollution, even if it meana that things will cost more.
a) Agree
b) Disagree
c) No Opinion
44. The oceans represent an unused area where man should dispose of his wastes.
a) Agree
b) Disagree
c) No Opinion
45. Adopting a child la a good policy for familles who want more than two chlldren.
a) Agree
b) Disagree
c) No Opinion
a) 57 million
b) 67 million
c) 77 million
d) 87 million
2. The population of Britain is growing at a rate w' '. Is
i) mort the $n$ that of the world average
$h_{1}$ 'ids : same as the world average
c) less than that of the worlid average
d) zero
3. At the present time Britain
a) produces more food than it uses, and exports the surplus
b) produces just enough food to satisfy home needs
c) must import about $5 \%$ of its food supply
d) must import about $50 \%$ of its food supply
4. Which of the following is most likely to be an important world-wide source of energy for the future?
a) soldr radiation
b) tidal flow
c) geothermal sources
d) wind power
5. Basic chemical materials would be locked up and would not be avallable for reuse by plants and animals if it were not for the activilles of
a) decomposer organisms
b) photosynthetic organisms
c) herbivores
d) carnivores

## B 2

6. Juring the next 25 , itm the amount of good quality agricultural land in Britai: it expected to
a) Increase as a result of better planning
b) increase as a result of reclaiming waste land
c) decrease as a result of urban and industrial expansion
d) remain about the same
7. 
8. 
9. 
10. It is estinnated that at today's rate of use. known world reserves of resources such as rinc, lead, tin, oil and copper will be used up, or will be at a ve: low level in about
a) 10 years
b) 40 years
c) 80 years
d) 180 years
11. It is estimated that Britain will be self-gufficient in oil from the North Sea by (or soon after) the year
a) 1980
b) 1990
c) 2000
d) 2010
12. Approximately what percentage of the land surface in the Crited King dom is covered with forests and woods?
a) 0.5 percent
b) 7.5 percent
c) 27.5 percent
d) 47.5 percent
13. The number of hedgerows in Britain is
a) increasing, resulting in an improvement tu the natural environment
b) increasing, resulting in damage to the natural environment
c) decreasing, resulting in an improvement to the natural environment
d) decreasing, resulting in damage to the natural environment
14. Taking into acc ount the increasing use of fossil fuels cor energy. the known world supply of coal is estimated to be enough $t$ : inst for
a) about 5 years
b) about 25 years
c) more than 100 years
d) more than 1000 years
15. Approximatel" what percentage of the land surface in the United Kingdom is used for agriculture (crops, pasture, and rough grazing)?
a) 20 percont
b) 40 percent
c) 60 percent
d) 80 percent
16. At the present time, the world population is growing at a rate of
a) less than one percent each year
b) about two percent each year
c) about five percent each year
d) about ten percent each year
17. Which country currently consumes the largest amount of oil and natural gas?
a) USSR
b) Japan
c) USA
d) United Kingdom
18. Which one of the following best describes the way in which you have gained most of your knowledge about the environment?
a) general education at school
b) special environmental courses at school
c) private reading, the radio, and TV
d) talking with parents, friends and other people
19. Which one of the following problems do you think is the most serious in the community where you live?
a) Land use
b) Traffic accidents
c) Air pollution
d) Watיr pollution
e) Rubbish disposal
f) Over-crowding
g) Public hualth
h) Crime
i) None of the above are problems in our community
20. Which one of the following problems do you think is the most aerious in Britaln?
a) Land use
b) Traffic accidents
c) Air pollution
d) Water pollution
e) Rubbish disposal
f) Over-crowding
g) Public health
h) Crime
i) None of the above are problems in Britain
12.5

## Part 2

Directions : Carcfully read items 21-30, and in each case decide whether the statement is true or false. If you cannot decide, you should respond "Don't Know'". Mark the answer of your choice on the Answer Sheet.
21. If sufficient water were available, virtually all of the land surface of the world could be aconomically user? to produce food.
a) True
b) False
c) Don't Know
22. The interaction of environmental, biological and social factors determines the size of human populations.
a) True
b) False
c) Don't Know
23. There is an unlimited supply of energy available to man from fossil fuels (such as coal and oil).
a) True
b) False
c) Don't Know
24. Natural resources are equally distributed with respect to land areas and political boundaries.
a) True
b) False
c) Don't Know
25. Wildlife refuges and undisturbed natural areas may be of value in protecting endangered species and perpetuating gene pools.
a) True
b) False
c) Don't Know
26. The management of natural resources to meet the needs of successive generations demands long range planning.
a) True
b) False
c) Don't Know

## 126

## B 6

27. Throughout history, cultures with little technological development have used more natural resources than those with advanced levele of technological development.
a) True
b) False
c) Don't Know
28. Maintaining, improving, and in some cases restoring soil productivity is important to the welfare of people.
a) True
b) False
c) Don't Know
29. Minerals are non-renewable resources.
a) True
b) False
c) Don't Know
30. The oceans represent a limitless source of food and resources for the future.
a) True
b) False
c) Don't Know

## 127

## Part 3

Directions : For items 31-45 thereare no "right" or "wrong" answers. Simply select the response which best expresses your belief about each statement, and mark it on the Answer Shect.
31. Planning which will limit the size of families is important if over-population is to be avoided.
a) Agree
b) Disagree
c) No Opinion
32. The demand for energy is critical enough to justify relaxing some of the environmental restrictions which hinder energy production.
a) Agree
b) Disagree
c) No Opinion
33. The tax system should be redesigned to encourage small families rather than large ones.
a) Agree
b) Disagree
c) No Opinion
34. Large-acale famines are not likely to occur in the near future.
a) Agree
b) Disagree
c) No Opinion
35. Fossil fuels (coal, oil, natural gas) are too valuable a chemical resoirce to be used to such a great extent in electrical power generation.
a) Agree
b) Disagree
c) No Opinion
36. Where scenic and recreation areas are being damaged by large numbers of visitore, there should be restrictions on the number of people who are allowed to visit at any one time.
a) Agree
b) Disagree
c) No Opinion
37. People who can afford the high prices should be allowed to buy objects made from the skin or fur of endangered wild animals.
a) Agree
b) Disagree
c) No Opinion

## 128

## B 8

38. I would oppose laws that would restrict my standard of living, even though such laws might improve the standard of living for society as a whole.
a) Agree
b) Disagree
c) No Opintor.
39. The remaining forests in Britain should be conserved at all costs.
a) Agree
b) Disagree
c) No Opinion
40. In order to reduce our use of oil, people should only be allowed to own cars that have a low petrol consumption.
a) Agree
b) Disagree
c) No Opinion
41. A national land-use plan should be prepared and enforced to prevent housing and industry from using much of the best agricultural land in Britain.
a) Agree
b) Disagree
c) No Opinion
42. When companies have finished surface-mining land that they own, they should be allowed to leave it in any condition they wish.
a) Agree
b) Disagree
c) No Opinion
43. In order to keep raw materials from being used up too fast, an international authority should be established to ration them.
a) Agree
b) Disagree
c) No Opinion
44. A person who buys a new leopard skin coat is just as responslble in bringing about the extinction of the leopard as the person who kills the animal.
a) Agree
b) Disagree
c) No Opinion
45. Industry should not use recycled materials when it costs less to make the same product from new raw materials.
a) Agree
b) Digagree
c) No Opinion

## Part 1

Directions : Read all items carefully. For items l-20, select the one response which you belie ve provides the best answer. Mark your choice in the appropriate box on the Answer Sheet provided.

1. The present population of Britain is about
a) 57 million
b) 67 million
c) 77 million
d) 87 million
2. The population of Britain is growing at a rate which is
a) more than that of the world average
b) about the same as the world average
c) less than that of the world average
d) zero
3. At the present time Britain
a) produces more food than it uses, and exports the surplus
b) produces just enough food to satisfy home needs
c) must import about $5 \%$ of its food supply
d) must import about $50 \%$ of its food supply
4. Which re the following is most likely to be an important world-wide source of energy for the future?
a) solar radiation
b) tidal flow
c) geothermal sources
d) wind power
5. Most of the electrical energy used in Britain is produced by
a) nuclear power plants
b) coal-burning power plants
c) oil-burning power plants
d) natural gas power plants
6. 
7. Most of the radiation to which people in this country are axposed is due to
a) the normal hazards of work
b) TV sets and luminous watches
c) medical sources (X-rays, etc.)
d) natural sources
8. The largest single source of man-made radiation to which the British are exposed is due to
a) the fallout from bomb tests
b) nuclear power-plant radiation
c) TV atts and luminous watches
d) medical sources (X-rays, etc.)
9. Studies have shown that the pesticide DDT is present in the body tissues of people around the world. Most of this DDT in our bodies comes from
a) the air we breathe
b) the water wo drink
c) the food we eat
d) being directly exposed to aerosol sprays containing DDT
10. About he $n$ much of the energy stored in coal is converted into electrical energy in modern power plants?
a) 10-20 percent
b) 30-40 percent
c) 60-70 percent
d) 80-90 percent

## 131

C 3
11. Since 1958 the smoke concentrations in central London have decreased by $80 \%$, and sulphur dioxide in the air has decreased by $40 \%$. This improvement in air quality is mainly the result of
a) a decline in the population of central London
b) the voluntary action of citizens to reduce air pollucion
c) the voluntary action of industry to reduce air pollution
d) legislative action taken by the government
12. Nuclear power plants are built near bodies of water because the water is
a) an added safety factor in case of fire
b) a coolant
c) an alternative power source
d) a disposal place for radioactive waste
13. Bronchitis is a common resplratory disease. The death rate from bronchitis in Britain is
a) about 4 times greater than the road accident death rate
b) about 4 times less than the road accident death rate
c) about the same as the road accident death rate
d) zero, since it is not a fatal disease
14. Which of the following materials is not biodegradable?
a) leaves
b) bread
c) wood
d) glass
15. Most of the oxygen found in the earth's atmosphere is the result of
a) the slow decomposition of silica $\left(\mathrm{SiO}_{2}\right)$ in the earth's crust
b) the action of volcanos
c) the photosynthetic action of plants
d) the splitting of water molecules $\left(\mathrm{H}_{2} \mathrm{O}\right)$ in the oceans
16. Which of the following is not a potential problem with nuclear power plants?
a) thermal pollution
b) smoke pollution
c) waste disposal
d) radiation pollution

## 132

7. At present, the cheapest way to dispose of solid wastes collected from homes is by
a) incineration
b) recycling
c) dumping in pits and covering with soil
d) composting
8. Which one of the following best describes the way in which you have gained most of your knowledge about the environment?
a) general education at school
b) special environmental courses at school
c) private reading, the radio, and TV
d) talking with parents, friends and other people
9. Which one of the following problems do you think is the most serious in the community where you live?
a) Land usc
b) Traffic accidents
c) Air pollution
d) Water pollution
e) Rubbish disposal
f) Over-crowding
g) Public health
h) Crime
i) None of the above are problems in our community
10. Which one of the followig , bleme do you thin Britaln?
a) Land use
b) Traffic accidents
c) Air pollution
d) Water pollution
e) Rubbish disposal
f) Over-crowding
g) Public health
h) Crime
1) None of the above are problems in Britain

Part 2

Directions: Carefully read ltems 21-30, and in each case decide whether the etatement is true or false. If you cannot decide, you should respond "Don't Know". Mark the answer of your choice on the Answer Sheet.
21. If sufficient water were available, virtually all of tise land surface of the world could be economically ueed to produce fooa.
a) True
b) False
c) Doh't Know
22. The interaction of environmental, biological anf social factors determines the size of human populations.
a) True
b) False
c) Don't Know
23. There is an unlimited supply of energy available to man from fossil fueis (iuch as coal and oil).
a) True
b) Falee
c) Dun't Know
24. ... There is no relationship between the incidence of bronchitis and the level of air pollution.
a) True
b) False
c) Don't Know
25. Safe waste disposal is important if the well-being of man and the environment te to oe preserved.
a) True
b) False
c) Don't Know
26. The ultimate source of most of the energy that we use is the aun.
a) True
b) False
c) Don't Know

## C 6

27. There is a tendency for people to select long-term environmental benefits, often at the expense of short-term economic gains.
a) True
b) False
c) Don't Know
28. Life as we know it is dependent upon the transformation of energy from one form into another.
a) True
b) False
c) Don't Know
29. Chemical substances may be concentrated as they pass through food chains, and become a hazard to human health.
a) True
b) False
c) Don't Know
30. An organism is a product of its heredity and environment.
a) True
b) False
c) Don't Know

Part 3

Directions: Foritems 31-45therearc no "right" or "wrong" answers. Simply select the response which best expresses your belief about each statement, and mark it on the Answer Sneet.
31. Planning which will limit the size of families is important if over-population is to be avoided.
a) Agree
b) Disagree
c) No Opirion
32. The demand for energy is critical enough to justify relaxing some nf the environmental restrictions which hinder energy production.
a) Agree
b) Disagree
c) No Opinion
33. The tax system should be redesigried to encourage small farnilies rather than large ones.
a) Agree
b) Disagree
c) No Opinion
34. Large-scale famines aro not likely to occur in the near future.
a) Agree
b) Disagree
c) No Opinio:
35. The most important thing to consider about bringing new industry into your area is the number of new jobs it will create.
a) Agree
b) Disagree
c). No Opinion
36. We should question the construction of all nuclear power reactors because of the harmful by-products they produce.
a) Agree
b) Disagree
c) No Opinion
37. Rather than rationing petroleum products, more oil should be imported from overtean to meet our growing energy needs.
a) Agree
b) Disagree
c) No Opinion

## C 8

38. Strong controls by Government are the most effectlve way to reduce; ollution problems.
a) Agree
b) Dlsagree
c) No Opinlon
39. Prlority should be given to developlng alternatives to fosall and nuclear fucl as primary onergy sources.
a) $\mathbf{A g r e e}$
b) Dlsagree
c) No Opinion
40. It la more important to preserve the freedom of the Individual's cholce than to enforce lawn to protect the quallty of life $\ln$ the future.
a) Agreo
b) Dlaagree
c) Nn Opinlon
41. Pesticldes that remair tixic for a long period of time should be banned.
a) Agree
b) Disagree
c) No Oplnion
42. Most of the concern about environmental problems has been over-exaggerated.
a) Agree
b) Diagree
c) No Oplnion
43. The Government should give generous financial support to research related to the development of solar energy.
a) Agree
b) Dlagree
c) No Opinion
44. Government rogulatlons for the approval of new noclear power plants are too strict.
a) Agreo
b) Disagreo
c) No Opinlon
45. Conaldering the problems of pollution and crowding, we need to decrease the use of the car as a major meana of transportation.
a) Agree
b) Dlsagree
c) No Opinlon

## 137



## 133



## 139



## APPENDIX B

## Supportive References for Answers to Factual Knowledge Items (Part 1)

Item   Number	Bibliographic Reference	Author	Page Number
ABCl	135	United Nations	116
	4	Allen, Robert	33
ABC2	135	United Nations	63,116
	142	World Population Data Sheet	63, 116
ABC3	4	Allen, Robert	39
	50	Edwards and Wibberley	44
ABC4	54	Fagan, John J.	134
	67	Hammond, Allen L, et al	61-66,
			147-151
A5	42	Curry-Lindahl, Kai	31
	121	Southwick, Charles H.	12
A6	119	Shea, Kevin P.	164
	108	Radcliffe, D.A.	208-210
A 7	9	Aynsley, Eric	345-347
	1	Albone, Eric S.	148
A8	37	Commoner, Barry	348
	28	Chanlett, Emil T.	125
A9	143	Wurster, Charles F	557
	137	Wallis, H.F.	91
Al0	16	Blumer, Max	296
	137	Wallis, H.F.	81
All	39	Cook, Robert C.	-
	7	Arvill, Robert	206
Al2	51	Ehrlich and Ehrlich	124
	54	Fagan, John J.	42
Al 3	51	Ehrlich and Ehrlich	7
	14	Biological Sciences Curriculum	
		Study	679
A14	139	Weale, Michael	16
	91	McNaughton and Wolf	406-407
A15	19	Bourne, Arthur G.	263
	141	WEA Background Notes	12
Al 6	1	Albone, Eric S.	154
	40	Council on Environmental	
		Quality	266


Item Number	Bibliographic Reference	Author	Page Number
Al7	$\begin{aligned} & 92 \\ & 51 \end{aligned}$	Meadows, Donella H. et al Ehrlich and Ehrlich	$\begin{gathered} 30-34 \\ 8 \end{gathered}$
B5	$\begin{array}{r} 121 \\ 81 \end{array}$	Southwick, Charles H. Kormondy, Edward J.	$\begin{aligned} & 120-121 \\ & 3-4 \end{aligned}$
B6	$\begin{array}{r} 50 \\ 7 \end{array}$	Edwards and Wibberley Arvill, Robert	$\begin{gathered} 88 \\ 63-64 \end{gathered}$
B7	$\begin{array}{r} 7 \\ 101 \end{array}$	Arvill, Robert   O'Dell and Walton	$\begin{array}{r} 130 \\ 37 \end{array}$
в8	$\begin{array}{r} 7 \\ 137 \end{array}$	Arvill, Robert Wallis, H.F.	$\begin{aligned} & 115 \\ & 120 \end{aligned}$
в9	$\begin{aligned} & 92 \\ & 73 \end{aligned}$	Meadows, Donella H. et al Idyll, Clarence P.	$\begin{aligned} & 151-153 \\ & 36-45 \end{aligned}$
B10	$\begin{array}{r} 92 \\ 139 \end{array}$	Meadows, Donella H. et al Weale, Michael	$\begin{gathered} 56-60 \\ 37 \end{gathered}$
B11	$\begin{aligned} & 46 \\ & 25 \end{aligned}$	Department of Energy Central Office of Information	$1,15$
B12	$\begin{array}{r} 50 \\ 7 \end{array}$	Edwards and Wibberley Arvill, Robert	$\begin{gathered} 85 \\ 42,54 \end{gathered}$
B13	$\begin{array}{r} 64 \\ 3 \end{array}$	Goldsmith, Edward Allaby, Michael	$\begin{aligned} & 74-76 \\ & 146-147 \end{aligned}$
B14	$\begin{aligned} & 92 \\ & 72 \end{aligned}$	Meadows, Donella H. et al Hubbert, M. King	$\begin{array}{r} 56 \\ 205 \end{array}$
B15	$\begin{array}{r} 50 \\ 7 \end{array}$	Edwards and Wibberley Arvi.ll, Robert	$\begin{gathered} 85 \\ 42-43 \end{gathered}$
B16	$\begin{array}{r} 135 \\ 39 \end{array}$	United Nations Cook, Robert C.	$63$
B17	75 92	International Petroleum Encyclopedia Meadows, Donella H. et al	$\begin{gathered} 13 \\ 58-59 \end{gathered}$
C5	$\begin{aligned} & 25 \\ & 98 \end{aligned}$	Central Office of Information National Coal Board	$\begin{array}{r} 24 \\ 1 \end{array}$
c6	$\begin{aligned} & 54 \\ & 23 \end{aligned}$	Fagan, John J. Chanlett, Emil T.	$\begin{aligned} & 18-19 \\ & 200-204 \end{aligned}$
c7	$\begin{array}{r} 107 \\ 40 \end{array}$	Pochin, E. Eric   Council on Environmental   Quality	$\begin{aligned} & 280 \\ & 190-191 \end{aligned}$


Item Number	Bibliographic Reference	Author	Page Number
C8	$\begin{array}{r} 107 \\ 40 \end{array}$	Pochin, E. Eric   Council on Environmental   Quality	$\begin{aligned} & 280 \\ & 190-191 \end{aligned}$
C9	$\begin{aligned} & 92 \\ & 97 \end{aligned}$	Meadows, Donella H. et al National Academy of Sciences	$\begin{gathered} 82-85 \\ 29 \end{gathered}$
Cl0	$\begin{array}{r} 25 \\ 125 \end{array}$	Central Office of Information Summers, Claude M.	$\begin{aligned} & 25-26 \\ & 95-106 \end{aligned}$
Cll	$\begin{aligned} & 7 \\ & 6 \end{aligned}$	Arvill, Robert   Arthur, Don R.	$\begin{aligned} & 105,108-109 \\ & 125 \end{aligned}$
Cl2	$\begin{array}{r} 5 \\ 136 \end{array}$	American Nuclear Society United States Atomic Energy Commission	$\begin{aligned} & 16-19 \\ & 3-4 \end{aligned}$
C13	7	Arvill, Robert   Data provided in personal communication with the Office of Population Censuses and Surveys, London	10.7
こ14	$\begin{aligned} & 70 \\ & 51 \end{aligned}$	Holliman, Jonathan Ehrlich and Ek.rlich	$\begin{array}{r} 15 \\ 129 \end{array}$
C15	$\begin{array}{r} 121 \\ 14 \end{array}$	Southwick, Cinar?es H. Biological Sciences Curriculum Study	$\begin{aligned} & 274 \\ & 190 \end{aligned}$
C16	$\begin{array}{r} 5 \\ 103 \end{array}$	American Nuclea, Society   Pennsylvania Department of Education	$\begin{aligned} & 10-26 \\ & 49-53 \end{aligned}$
Cl7	$\begin{array}{r} 137 \\ 21 \end{array}$	Wa'l.s, H.F.   Brooks, Piste:	$\begin{aligned} & 60 \\ & 67 \end{aligned}$

## 144

## APPENDIX C

Chi Square Analyses on All Items
on Forms A, B and C by
(a) Sex
(b) School Type
(c) School Sex
(d) School Size
(e) Region
(f) Sampling Method

145

	SEX		FORM A	
Question   Number	Number of Responses	Chi   Square	Degrees of Freedom	Level of Significance
1	3721	227.5	3	0.0000*
2	3719	62.3	3	0.0000*
3	3713	41.6	3	0.0000*
4	3708	32.1	3	0.0000*
5	3715	17.4	3	0.0006
6	3708	32.6	3	0.0000 *
7	3711	46.3	3	0.0000*
8	3703	6.8	3	0.0771
9	3710	16.9	3	0.0007
10	3705	305.6	3	0.0000*
$1 i$	3713	3.8	3	0.2811
12	3673	40.9	3	0.0000 *
13	3719	6.0	3	0.1116
14	3701	25.7	3	0.0000*
15	3712	73.2	3	0.0000*
16	3708	126.9	3	0.0000*
17	3717	0.4	3	0.9264
18	3716	30.3	3	0.0000*
19	3718	48.8	8	0.0000*
20	3712	61.7	8	0.0000*
21	3721	3.7	2	0.1520
22	3719	8.2	2	0.0165
23	3720	70.6	2	0.0000*
24	3720	6.6	2	0.0366
25	3718	1.0	2	0.5777
26	3722	4.5	2	0.1009
27	3718	43.7	2	0.0000*
28	3717	17.0	2	0.0002
29	3717	9.9	2	0.0068
30	3718	14.1	2	0.0008
31	3714	3.9	2	0.1386
32	3706	97.9	2	0.0000*
33	3709	23.6	2	0.0000*
34	3709	0.2	2	0.8667
35	3706	4.8	2	0.0887
36	3711	17.8	2	0.0001*
37	3712	10.4	2	0.0055
38	3713	13.0	2	0.0014
39	3708	4.5	2	0.1048
40	3706	51.0	2	0.0000*
41	3704	93.7	2	0.0000 *
42	3706	2.7	2	0.2586
43	3706	10.2	2	0.0059
44	3706	0.0	2	0.9691
45	3708	51.5	2	0. 0000 *
$\leq 0.000$		11		


	SEX		FORM B	
Question Number	Number of Responses	Chi   Square	Degrees of Freedom	Level of Significance
1	3640	210.1	3	0.0090*
2	3643	84.4	3	0.0000*
3	3639	40.8	3	0.0000*
4	3635	38.2	3	0.0000*
5	3603	6.3	3	0.0945
6	3636	14.2	3	0.0026
7	3638	22.1	3	0.0001*
8	3642	10.7	3	0.0130
9	3643	181.5	3	0.0000*
10	3643	16.9	3	0.0007
11	3643	160.4	3	0.0000*
12	3639	81.2	3	0.0000*
13	3615	6.7	3	0.0788
14	3635	16.9	3	0.0007
15	3639	11.4	3	0.0094
16	3639	25.9	3	0.0000*
17	3640	55.4	3	0.0000*
18	3634	8.7	3	0.0331
19	3637	50.1	8	0.0000 *
20	3642	62.9	8	0.0000*
21	3645	2.2	2	0.3302
22	3642	31.3	2	0.0000*
23	3641	65.0	2	0.0000*
24	3643	28.3	2	$0.0000 *$
25	3644	0.3	2	0.8520
26	3642	16.3	2	0.0003
27	3638	76.4	2	0.0000*
28	3642	1.9	2	0.3840
29	3636	14.0	2	0.0009
30	3644	10.0	2	0.0064
31	3644	14.5	2	0.0007
32	3637	49.1	2	0.0000*
33	3638	38.7	2	0.0000*
34	3639	3.1	2	0.2050
35	3640	41.2	2	$0.0000 *$
36	3634	10.8	2	0.0045
37	3638	4.6	2	0.0998
38	3633	55.3	2	0.0000*
39	3634	1.2	2	0.5379
40	3636	11.1	2	0.0038
41	3637	2.0	2	0.3540
42	3638	9.2	2	0.0096
43	3638	19.5	2	0.0001*
44	3639	4.0	2	0.1301
45	3638	34.8	2	0.0000*

*p $\leq 0.0001$

	SEX		FORM C	
Question Number	Number of Responses	Chi   Square	Degrees of Freedom	Level of Significance
1	3581	214.3	3	0.0000*
2	3585	60.7	3	$0.0000 *$
3	3575	29.5	3	0.0000*
4	3576	45.7	3	0.0000 *
5	3581	224.8	3	0.0000*
6	3569	45.0	3	0.0000*
7	3576	64.5	3	0.0000 *
8	3572	41.5	3	0.0000*
9	3575	33.0	3	0.0000*
10	3579	42.0	3	0.0000*
11	3575	16.2	3	0.0010
12	3580	213.4	3	0.0000 *
13	3580	13.5	3	0.0035
14	3561	24.6	3	0.0000 *
15	3566	56.1	3	$0.000{ }^{*}$
16	3575	101.6	3	0.0000*
37	3579	73.7	3	0.0000*
18	3578	26.8	3	0.0000*
19	3579	22.2	8	0.0044
20	3580	72.8	8	0.0000*
21	3586	1.0	2	0.5922
22	3581	4.0	2	0.1293
23	3584	36.7	2	0.0000 *
24	3582	30.0	2	0.0000*
25	3582	10.2	2	0.0059
26	3582	8.3	2	0.0157
27	3577	32.2	2	0.0000*
28	3580	9.2	2	0.0099
29	3579	1.2	2	0.5373
30	3577	4.2	2	0.1172
31	3580	8.7	2	0.0127
32	3571	39.4	2	0.0000 *
33	3576	18.5	2	0.0001*
34	3572	2.9	2	0.2307
35	3577	15.0	2	0.0005
36	3577	123.6	2	0.0000 *
37	3573	44.2	2	0.0000*
38	3577	29.1	2	0.0000 *
39	3576	95.5	2	0.0000*
40	3571	30.8	2	0.0000*
41	357.9	3.5	2	0.1654
42	3573	16.3	2	0.0003
43	3572	74.3	2	0.0000*
44	3567	47.3	2	0.0000*
45	3574	6.4	2	0.0402

* $p \leq 0.0001$

FORM A

Question   Number	Number of Responses	Chi   Square	Degrees of Freedom	Level of Significanc
1	3710	80.4	9	0.0000*
2	3708	83.7	9	0.0000*
3	3703	92.0	9	0.0000*
4	3697	41.0	9	0.0000*
5	3704	168.9	9	0.0000*
6	3698	75.6	9	0.0000*
7	3700	65.9	9	0.0000*
8	3692	64.6	9	$0.0000 *$
9	3699	68.2	9	0.0000*
10	3693	131.1	9	0.0000*
11	3702	11.2	9	0.2602
12	3662	199.0	9	0.0000*
13	3708	132.7	9	0.0000*
14	3690	153.9	9	0.0000*
15	3701	78.7	9	0.0000*
16	3697	105.1	9	0.0000*
17	3706	27.8	9	0.0010
18	3704	143.4	9	$0.000{ }^{*}$
19	3708	45.9	24	0.0045
20	3701	84.9	24	0.0000*
21	3710	41.2	6	9.0000*
22	3708	285.0	6	0.0000*
2.3	3709	195.7	6	0.0000*
24	3709	85.8	6	0.0000*
25	3707	62.1	6	0.0000*
26	3711	36.2	6	0.0000*
27	3707	116.3	6	$0.000{ }^{\circ}$ *
28	3706	111.2	6	0.0000*
29	3706	109.2	6	0.0000*
30	3707	76.8	5	0.0000 *
31	3703	20.3	6	0.0024
32	3695	158.7	6	0.0000*
33	3698	13.4	6	0.0360
34	3698	29.9	6	0.0000*
35	3695	36.2	6	$0.000{ }^{*}$
36	3700	57.6	6	0.0000*
37	3701	23.0	6	0.0008
38	3702	139.3	6	0.0000*
39	3697	44.4	6	0.0000*
40	3695	31.3	6	0.0000*
41	3693	89.4	6	0.0000*
42	3695	88.3	6	0.0000*
43	3695	50.7	6	0.0000*
44	3695	73.6	6	0.0000*
45	3697	5.7	6	0.4542

* $p \leq 0.0001$

149

FORM B

Question	Number of	Chi	Degrees of	Level of
Number	Responses	Square	Freedo:n	Significance


1	3633	100.5	9	$0.000{ }^{*}$
2	3637	132.3	9	$0.0000 *$
3	3632	115.0	9	0.0000*
4	3629	22.7	9	0.0067
5	3597	220.0	9	0.0000 *
6	3630	84.3	9	$0.000{ }^{*}$
7	3632	99.5	9	0.0000*
8	3636	32.4	9	0.0002
9	3637	77.4	9	0.0000 *
10	3637	14.2	9	0.1131
11	3637	38.1	9	0.0000*
12	3633	86.4	9	0.0000*
13	3609	136.4	9	0.0000*
14	3629	11.8	9	0.2239
15	3633	22.0	9	0.0088
16	3633	15.9	9	0.0677
17	3634	108.4	9	9.0000*
18	3628	76.2	9	0.0000 *
19	3631	69.6	24	$0.0000 *$
20	3636	75.4	24	0.0000*
21	3639	40.1	6	0.0000*
22	3636	249.9	6	0.0000 *
23	3635	167.6	6	0.0000 *
24	3637	231.0	$\epsilon$	0.0000*
25	3638	92.6	6	0.0000*
26	3636	86.9	6	0.0000*
27	3632	61.4	6	0.0000*
28	3636	80.4	6	0.0000*
29	3629	31.0	6	0.0000*
30	3638	45.9	6	0.0000*
31	3638	8.7	6	0.185 と
32	3631	112.5	6	0.0000*
33	3632	4.6	6	0.5908
34	3633	27.0	6	$0.0001 *$
35	3634	11.1	6	0.0852
36	3628	23.8	6	0.0006
37	3632	44.1	6	0.0000*
38	3627	23.9	6	0.0005
39	3628	7.5	6	0.2691
40	3630	11.3	6	0.0780
41	3631	133.9	6	0.0000*
42	3632	78.0	6	0.0000*
43	3632	1.5	6	0.9581
44	3633	27.0	6	0.0001*
45	3632	185.1	6	0.0000*

${ }^{*} p \leq 0.0001$
150

SCHOOL TYPE FORM C

¿uestion   Number	Number of Responses	Chi   Square	Degrees of Freedom	Level of Significance
1	3565	95.3	9	$0.000{ }^{*}$
2	3569	121.2	9	0.0000*
$?$	3559	85.4	9	0.0000*
4	3560	33.6	9	$0.000{ }^{*}$
5	3565	68. 4	9	$0.0000^{*}$
6	3553	149.9	9	0.0000*
7	3500	18.3	9	0.0314
9	3556	41.4	9	0.0000*
9	3559	84.7	9	$0.0000 \times$
10	3563	37.9	9	$0.000{ }^{*}$
11	3559	132.9	9	$0.000{ }^{*}$
12	3564	147.3	9	0.0000*
13	3565	25.5	9	0.0024
1.4	3545	105.5	9	0.0000*
15	3550	71.2	9	$0.000{ }^{*}$
16	3559	143.7	9	0.0000*
17	3553	61.2	9	0.0000*
1.3	3562	80.9	9	0.0000*
19	3563	49.2	24	0.0018
20	3564	69.1	24	$0.000{ }^{*}$
21	3570	57.8	6	$0.0000^{*}$
22	3565	243.1	6	0.0000*
23	. 3568	204.2	6	$0.0000 *$
2.4	3566	37.7	6	$0.0000 *$
23	3566	56.2	6	$0.000{ }^{*}$
26	3566	34.1	6	$0.0000 *$
27	3561	75.0	6	$0.0000 *$
28	3564	56.1	6	$0.0 \cap 0 \%$
29	3563	15.4	6	0.0167
30	3561	206.4	6	0.0000*
31	35064	34.6	6	0.0000*
32	3555	176.1	6	0.0000*
33	3560	17.9	6	0.0065
34	3556	26.8	6	0.0002
35	3561	122.6	6	0.0000 *
35	3561	26.8	6	$0 .() 02$
17	3556	158.8	6	$0.0000 \times$
39	3561	53.8	6	$0.000{ }^{*}$
39	3560	80.8	6	0.0000 *
40	3555	9.6	6	0.1401
41	35.58	48.5	6	0.0000*
42	3558	34.8	6	0.0000*
43	3555	16.2	6	0.0126
44	3551	41.6	6	0.0000*
45	3558	48.7	6	0.0000*

* P - 0.0)01

133

SCHOOL SEY
FORM A

Question   Number	Number of Responses	Chi   Square	Degrees of Freedom	Level of Significance
1	3739	157.6	6	0.0000*
2	3737	66.7	o	0.0000*
3	37?	50.3	6	0.0000*
4		30.3	6	0.0000*
5	-	75.5	6	0.0000*
6	3	42.7	6	0.0000*
7	3729	52.9	6	0.0000*
8	3721	33.7	6	0.0000*
9	3728	66.3	6	0.0000*
10	3722	198.5	6	0.0000*
11	3731	8.0	6	0.2343
12	3691	70.5	6	0.0000*
13	3737	3 O .1	6	0.0000*
14	3719	52.4	6	0.0000*
15	3730	44.3	6	0.0000*
16	3726	56.4	6	0.0000*
17	3735	9.2	6	0.1589
18	3733	42.2	6	0.0000*
19	3736	40.0	16	0.0008
20	3730	54.8	15	$0.0000 *$
21	3739	8.2	4	0.0829
22	3737	126.6	4	0.0000*
23	3738	91.6	4	0.0000*
24	3738	25.1	4	0.0000*
25	3736	35.6	4	0.0000*
26	3740	29.7	4	0.0000*
27	3736	40.4	4	0.0000*
28	3735	46.2	4	0.0000*
29	3735	41.2	4	0.0000*
30	3736	26.6	4	0.0000*
31	3732	7.0	4	0.1312
32	3724	72.5	4	0.0000*
33	3727	24.5	4	0.0001*
34	3727	6.2	4	0.1825
35	3724	8.2	4	0.0832
36	3729	31.4	4	0.0000*
37	3730	10.4	4	0.0329
38	3731	37.3	4	0.0000*
39	3726	16.4	4	0.0025
40	3724	49.5	4	$0.0000 *$
41	3722	71.3	4	0.0000*
42	3724	27.3	4	0.0000*
43	3724	20.8	4	0.0003
44	3724	28.3	4	0.0000*
45	3726	15.2	4	0.0042

*p $\leq 0.0001$

SCHOOL SEX
FORM B

Question Number	Number of Responses	Chi   Square	rices of Freedom	Level of Significance
1	3662	147.4	6	0.0000*
2	3 F 56	143.0	6	0.0000*
3	3661	46.3	6	0.0000*
4	3658	33.2	6	0.0000*
5	3626	58.1	6	0.0000*
6	3659	61.8	6	0.0000*
-	3661	32.2	6	0.0000*
8	3665	10.7	6	0.0965
9	3666	79.3	6	0.0000*
$11)$	3666	12.6	6	0.0486
11	3666	51.3	6	0.0000*
12	3662	08.6	6	0.0000 *.
13	3638	43.2	6	0.0000*
14	3658	3.5	0	0.7:51
15	3662	8.3	6	0.2134
16	3662	19.8	6	0.002 c
17	3663	47.2	6	0.0000*
18	3657	29.1	6	0.0001 *
19	3660	37.9	16	0.0016
20	3665	58.2	16	0.0000 *
21	3668	34.6	4	0.0000*
22	3665	106.8	4	0.0000 *
23	3664	70.1	4	0.0000 *
24	3666	92.1	4	0.0000*
25	3667	33.9	4	0.0000*
26	3665	44.5	4	0.0000*
27	3661	43.2	4	0.0000*
28	3665	29.3	4	0.0000*
29	3658	10.8	4	0.0281
30	3667	20.4	4	0.0004
31	3667	4.2	4	0.3736
32	3660	$4-3$	4	0.0000 *
33	3661	36.3	4	0.0000*
34	3662	12.5	4	0.0137
35	3663	5.2	4	0.2643
36	3657	5.0	4	0.2870
37	3661	9.0	4	0.0597
38	3656	38.5	4	0.0000*
39	3657	2.9	4	0.5618
40	3659	13.6	4	0.0086
41	3660	31.4	4	0.0000*
42	3661	22.7	4	0.0001*
43	3661	10.3	4	0.0354
44	3662	6.7	4	0.1478
45	3661	58.9	4	0.0000*

${ }^{*} \mathrm{p} \leq 0.0001$
153

SCHOOL SEX
FORM C

Question Number	Number of Responses	Chi   Square	Degrees of Freedom	Level of Significance
1	3593	158.1	6	0.0000*
2	3597	97.1	6	0.0000*
3	3587	42.2	6	0.0000*
4	3588	20.2	6	0.0025
5	3593	135.2	6	0.0000 *
6	3581	16.6	6	0.0000 *
7	3588	2\%.2	6	0.0001*
"	3584	53.4	6	0.0000*
9	3587	68.6	6	0.0000*
10	3591	64.4	-	0.0000*
11	3587	70.4	$\because$	0.0000*
12	3592	194.1	6	0.0000 *
13	3592	6.7	6	0.3426
14	3573	47.8	6	0.0000*
15	3578	67.1	6	0.0000*
16	3587	82.3	6	0.0000*
17	31,91	47.4	6	0.0000*
18	3590	38.6	6	0.0000*
19	3591	29.7	16	0.0195
20	3592	60.8	16	0.0000*
21	3598	21.2	4	0.0003
22	3593	150.4	4	0.0000 *
23	3596	86.9	4	0.0000 *
24	3594	35.1	4	0.0000*
25	3594	35.8	4	0.0000*
26	3594	16.5	4	0.0023
27	3589	52.1	4	0.0000*
28	3592	20.2	4	0.0005
29	3591	1.6	4	0.8079
30	3589	81.7	4	0.0000*
31	3592	12.1	4	0.0165
32	3583	73.2	4	0.0000*
33	3588	20.0	4	0.0005
34	3584	9.6	4	0.0475
35	3589	76.9	4	0.0000*
36	3589	65.5	4	0.0000*
37	3584	75.2	4	0.0000*
38	3589	17.9	4	0.0013
39	3588	73.3	4	0.0000*
40	3583	24.9	4	0.0001*
41	3586	10.0	4	0.0399
42	3585	17.8	4	0.0013
43	3584	37.7	4	0.0000*
44	3579	24.2	4	0.0001*
45	3586	28.3	4	0.0000*

FORM A

Question Number	Number of Responses	Chi   Square	Degrees of Freedom	Level of Significance
1	3739	24.2	9	0.0039
2	3737	24.4	9	0.0036
3	3731	5.7	9	0.7648
4	3726	8.3	9	0.5025
5	3733	23.2	9	0.0056
6	3726	44.5	9	0.0000*
7	3729	11.6	9	0.2353
8	3721	12.1	9	0.2047
9	3728	16.4	9	0.0582
10	3722	8.5	9	0.4779
11	3731	6.1	9	0.7273
12	3691	22.4	9	0.0076
13	3737	6.7	9	0.6669
14	3719	9.2	9	0.4167
15	3730	7.9	9	0.5344
16	3726	12.1	9	0.2035
17	3735	18.4	9	0.0305
18	3733	24.1	9	0.0041
19	3736	34.2	24	0.0810
20	3730	21.2	24	0.6226
21	3739	10.0	6	0.1219
22	3737	26.5	6	0.0002
23	3738	6.9	6	0.3221
24	3738	6.1	6	0.4112
25	3736	2.1	6	0.9068
26	3740	1.6	6	0.9490
27	3736	11.7	6	0.0668
28	3735	9.0	6	0.1708
29	3735	10.2	6	0.1154
30	3736	8.1	6	0.2292
31	3732	11.9	6	0.0622
32	3724	8.0	6	0.2329
33	3727	3.9	6	0.6795
34	3727	8.0	6	0.2359
35	3724	5.9	6	0.4283
36	3729	9.6	6	0.1420
37	3730	15.2	6	0.0182
38	3731	7.2	6	0.2965
39	3726	5.4	6	0.4827
40	3724	11.3	6	0.1770
41	3722	10.4	6	0.1060
42	3724	2.9	6	0.8126
43	3724	12.5	6	0.0513
44	3724	2.7	6	0.8441
45	3726	2.2	6	0.8934

[^5]| Question Number | Number of Responses | Chi <br> Square | Degrees of Freedom | Level of Significance |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 3662 | 10.8 | 9. | 0.2893 |
| 2 | 3666 | 20.6 | 9 | 0.0144 |
| 3 | 3661 | 36.8 | 9 | 0.0000* |
| 4 | 3658 | 2.9 | 9 | 0.9652 |
| 5 | 3626 | 36.3 | 9 | 0.0000* |
| 6 | 3659 | 11.9 | 9 | 0.2185 |
| 7 | 3661 | 20.9 | 9 | 0.0127 |
| 8 | 3665 | 20.8 | 9 | 0.0132 |
| 9 | 3666 | 23.7 | 9 | 0.0046 |
| 10 | 3666 | 20.1 | 9 | 0.0173 |
| 11 | 3666 | 8.2 | 9 | 0.5065 |
| 12 | 3662 | 31.9 | 9 | 0.0002 |
| 13 | 3638 | 14.9 | 9 | 0.0934 |
| 14 | 3658 | 6.8 | 9 | 0.6548 |
| 15 | 3662 | 6.5 | 9 | 0.6847 |
| 16 | 3662 | 16.9 | 9 | 0.0500 |
| 17 | 3663 | 18.4 | 9 | 0.0307 |
| 18 | 3657 | 17.6 | 9 | 0.0399 |
| 19 | 3660 | 54.0 | 24 | 0.0004 |
| 20 | 3665 | 33.4 | 24 | 0.0958 |
| 21 | 3668 | 9.2 | 6 | 0.1607 |
| 22 | 3665 | 18.7 | 6 | 0.0047 |
| 23 | 3664 | 7.8 | 6 | 0.2523 |
| 24 | 3666 | 9.5 | 6 | 0.1463 |
| 25 | 3667 | 21.9 | 6 | 0.0012 |
| 26 | 3665 | 18.6 | 6 | 0.0048 |
| 27 | 3661 | 8.1 | 6 | 0.2259 |
| 28 | 3665 | 18.1 | 6 | 0.0059 |
| 29 | 3658 | 8.7 | 6 | 0.1890 |
| 30 | 3667 | 5.2 | 6 | 0.5087 |
| 31 | 3667 | 14.6 | 6 | 00235 |
| 32 | 3660 | 19.5 | 6 | 0.0033 |
| 33 | 3661 | 5.6 | 6 | 0.4631 |
| 34 | 3662 | 7.9 | 6 | 0.2420 |
| 35 | 3663 | 9.2 | 6 | 0.1618 |
| 36 | 3657 | 10.1 | 6 | 0.1165 |
| 37 | 3661 | 5.9 | 6 | 0.4253 |
| 38 | 3656 | 5.9 | 6 | 0.4299 |
| 39 | 3657 | 6.1 | 6 | 0.4099 |
| 40 | $\bigcirc 9$ | 18.9 | 6 | 0.0043 |
| 41 | ju00 | 12.6 | 6 | 0.0498 |
| 42 | 3661 | 7.1 | 6 | 0.3093 |
| 43 | 3661 | 5.7 | 6 | 0.4526 |
| 44 | 3662 | 11.4 | 6 | 0.0747 |
| 45 | 3661 | 7.3 | 6 | 0.2918 |

SCHOOL SIZE FORM C

Question	Number of	Chi	Degrees of	Level of
Number	Responses	Square	Freedom	Significance


1	3593	18.6	9	0.0284
2	3597	17.6	9	0.0397
3	3587	14.7	9	0.0991
4	3588	6.9	9	0.6372
5	3593	6.5	9	0.6704
6	3581	20.5	9	0.0147
7	3588	7.4	9	0.5875
8	3584	8.3	9	0.4955
9	3587	6.4	9	0.6908
10	3591	6.0	9	0.7345
11	3587	27.2	9	0.0013
12	3592	14.0	9	0.1193
13	3592	16.1	9	0.0642
14	3573	21.9	9	0.0091
15	3578	10.6	9	0.2969
16	3587	11.8	9	0.2244
17	3591	10.2	9	0.3300
18	3590	10.5	9	0.3091
19	3591	34.6	24	0.0739
20	3592	20.3	24	0.6742
21	3598	8.0	6	0.2378
22	3593	13.1	. 6	0.0410
23	3596	13.6	6	0.0337
24	3594	13.5	6	0.0349
25	3594	13.8	6	0.0311
. 26	3594	8.1	6	0.2286
27	3589	5.3	6	0.5015
28	3592	6.4	6	0.3726
29	3591	4.7	6	0.5720
30	3589	23.2	6	0.0007
31	3592	6.3	6	0.3816
32	3583	10.9	6	0.0900
33	3588	1.8	6	0.9315
34	3584	3.4	6	0.7443
35	3589	4.8	6	0.5639
36	3589	2.9	6	0.8182
37	3584	15.9	6	0.0142
38	3589	13.2	6	0.0390
39	3588	5.2	6	0.5127
40	3583	1.4	6	0.9600
41	3586	6.7	6	0.3471
42	3585	8.3	6	0.2131
43	3584	2.1	6	0.9007
44	3579	6.3	6	0.3803
45	3586	2.6	6	0.8526

$* p \leq 0.0001$
157

FORM A

Question Number	Number of Responses	Chi   Square	Degrees of Freedom	Level of Significance
1	3415	64.0	24	0.0000*
2	3413	34.6	24	0.0738
3	3407	36.3	24	0.0504
4	3403	31.5	24	0.1380
5	3409	74.6	24	0.0000*
6	3402	40.8	24	0.0172
7	3405	29.3	24	0.2068
8	3397	36.6	24	0.0477
9	3406	36.6	24	0.0476
10	3398	63.4	24	0.0000*
11	3408	31.4	24	0.1416
12	3376	32.4	24	0.1165
13	3413	46.3	24	0.0035
14	3396	29.1	24	0.2158
15	3406	36.7	24	0.0464
16	3402	29.1	24	0.2158
17	3411	33.5	24	0.0938
18	3409	50.3	24	0.0013
19	3412	169.9	64	0.0000*
20	3406	113.3	64	$0.0061 *$
21	3415	30.8	16	0.0140
22	3413	37.6	16	0.001 :
23	3414	26.6	16	0.0445
24	3414	26.7	16	0.0447
25	3412	31.6	16	0.0110
26	3416	26.0	16	0.0538
27	3413	22.4	16	0.1287
28	3411	27.4	16	0.0356
29	3411	20.7	16	0.1873
30	3412	28.3	16	0.0290
31	3408	14.2	16	0.5822
32	3401	2.1 .5	16	0.1578
33	3403	29.8	16	0.0189
34	3403	15.9	16	0.4548
35	3401	11.0	16	0.8076
36 37	3405	27.9	16	0.0321
37	3407	26.3	16	0.0496
38	3407	51.7	16	0.0000*
39	3402	35.3	16	0.0035
40	3400	26.3	16	0.0494
41	3398	46.1	16	0.0001*
42	3400	20.4	16	0.2006
43	3400	11.0	16	0.8055
44	3400	19.7	16	0.2313
45	3402	17.5	16	0.3504


	REGION		FORM B	
Question Number	Number of Responses	Chi Square	Degrees of Freedom	Level of Significance
1	3335	54.3	24	0.0004
2	3339	35.1	24	0.0669
3	3334	51.6	24	0.0009
4	3331	38.7	24	0.0293
5	3299	41.0	24	0.0165
,	3333	23.4	24	0.4906
7	3334	77.4	24	0.0000*
8	3338	37.9	24	0.0351
9	3339	76.6	24	0.0000*
10	3339	28.8	24	0.2258
11	3339	20.8	24	0.6450
12	3335	45.2	24	0.0055
13	3313	59.1	24	$0.0001 *$
14	3331	32.0	24	0.1256
15	3335	54.7	24	0.0003
16	3335	22.0	24	0.5765
17	3336	42.4	24	0.0115
18	3330	67.7	24	0.0000*
19	3333	210.1	64	0.0000*
20	3338	-120.1	64	$0.0000 *$
21	3341	27.0	16	0.0413
22	3338	22.8	16	0.1186
23	3337	55.1	16	0.0000*
24	3339	46.3	16	0.0001*
25	3340	26.3	16	0.0488
26	3338	21.8	16	0.1481
27	3334	16.7	16	0.4039
28	3338	25.2	16	0.0664
29	3331	27.0	16	0.0409
30	3340	22.0	16	0.1410
31	3340	22.5	16	0.1273
32	3333	32.7	16	0.0080
33	3335	20.9	16	0.1794
34	3335	23.0	16	0.1115
35	3336	17.2	16	0.3689
36	3331	16.7	16	0.4048
37	3334	11.8	16	0.7545
38	3330	32.7	16	0.0079
39	3330	18.2	16	0.3078
40	333?	21.2	16	0.1687
41	333	26.2	16	0.0503
42	3334	16.5	16	0.4141
43	3334	22.2	16	0.1367
44	3335	16.1	16	0.4419
45	3334	48.5	16	0.0000*

REGION
FORN:

Question	Number of	Chi	Degrees of	Level of
Number	Responses	Square	Freedom	Significanc:


1	3274	49.6	24	0.0016
2	3278	48.3	24	$0.00: 3$
3	3268	28.8	24	0.2247
4	3270	33.4	24	0.0947
5	32.74	62.0	24	0.0000 *
6	3264	26.7	24	0.3162
7	3269	40.8	24	0.0172
8	3266	49.7	24	0.0015
9	3268	26.0	24	0.3486
10	3273	47.5	24	0.0028
11	3268	43.6	24	0.0084
12	32.73	$40 \cdot 9$	24	0.0167
13	3273	36.8	24	0.0454
14	3257	14.0	24	0.9466
15	3259	34.3	24	0.0782
16	3268	31.8	24	0.1301
17	3273	53.9	24	0.0004
18	3272	49.7	24	0.0015
19	3273	204.8	64	0.0000*
20	3273	106.6	64	0.0004
21	3279	22.6	16	0.1229
22	3274	46.5	16	0.0001 *
23	3277	27.5	16	0.0355
24	3275	31.2	16	$0.01=5$
25	3275	19.7	16	$0.23: 0$
26	3275	15.4	16	0.4900
27	3271	19.2	16	0.2547
28	3273	27.7	16	0.0336
29	3272	15.9	16	0.4530
30	3271	15.1	16	0.5166
31	3274	18.1	16	0.3170
32	3265	38.0	16	0.0015
33	3270	29.1	16	0.0229
34	3266	18.4	16	0.0259
35	3271	17.7	16	0.3408
36	3271	14.2	16	0.5792
37	3267	21.2	16	0.1702
38	3271	14.3	16	0.5737
39	3270	11.4	16	0.7841
40	3266	25.2	16	0.0647
41	3268	26.4	16	0.0480
42	3267	29.0	16	0.0235
43	3267	11.9	16	0.7505
44	3263	24.5	16	0.0785
45	3268	29.6	16	0.0199

*p $\leq 0.0001$

SAMPLING METHOD			FORM A	
Ques : son   Number:	Number of Responses	Chi   Square	Degrees of Freedom	Level of Significance
1	3679	17.0	3	0.0007
2	3677	18.9	3	0.0003
3	3672	7.6	3	0.0535
4	3667	1.0	3	0.7862
5	3675	19.6	3	0.0002
6	3667	5.6	3	0.1290
7	3670	6.8	3	0.0756
8	3663	3.2	3	0.3567
9	3669	4.1	3	0.2448
20	3664	12.9	3	0.0048
11	3671	1.8	3	0.5976
1 1?	3634	3.8	3	0.2831
13	3677	3.9	3	0.2661
14	3661	20.5	3	0.0001*
15	3670	7.6	3	0.0542
16	3668	3.8	3	0.2779
17	3675	0.2	3	0.9767
18	3673	5.9	3	0.1152
19	3676	17.6	8	0.0243
20	3672	22.2	8	0.0044
21	3679	4.9	2	0.0861
22	3677	14.4	2	0.6007
23	3678	10.2	2	0.0060
24	3678	2.1	2	0.3352
25	3676	3.2	2	0.1982
26	3680	6.1	2	0.0460
27	3676	1.8	2	0.3928
28	3675	3.7	2	0.1562
29	3675	1.2	2	0.5257
30	3676	3.0	2	0.2231
31	3672	2.1	2	0.3442
32	3665	2.8	2	0.2450
33	3667	7.3	2	0.0256
34	3667	9.1	2	0.0106
35	3664	1.1	2	0.5567
36	3669	1.7	2	0.4150
37	3670	0.3	2	0.8260
38	3671	19.1	2	0.0001*
39	3666	4.4	2	0.1064
40	3664	3.8	2	0.1487
41	3662	3.4	2	0.1824
42	3664	2.2	2	0.3269
43	3664	1.8	2	0.3915
44	3664	5.0	2	0.0802
45	3666	0.5	2	0.7586

FORM B

Question Number	Number of Responses	Chi   Square	Degrees of Freedum	Level of Significance
1	3602	11.1	3	0.0107
2	3605	17.5	3	0.0006
3	3600	7.9	3	0.0472
4	3599	8.5	3	0.0360
5	3571	9.2	3	0.0265
6	3598	5.1	3	0.1591
7	3600	0.5	3	0.9049
8	3605	7.6	3	0.0534
9	3606	7.5	3	0.0574
10	3605	0.4	3	0.9306
11	3605	0.9	3	0.8237
12	3603	7.9	3	0.0479
13	3580	8.6	3	0.0343
14	3598	3.1	3	0.3659
15	3603	6.5	3	0.0891
16	3602	11.2	3	0.0106
17	3502	6.1	3	0.1051
18	3596	3.2	3	0.3539
19	3599	12.4	8	0.1313
20	3604	7.0	8	0.5260
21	3607	2.7	2	0.2489
22	3604	6.2	2	0.0435
23	3603	3.4	2	0.1792
24	3605	9.7	2	0.0077
25	3606	0.4	2	0.7974
26	3604	0.5	2	0.7436
27	3600	2.0	2	0.3524
28	3604	2.0	2	0.34
29	3597	0.1	2	0.9298
30	3606	6.1	2	0.0455
31	3606	0.5	2	0.7472
32	$35 \sim 3$	3.1	2	0.2050
33	3600	2.6	2	0.2659
34	3601	3.6	2	0.1576
35	3603	2.4	2	0.2985
36	3597	1.0	2	0.5808
37	3600	0.2	2	0.8638
38	3595	1.2	2	0.5469
39	3596	1.8	2	0.3887
40	3598	0.5	2	0.7538
41	3600	0.1	2	0.9305
42	3601	2.5	2	0.2729
43	3600	0.2	2	0.8908
44	3601	0.8	2	0.6436
45	3601	7.6	2	0.0223

${ }^{*} p \leq 0.0001$
162

Question	Number of	Chi	Degrees of	Level of
Number	Responses	Square	Freedom	Significance


1	3532	5.3	3	0.1470
2	3536	19.9	3	0.0002
3	3526	6.3	3	0.0963
${ }^{1}$	3527	2.1	3	0.5348
5	3532	3.1	3	0.3658
6	3520	0.3	3	0.9514
7	3527	7.0	3	0.0718
8	352?	2.3	3	0.4976
9	3526	7.2	3	0.0631
10	3530	2.8	3	$0.412 ?$
11	3526	1.8	3	0.6127
12	3531	2.9	3	0.4000
13	3531	2.4	3	0.4772
14	3512	4.4	3	0.2166
15	3517	3.6	3	0.3012
16	3526	5.8	j	0.1181
17	3530	2.6	3	0.4408
18	3529	8.8	3	0.0307
19	3530	21.2	8	0.0065
20	3531	4.0	8	0.8522
21	3537	0.5	2	0.7636
22	3532	9.4	2	0.0087
23	3535	11.4	2	0.0033
24	$3: 73$	1.4	2	0.4734
25	3533	3.2	2	0.2015
26	3533	4.5	2	0.1011
27	3528	6.5	2	0.0370
28	3531	2.9	2	0.2334
29	3530	6.2	2	0.0436
30	3528	2.6	2	0.2649
31	3531	1.6	2	0.4401
32	3522	0.0	2	0.0107
?	3527	1.5	2	0.4644
	3524	1.2	2	. 0.5426
	3528	4.8	2	0.0878
36	3528	2.0	2	0.3562
37	3523	7.1	2	0.0276
38	3528	2.2	2	0.3278
39	3: 27	3.3	2	0.1920
40	522	0.2	2	0.8839
41	3525	0.7	?	0.6729
42	3524	3.5	2	0.1672
43	3523	1.4	2	0.4831
44	3518	1.0	2	0.5934
45	3525	14.6	2	0.0007

*: $\because 0.0001$

APPENDIX D

```
 Frequency of Correct Responses on
(1) Factual Knowledge, (2) Conceptual
Knowledge, and (3) Belief Ltems by
```

(a) Sex
(b) School Type
(c) Schcol Sex
(i) School Size
(e) Region

## 164

151

(3) SCHOOL SEX, (4) SCHOOL SIJE, AND (5) REGION

$\frac{\ln }{610}$
Nown $8^{2} 134$


Camprenain	4.0	4.2	55.8	69.5	15.1	22.9	4.3	25.1	15.2	19.8
Sic, 10dam	39.1	28.9	51.9	68.6	10.3	20.6	47.3	25.8	13.9	39.8
grave	58.3	39.1	66.9	4.15	61.1	29.9	418	25.8	13.1	39,5
mpruintuinad	59.1	46.0	63.1	13.2	60.5	38.0	53.7	30.	29.9	00.0
- 19 dr)	366.31	300.61	271.6	86.84	168.94!	75.61	65.91	64.61	68.21	111.14

$\frac{\text { athol } 5 x}{41+10 y}$

Whlol by	66.6	46.0	66.1	24.5	60.2
Malart	38.9	31.0	88.1	69.9	4.7
Mind	42.1	32.4	54.6	69.2	4.9
$8^{2}(6)$	154, 61	289.74	133.91	75.31	75.51


34.8	53.0
23.6	44.0
23.1	46.2
42.71	52.91


27.8	29.9	70.2
23.9	14.8	22.6
25.9	14.9	42.2
39.94	66.31	199.59

$\frac{\operatorname{knol} \text { 3in }}{\cos 100}$
39.9
400.999
mo - 1199
902 1800

- 19 (4)
mellen

1. Worth
2. 1.6 日.
3.1.11.
3. 1 . Mid.
4. IV. Wid.
.
5. b. Mjo
6. Conden
8.8 .h.

NI N! NJ NL4 N5 N6
$\frac{3 x}{m 10}$

muld	46.6	46.9	72.9	45.8	25.6	82	4.	15,	56	
trala	47.9	36.9	72.1	38.0	14.9	66.18	14.8		6,0	36.1
$x^{2}(3)$	3.8	40.91	6.0	25,7"	71.2	128.91	)	4.0	59.9	33.5

School sppe

Cumprhansivo	47.5	38,4	71.3	41.4	21.1	75.3	1	13.5		
Sac. Medern	46.0	33.1	64.4	32.3	19.0	6	01	.	58.7	35.3
Grumar	48.0	60.1	86.8	54.8	18.	66	W. 1	32.7	53.9	36.8
unnmintainod	46.7	59.7	85.2	58.5		83.7	48.4	61.9	66.1	45.2
$x^{6}(9 \mathrm{dt})$	11.2	199.04	132.74	155, 91	78, 97	105.11	27.8	220.01	598 8.814	47.1

$\frac{\text { School Sex }}{\mathrm{N}!\text { Boy }}$
46.9

$\begin{array}{llll}80.1 & 51.0 & 25.7 & 84.8 \\ 75.7 & 41.4 & 15.8 & 90.0 \\ 69.8 & 38.6 & 20.2 & 98.3 \\ 30.01 & 58.14 & 41.30 & 36.14\end{array}$
49.0
4.8
42.6
9.2
34.3
98.9
10.3
$31.7 \quad 61.3 \quad 30.6$
$\frac{\text { School Shat }}{\text { Under } 400}$.

100-799	46.1
800 - 1298	49.1
OVor 1200	46.9
$\mathrm{l}^{2}(9 \mathrm{~d}$	6.1


90.8	40.3	18.8	94.1
93.0	11.9	20.3	73.7
71.1	13.7	20.3	76.0
73.5	10.6	20.7	71.6
6.9	9.2	7.9	12.1

94.1
93.9
96.0
91.6
12.1
40.1
43.1
45.8
46.6
18.1
36.3
52.0
28.2
$\begin{array}{llll}43.1 & 46.3 & 58.9 & 35.9 \\ 45.8 & 40.2 & 50.3 & 34.1\end{array}$
$46.1 \quad 49.6 \quad 50.8 \quad 36.9$
36.31
4.19
20.9

Region

1. Morth	19.1	35.2	90.7	33,0	21.6	72.1	18.7	30.2		
2. X , 1 H	45.8	40.8	68.1	40.1	21.1	72.1	14.6	30.2 13.6	34.1 55,1	27.6 32.8
J. HIN.	45.5	35.4	74.2	30.0	20.6	72.4 71.6	4.8	0.6 40.0	51,1 60.9	32.8
4. S. Mid.	17.1	41.2	67.6	39,6	16.9	72.5	41.5	38.0	58.5	30.1
3. H1, Mid.	41.5	13.3	70.7	38.6	21.5	76.3	4.19	J1,0	58,5	35.5
6. bi. Ang.	8.0	36.7	A.9	38.9	21.6	72.6	18.1	11.4 12.2	56.1 56.5	38.6
9. Lendon	48.2	39.6	74.8	46.9	21.1	69.1	43,5	40.0	59.1	H,
8. 8.1,	19.1	43.1	76.1	14.1	17.2	75.8	46.8	19.9	50.7	31.8
918.12	48.3	19.1	86.1	38.1	19.2	91.0	40.6	11.1	40.5	38.0
$x^{2}(214)$	31.1	32.6	16.8	29.1	36.9	29.6	10.8	10.1 4.0	30.7 31.1	72.14


	8	89	180	311	812	813	814	B15	816	819
848										
Halt	40.1	84.8	11.9	58.3	19.0	50.6	49.9	7.0	23.1	65.
frolo	40.0	66.0	41.9	38.8	41.6	51.6	45.5	6.6	18.2	65.2 55.4
$x^{3}(3 \mathrm{~d})$	10.7	281, 91	16.9	160.44	81.21	6.7	16.9	\$1.4	25,9*	55,41
School type										
Comprabantive	38.9	75.0	43.5	19.9	45.6	47.7	46,6	6.3	20.3	58.2
Sac. Moduen	31.9	69.4	41.8	45.4	40.6	45.4	46.7	8.1	19.3	58.2
Gruar	41.9	84.2	42.5	49.2	49.1	67.5	50.5	8, 5	24.2	78.1
Mornmintuinod	52.0	84.9	41.6	52.9	31.4	67.7	52.6	5.2	21.6	93.4
$\mathrm{l}^{(9)}$ dt)	32.4	71.41	14.2	38.14	86.41	135.41	11.8	22.0	15.9	108.4
Schoul Sax										
All boy	44.0	89.1	46.5	60.2	\$2,9	60.9	49.6	6.9	25.8	71.8
Wh ciel	12.2	70.5	41.7	14.1	41.0	58.6	45.9	5.1	18.9	57,5
Mind	38.8	73.7	41.5	47.0	41.4	48.2	47.8	7.1	20.0	58,4
$x^{2}(6) d!$	10.7	79.31	12.6	\$1,91	68.61	$43.2{ }^{14}$	3.5	8.1	19.8	47,2*
Cchool \$121										
Uuder 400	39.9	66.8	12,9	45.3	39,6	50.0	49.6	7.1	15.0	93.1
100-799	42.1	76.9	41.5	48.5	13.0	53.5	49.2	7.9	21.7	62.8
100-1199	36.4	14.4	41.3	4.1	30.4	48.9	46.5	5.9	20.6	59.5
gyor 1200	38.7	78.3	4.6	50.0	48.5	53.2	44.1	6.4	21.2	61.3
x (9 d $\mathrm{d}^{(1)}$	20.8	21.7	20.6	8.8	31.8	14.9	6,8	6.5	16.9	18.4
Mation										
1. North	38,8	66.0	13.1	17,2	41.3	39.2	43.7	9.1	16.6	56.9
2. Y, 6 H.	19.9	71.0	12.6	31.7	41.8	13.6	48.1	7.0	21.1	36.5
J. HoNi	11.8	69.5	41.3	19.2	46.1	48.8	49.0	7.4	20.6	60.6
4. 2, nid.	41.3	79.1	12.8	50.1	49. 1	30.9	49,0	6.9	19.6	59.6
3.11. Mud.	37.8	12.9	39.0	17.9	12.1	49.8	53.6	8.3	22.1	59.9
6. ${ }_{\text {B. }} \mathrm{Alqg}$,	39.1	76.4	4.1	39,3	50.0	63.3	41.0	6.6	20.5	61,3
9. London	39.3	76.3	4.1	15.9	42.1	48.9	19.1	3.9	20.0	99.6
8. Sib, 9, Sin,	12.1	83.0	41.8	19.6	17.0	57.5	47.9	5.9	19.8	61.8
	13.8	14.9	01.1	12.8	38.9	52.2	45.6	8.5	21.9	50.8
$\chi^{2}$ (did)	31.9	16.61	28.8	20.8	43.2	99.14	32.0	54.7	22.0	12.4


C5	c6	c1	08	69	010	Cl	$\mathrm{Cl2}$	C13


Mala	60.0	70.5	34.5	25.9	39.4					
peale	40.0	60.2	31.2	22.8	31.9	43.5	70.3	51.0	12.3	71.4
$x^{2}(3 \mathrm{dt})$	224.84	45,04	64.54	41.5	31.9	42.0	64.4	39.2	9.1	64.2
			H.J	4.0	33, ${ }^{\text {+ }}$	$42.0{ }^{\circ}$	16.2	213.41	13.5	24.61

$\frac{\text { School Sype }}{\text { Comethansive }}$
Sec, Modern
50.1

Sec, Modern	44.9	57.2	31.6	20.4	21
Grumar	55.7	81.1	37.5	28.3	17.4
10n-taintainad	61.6	83.3	32.3	28.6	46.7
$x^{2}(9 \mathrm{dt})$	68,41	119.91	18.3	41.4'	84.74


43.1	63.8
40.8	60.6
43.9	80.9
47.2	86.8
37.91	132.94


41.7	10.2	65.8
38.0	10.9	60.6
59.2	10.2	80.0
65.8	14.1	82.6
147.34	25.5	105.54


School S0x					
All boy	66.2	82.9	36.1	28.3	50.1
N1. Girl	10.2	66.9	30.9	23.3	32.1
Mind	49.0	60.9	32.6	23.6	33.3
$x^{2}(68)$	135.24	103.6	21.24	53.4	68,64


48.7	79.5	11.2	13.2	78.5
39.1	72.9	35.6	9.9	69.5
42.4	63.2	41.7	10.3	65.0
64.4	70.14	194.14	6.9	$47.8 \pm$


School 8120					
Ondar 400	51.0	62.7	34.6	20.1	31.9
400-799	50.1	68.2	33.0	25.0	35.0
800 - 1199	50.6	63.2	32.6	25.1	38.3
oper 1200	48.1	61.4	32.2	22.9	35.5
$x^{2}(9 \mathrm{dt})$	6.6	20.5	7.4	8.3	6.4


39.7	58.2
42.5	69.8
41.1	79.9
43.2	6.
6.0	$1 \vdots$


39.3	12.9	62.1
45.3	10.1	68.1
16.2	12.6	68.8
461	9.1	67.9
14.5	16.1	22.9

$\frac{\text { Reglon }}{\text { D. Morth }}$

I. North	50.2	62.0	33.9	19.0	32.1	38.0	bi 6			
2. Y, 1 H .	54.1	60.1	34.2	25.7	30.2	38.0	in	37.1	9.7	65.0
3. M.M.	46.2	62.1	34.5	21.3	30.2	38.8	13.1	39.2	10.5	64.3
1. 8. Md.	55.6	67.1	30.9	26.2	34.9	38.6	fir	43.1	12.5	64.1
S. M, Mid.	55.9	66.1	30.2	25.1	31,3	59.7	n. ${ }^{\text {a }}$	43.8	9.9	67.6
6. E. Alag,	42.1	50.3	31.4	17.5	35.9 36.9	43.9	61.5	42.7	9.1	67.1
9. London	51.5	65.6	34.1	28.5	35.1	43.0	2.1.	50.1	6.6	66.1
8.8.8,	45.1	62.3	32.8	21.	35.1	40.6	M,	41.9	12.0	65.0
9, 8.17.	39.1	65.7	3, 3.1	11	38.8	4.5	1	17.4	9.6	69.2
$x^{2}\left(214 d^{\prime}\right)$	62.00	26.9	H	10.	28.0	44.4	$\therefore 0$	39.7	9.1	65.9
		8.	W. 8	4.7	26.0	07.5	43.6	40.9	36.8	11.0


$173$

PREquercy of correct responses to concepvual kownede ITEMS By (1) SEX, (2) school TYpe,
(3) SCHOOL SEX, (4) SCHOOL SIEE, RND (5) REGION

	ABCII	ABC2	A8C3	124	125	126	127	128	129	1330
Sax										
Male	99.8	53.4	71.3	19.2	18.0	46.7	65.1	52.4		
Prame	60.6	48.5	66.7	13.8	76.9	48.15	73.5	45,9	71.2 73.6	73.8 68.4
$x \cdot 12$ d!	0.7	34.61	1688.24	6.6	1.0	4.5	13.14	17.0	7.9	60.1 14.1
School Mper										
Coupremasive	57.9	47.4	69.9	75.0	15.3	45.6	67.8	47.5		
Soc. Modera	56.8	39,3	62.1	68.4	73.3	43.4	62.2	41.0	688.0	69.1 64.8
Gramer	10.1	22.3	88.7	86:?	81.5	91.8	85.2	63.0	866	81.9
Mor-mintrined	65.9	75.9	89.8	84.9	89.5	56.2	75.9	63.9	89.8	82.1
$x^{2}(68 t)$	$128.6{ }^{1}$	$763.6{ }^{4}$	556.64	$85.8{ }^{\text {c }}$	$62.1{ }^{\circ}$	36.2 ${ }^{\text {a }}$	116.31	111.2	109.24	76.8
Schaol Sex										
	65.8	69.9	86.8	88.1	83.4	52.5	12.6	60.8	85.1	
Nat CIIt	54.0	57.4	12.4	17.8	83.0	52.8	97.8	51.9	89.6 76.8	79.1 7.7
Mind	58.0	45.0	68.6	73.2	78.6	41.6	66.4	45.8	22.8	69.0
	51.61	379.3	241.98	$25.1{ }^{11}$	35,6 ${ }^{\text {+ }}$	29.91	40.4	46, $2^{\circ}$	41.24	26,60
Scluol Size										
Urader 400	58.5	13.0	66.8	70.5	78.2	48.4	63.9	46.2	193.4	
408098	61.1	93.5	22.9	76.1	11.9	41.4	7.15	50.1	17.2	12.3
${ }^{80} 11199$	58.1	50.9	12.1	74.9	76.0	46.8	69.1	47.8	4,1	69.2
Our 1200	60.8	48.4	7.9	76.6	17.5	46.8	67.3	49.8	12.8	70.5
$x^{2}(6){ }^{\text {d }}$ )	14.2	45.71	11.1	6.1	2.1	2.6	11.1	9.0	10.2	8.1
Region										
1. Hoth	59.1	42.8	65.1	70.4	14.5	0.5	68.0	41.3	11.7	0.4
	59.0	48.6	69.1	12.6	73.4	41.4	65.1	42.9	12.0	63.8
3. 1.1 .1	61.7	47.6	69.3	74.1	75.4	44.2	67.1	47.6	90.3	68.4
1. b. Wd.	54.7	46.1	68.6	14.1	24.1	53.2	22.3	42.2	15.5	27.6
S. M. Nid.	62.2	48.8	69,8	14.0	16.0	46.0	68.1	52.5	15.7	70,3
6. B. Mrg.	63.8   8.2	45.9	69.8	12.2	21.0	36.8	66.4	45.6	67.7	20.4
9. lasdon	59.2 60.9	52.1	72.6	76.7	83.2	46.9	70.9	52.6	14.6	70.1
8. 8.8	60.5	53.8	15,8	79.8	17.2	49,5	70.2	51.6	76.1	40.1
	54,9	40.2	64.1	74.1	76.5	49,3	66.4	45.1	12.4	69.2
	4.2	79.4	N, ${ }^{17}$	26.7	31.6	26.0	22.4	27.4	20.1	28.3


		824	825	888	827	828	829	830	C24	C25	C26										
	Sox																				
	Halo	63.3	17.8	76.0	42.1	16.6	$4{ }^{3}$														
	Rumale	54.6	71.1	72.1	31.7	78.5	44.3	45.6	58,9	90.0	50,5										
	$x^{2}(2)$	28.34	0.1	16.1	76.41	19.5	39.7	45.4	65.6	89.5	49.2										
			0.5	16.1		1.9	14.0	10.0	30.0\%	10.2	8.3										
	School Yype																				
	Comprathensive	56.6	74,5	73.1	35.6	76.4	412														
	Sce. Modern	46.9	73.4	67.9	31.4	71.6	4.12 38.3	4.2	60.8	88.4	48.0										
	Gramer	79.3	88.0	34.6	46.0	81.2	38.3 48.4	40,8 560	59.8 70.8	86.6	46,6										
	Hon-kainuinad	80.4	89.0	86.9	46.2	88.9	48.4	96.0	70.8	96.1	55.9										
	$x^{2}(68 d)$	231.04	92,64	86,9\%	61.4 ${ }^{4}$	80,4	31.01	52.0	64.9	96.9	$\begin{aligned} & 59.9 \\ & 34.1^{4} \end{aligned}$										
								45.91	37.74	56.2"											
$\begin{aligned} & \text { H } \\ & \text { in } \end{aligned}$	School Sax																				
	MIL Doy   N1L Cul   Mind   $x^{2}(4 d f)$	75.1	82.1	83.1	48.6	82.9	48.3	52.0	62.3	95.4											
		62.5	83.8	78.5	34.9	82.4					57.3										
		54.)	94.8	71.3	34.8		40.6	49.5	70.8	92.9	50.0										
		92.14	33.91	44.5	43.24	29.31	10.8	20.4	60.1	87.9	48.0										
									35.14	35,8*	16,5										
	School Size																				
	Onder 400	54.0	79.3	65.4	33.2	72.0	41.8														
	400-799	60.2	79.1	75.2	31.6	79.6		42.2	57.8	85.8	50.6										
	800-1199	57.4	74.8	74.4	36.7	75.7	4.4	45	63.1	89.9	50.7										
	$x^{2}(6 \mathrm{df})$	60.9	79.1	76.9	37.0	77.5	40.1	44.8	62.4	90.4	48.8										
		9.5	21.9	18.6	8.1	18.1	40.0 8.9	48.9 5.9	62.2 13.5	90.4   19.8	48.0										
$176$	Peqion																				
	1, North	49.4	70.0	66.1	31.7	72.9	41.5														
	2. Y.1. $\mathrm{H}_{1}$	54.2	13.2	72.9	35.4	76.6	39.3	40.5	63.3	83.5	51.6										
	J. H.W.	55.6	78.2	74.1	34.9	72.9	43.6	1.9	28.8	87.6	51.8										
	4. C. Mid.	52.5	13.2	71.6	33.6	73.6	33.7	41	6.5	90.2	45.3										
	5. M1 Mld.	57.0	74.3	74.5	40.1	98.2	42.5	45.5	60.6	87.5	46.5										
	6. L. Atgo	59.9	79.0	93.2	33.1	81.5	41.9	41.5	5.5	9.12	52.5										
	9. London	58.0	78.6	93.8	34.3	78.0	10.6	49	32.0	91.9	54.5										
	9. 5.14	65.6	79.1	96.1	38.2	99.0	45.0	47.5	fil. 9		49.0										
	$x^{2}(1680)$	4.1	78.1	67.0	36,0	15.6	31.2	43.8	57.8	.	17.5										
	- 116	46.5	26.3	21.8	16.7	25.2	27.0	22.0	31.2	19.7	15.4										
0											15.4										


 (3) SCHOOL 3EX, (4) SCHOOL TYPE, ANO (5) RECIOU

	ABC31	18 C 32	ABCJ	${ }^{\text {ABC3 }} 3$	135	136	A37	A38	139	140
Sex										
Hele	79.3	49.3	62.2	56.9						
Pmale	80.8	4.1 .7	56.2	59.0	84.9 84.2		48.6	70, 9	38.9	
$y^{\prime}!80$	20.34	176.84	$17.2{ }^{\circ}$	39.04.7	84.24.8	$\begin{aligned} & 75.9 \\ & 17.8 \end{aligned}$	$10.4$	61.9	37,5	40.4
								13.0	4.5	51.01
Stoul 7 Pr										
Oupretersive	30.8	43.3	58.6	51.7	83.2	75.2				
Sac. Nodern	12.9	36.2	58.3	54,4		75.2	52.8	67,3	38.9	45.8
Grumar	93, 5	61.6	65, 0	65,6	81.7 89.6	71.6 84.6	52.8	61.0	35.9	40.0
$\left.\mathrm{r}^{4} 16 \mathrm{df}\right)$	31.8	$6 ? .9$	59.8	65.6	89,6 92.6	84.6 86.7	48.1	82.6	39.5	50.5
	45.5	434.3*	35.4	76.3*	$92.6$	$\begin{aligned} & 86.1 .61 \\ & 57.61 \end{aligned}$	43.7	87.0	40.7	49.1
							3.0	$139.3{ }^{\text {+ }}$	44.4*	31.3*
ashocl Sex										
N1 Boy	81.3	58.8	62.6							
Nal Cint	80.0	48.0	62.6 55.3	60.9	87.9 35.9	82.1	47.5	76.1	40.7	57.1
Mivad	19.6	1.5	59,4		35,9 30.4	80.1 74.0	55.4	72.6	39.3	40.7
$x^{2}(10 \mathrm{df})$	18.8	129.50	64.8	56.918.0		$\begin{aligned} & 74.0 \\ & 31.4^{4} \end{aligned}$	51. 1	66.3	37.3	43.2
							10.4	37.31	16.4	49.54
School Size										
Under 400	37.2	40.8	58,8							
400-799	79.4	45.9	¢8.7	59,6 58,3	83.4 85.2	72.0	53.4	${ }^{65.2}$	36.2	38.9
800-1199	81.0	48.2	59.2	597.6	85.2 8.3	77.0	48.6	69.0	38.6	44.2
Over 1200	88.0	31.4	69.9	59.6. 6	${ }^{85} 8.3$	17.2	55.4	69.5	38.4	45.9
$x^{2}$ (6 df)	21.94	$29.3{ }^{*}$	7.9		$\begin{gathered} 82.0 \\ 5.9 \end{gathered}$	$\begin{gathered} \begin{array}{l} 6,1 \\ 9.6 \end{array} \end{gathered}$	$15.2$	$\begin{aligned} & 71.6 \\ & 7.2 \end{aligned}$	$\begin{gathered} 37.9 \\ 5.4 \end{gathered}$	48.811.3
Region										
1. North	78.2	40.1	59.2							
2. 8.6 日.	81.1	4.5	55.1	57.1			53.8	64.4	33.6	39.9
3. ल.प.	76,5	44.1	56.5	57.1	82.2 08.0	12.4	51.6	57.9	37.6	38.2
4. E. Mid,	90.8	38.9	69.8	19.4 54.4	85.0	14.5	57.6	63.2	39.9	40.8
S. M. Mid,	79.5	46.5	61.4	39.4 60.0	85.6	73.6	48.2	63.3	33.8	42.8
6. l . Ang.	83.5	39.1	66.8	50.6	82.3	78.6	52.1	67.2	42.2	45.6
1. Londor	9.7	44.1	55.7	58.6	82.4	72.8	47.2	68.8	35.2	49.6
8. S.E.	91.3	48.0	60.4	58.9	82.0	18.4	55.5	69.7	43.7	46.3
9. S.n.	80.9	40.4	58.2	58.6	85.8	17.3	46.9	74.8	37.0	49.7
$\chi^{2}(16 \mathrm{dt})$	29.3	$63.8{ }^{4}$	4.1	59.1	82.5	74.1	54.4	17.8	31.9	45.8
				24.1	11.0	27.9	26.3	51.74	35.3	26.3



Sex										
Male	20.9	79.1	62.0	B4, ${ }^{\text {a }}$						
Pemple$r^{2}(2 d()$	21.2	78.1	36.9	019	32.5	4.6	56.9	84,8	39.5	76.6
	91.19	18,	$10.2$	$\begin{array}{r} 11.9 \\ 0.0 \end{array}$	$\begin{aligned} & 60.7 \\ & \$ 1.54 \end{aligned}$	$\begin{array}{r} 35.2 \\ .41 .24 \end{array}$	$\begin{aligned} & 60.4 \\ & 10.8 \end{aligned}$	$\begin{array}{r} 84,5 \\ 4.6 \end{array}$	$\begin{gathered} 50,4 \\ 55.34 \end{gathered}$	75.11.2
School Tyst										
Comprehensive	亿.:	96.1	59.1	82.9	56.5	31.1				
Sec. Modern	Sli	7.8	53.6	79.1	56.4	11.4 40.4	58.6 56.3	88.1	46.1	75.4
Gramar	.1.6	89.9	68.4	91.8	50.4 59.0	10.4 38.7	56.3	80.4	39.9	73.4
$\begin{aligned} & \text { Non-Whintazal } \\ & x^{2}(6 \mathrm{~d}!) \end{aligned}$	3.2	80.4	68.5	99.8	54.0	38.7	61.7	91.2	50.7	75,6
	49.4	88.10	50,74	73.61	5.1	38.5	03.5	90.2	46.3	80.1
						11.1	83.8	44.1*	23.9	1.5
School Sex										
1:1 Boy	8.9	83.1	66.1	89.1	51.2	413				
All Cirl	25.5	0.1	59.6	87.4	58.9	31.3	38.4	88.3	38.2	11.4
Mined	22.6	75.5	58.0	81.8	58.9 57.1	37,8	58.8	85.2	54.6	76. 1
$x^{2}(1+\mathrm{dt})$	71.3	27,31	20.8	28.3'	51.1 15.2	38.0	58.5	83.5	13.6	75.1
					15.2	5.2	9.0	9.0	18.50	2.9
School Size										
under 400	31.4	15.5	52.4	83.8	58.9	38.4				
400-799	21.5	19.9	59.5	83.7	56.1	40.4	58.4 59.0		4.1	78.9
300-1!199	21.5	78.5	62.6	84.1	55.6	30.7	59.0	84.9	41.9	74.8
Owe: 1200	24.6	18.0	58.9	84.1	57.4	30.6	60.4	8.2	45.8	76.5
I ${ }^{2} 16$ d	10.4	2.9	12.5	2.9			60.5	85.0	48.2	75.7
		. 3	12.5	2.9	2.2	9.2	10.!	5.9	9.9	6.1

Reqion

1. Morth	15.0	13.7	63.0	80.5	62.8	39.7				
2. Y. 8 H.	36.1	76.1	58.6	81.8	62.8 58.9	39.1	96.9	85.3	40.9	69.6
J. B, \%.	19.3	75.2	60.7	81.5	59.1	39.3 37.6	57.8	83.9	15.4	73.1
4. 8. Mud.	18.3	70.9	57.6	81.	59.8	37.6	56.0	83.2	50.1	71.3
S. M, Mid.	21.8	76.5	58.4	84.6	56.5	37.1	62.9	80.1	4.2	75.1
6. 8. Ang.	21.6	79.1	55.2	9.6	53.6	37.0	60.1	87.1	40.9	73.2
$\therefore$ Condon	25.3	80.6	57.1	42.8	54.8	43.9	56.7	81.6	39.0	76.4
8. S.L	24.8	60.2	59.9	18, 8	51.5	39.5	56.8	83.1	. 8	76.1
9. S.u.	19.6	18.0	51.0	18	31.5	38.8	58.1	84.6	48.2	76.2
$8{ }^{2}$ (15 di)	46.11	20.4	11.0	19.	19.5	38.9	57.2	82, 3	42.6	79.1
		2.4	12.0	19	17.5	17.2	16.7	11.8	32.9	18.2


	840	811	342	84	84	815	C35	C36	C39	338
Sax										
Male	16.7	73.1	84.9	58.3	70.0	62.9	36.2			
Remale	51.5	70.9	88.2	62.6	68.5	62.9	36.2	63.3	59.6	68.4
$\mathrm{x}^{2}(2 \mathrm{~d}$ ( $)$	11.1	2.0	9.2	19.54	68.5 4.0	31.9 34.81	34.3 15.0	71.2	49.2	59.9
			8.6	19.9	8.0	34.84	15.0	123.64	44.2'	29.11
School type						1				
Comprationsive	51.7	70.9	86.1	60.6	70.1	57.1	31.0	67.0		
Ste. Modern	47.3	63.2	81.3	59.8	64.6	46.1	27.1	67.0 65.1	51.9	64.4
Gramar	48.3	86.9	93.2	60.9	75.4	76.1	21.4	65.1	45.2	58.0
Non-Haintained	45.6	81.7	96.3	61.2	75.4 70.6	76.3 75.5	SL.:	71.9	72.1	14.5
$x^{2}$ (6 ds)	1.1	131.94	78.04	1.2 1.5	27.6	75, 185	48.4	68.6	71.9	70.8
	. 1.	1 .	78.0	1.5	27.0	$185.1{ }^{*}$	122.6	36.8	158,84	53.81
School Sex										
All boy	44.8	18.6	90.6	56.6	72.0	70.1	46.5	63.9	70.0	119
All Cita	54.0	16.9	89.6	64.4	12.4	63.4	400	76.8	5.9	61.9
Nind	48.9	69.2	B4, 8	60.3	67.9	54.1	31.5	76.8 65.5	50.1 50.6	61.8
$\mathrm{l}^{2}(18 \mathrm{~d})$	13.6	31.14	22.14	10.3	61.9 6.9	54.18   8.9	76.94	65.5 $65.5 \pm$	50.6 75.21	63.0
School Size										
mader 400	51.9	67.0	88.1	62.7	62.4'	54.3	34.1	66.7		
400-799	45.9	71.9	86.9	60.8	67.1	57.4	34.1 35.1	66.9		59.3 63.9
800-1199	50.9	72.3	85.9	58.6	69.9	59.9	35.1 37.4	66.9 67.5	55.0 54.9	63.9 67.9
One 1200	54.9	74.5	88.5	61.0	72.0	0.8 .8	33.1	68.1	54.9	67.7
$\mathrm{x}^{2}(6 \mathrm{dt})$	18.9	12.6	7.1	5.7	11.4	1.3	3.18	68.1 2.9	35.5 15.9	63.1 13.2
Region										
1. North	47.4	6.,8	83.4	61.8	66.8	51.3	29.1	68.8	46.8	
2. Y.6\% ${ }_{\text {\% }}$	54.9	68.6	85.2	66.0	68.6	52.3	31.1	67.4	46.8	68.0
3. \#.1.	51.2	72.9	86.0	59.2	63.8	55.5	31.9	69.6	46.3 59.2	61.0
4. 8. Mid.	45.8	65.8	84.4	59.3	66.9	54.3	32.5	69.2	50.9	65.0
S. H. Mid.	47.1	72.3	85.8	56.8	68.9	56.1	37.2	64.2 65.9	50.9	64.2
6. 8. Ang,	50.4	75.4	86.9	61.8	64.2	59.0	36.4	71.9	60.3	6.3
1. Condon	51.9	73.7	88.1	62.9	71.7	55.1	30.4   8.0	68.9	60.3 55.2	61.2
8. S.E.	49.5	12.5	96.3	60.2	i2.2	64.8	34.0 34.3	68.9	55.2 55.4	66.3
9. S.L.	46.1	64.9	81.9	57.8	65.2	50.0	35.0	61.7	49.1	56.9
$x^{2}(16 \mathrm{dt})$	21.2	26.2	16.5	22.2	16.1	48,5\%	17.7	14.2	21.2	14.3

18.3

		C39	C40	C41	$\mathrm{C42}$	C43	6.4	C45
	Sex							
	Male	59.4.	34.9	70.4	61.4	62.7	55.4	50.3
	Pemale	44.9	44.0	67.6	67.6	48.4	55.4	48.2
	$x^{2}(2 \mathrm{df})$	95.5*	30.8*	3.5	16.3	74.3*	4*.3*	6.4
	Schwol Dre							
	Comprehensive	50.4	37.9	66.9	64.0	54.7	55.9	47.6
	Sec. Modern	45.5	38.6	65.3	60.0	52.8	51.0	44.2
	Gramear	63.7	42.8	80.3	73.1	61.0	60.7	58.3
	Mun-Maintained	67.0	44.8	74.8	69.2	13.2	61.7	$59.4$
	$x^{2}(6 \mathrm{df})$	80.8*	9.6	48.5*	34.8*	16.2	41.6*	$48.7 \%$
	Scha: 1 Sex							
7	A1 Boy	67.7	35.8	73.7	65.8	65.6	59.2	57.4
\%	All Gixl	51.5	47.7	70.7	70.9	47.6	60.2	51.3
	mixed	48.9	3 H .1	67.6	62.4	$55.4$	$53.3$	$46.9$
	$x^{2}(4 d i)$	73.3*	24.9*	10.0	17.8	37.7*	24.2*	$28.34$
	School size							
	meler 400	48.8	39.8	68.7	59.4	55.0	50.1	49. ${ }^{\text {a }}$
	400-799	52.9	39.1	69.3	64.5	55.9	25.3	49.
	600-1179	52.4	40.3	69.0	64.7	55.2	56.3	49.4
	Over 1200	51.9	39.0	68.7	67.3	55.6	57.2	49.0
	$\mathrm{x}^{\overline{2}}(6 \mathrm{df})$	5.2	1.4	6.7	8.3	2.1	6.3	2.6
	Reg!or:							
	1. Horth	50.4	40.1	69.6	61.0	53.4	46..	14.3
	2. Y. H .	48.9	40.4	65.3	57.3	54.4	\$4.4	39.5
	3. N.W.	49.5	41.2	65.8	65.8	55.8	55.2	49.0
	4. E. Mid.	48.3	33.5	73.3	65.9	51.1	$55 . r$	47.4
	5. W. Mid.	49.6	38.2	65.9	62.4	56.2	57.3	49.7
	6. E. Ang.	54.5	39.7	78.5	66.1	49.6	55.4	58.7
	7. London	50.1	45.5	67.4	70.9	53.7	58.4	51.0
		54.0	35.7	69.6	65.c	57.6	54.6	- . 1
	9.5. . ${ }^{\text {9 }}$	51.6	37.7	70.4	61.4	55.4	52.9	46.9
	$\mathrm{x}^{2}(16 \mathrm{df})$	11.4	25.2	26.4	29.0	11.9	245	29.6

## Multiple Regression Computer Printouts



186

## intuii $\therefore$ ary - rorm $A$



WULIIPEE REGRESSION

## Conceptual Score - Form A



MuLTIFLE	k	0.34744
A SGUAKE		11. 1 < 116
ALJUこTE!	M StiAnt	0.11415
Stancano	ERRUK	2.11441



MFAN SOUARE
228.43113
4.05986

SUMMARY TABLE




SUMMANY TARLE									
－．．．＂		あれ゙ご吅以	H	SOJAMF	H50	－CHANGF	S1MDLE	－	HETA
$\because \mathrm{HM}$ M， 1		O．13130		i． 0260 ？		． 022002	－0．16170	7．AA493	
$\therefore 1$		O．．？ $\mathrm{NH}_{4}$		ก．67335		． 0.0734	－0．2124	－0．44c？	1.47763 $-ก .20105$
$\cdots<1$				0.09312		0.00976	nonsmit	n． $\mathrm{Cl}^{0} \mathrm{O} 3$	n． $\mathrm{n}+225$
！rfi		$\cdots$－$\because$ WH：		C－0， 012		－nonoon	－n．rija4		N－17\％
仙。		－1ヵ，${ }^{\text {a }}$		$\therefore-1 i_{0} \times$		．05194	－i）．：1125，	ก．${ }^{\text {a }}$ \％ 6	C． 170.1
¢ ${ }_{\text {¢ }}$		$\because$ Incon		0.13415		－Sinuma	－0．1．144，	－044\％	\％．114 427
！\％¢	－	＂．3tirio		0.12475		－ancono	8.17371	？．141A6	0．24V36
¢ ¢＋A ！				0.134 .75		－． 00000	C．21cho	－1才iFh	1．14436
		O．3ntia		0.11475		－onnon	－n：irrect 7	$r \cdot 1: \%$	1.10430 1.03 .43



ANALYSIS OF HEGRESSION hes idual	VARIANCE	$\begin{array}{r} \text { OF } \\ 9 . \\ 3607 . \end{array}$	SUM OF SQUARES 2140.19699 14768.67058	$\begin{array}{r} \text { MEAN SOUARE } \\ 237.79967 \\ 4.04445 \end{array}$	$58.5$


SUMMARY TABLE						
VAKIABLL	MULTIPLE $R$	R SQUARE	RSO Change	SIMPLER	8	BETA
SLHSEA3	$0.1998 ?$	0.03993	0.03993	-0.19c. 2	2.15126	
SEK	0.23059	0.05317	0.01324	- 0.10875	-0.42548	
$312 E$	$0.24817$	0.06060	0.00743	0.02754	0.20721	0.09639
IYPE1	0.24421	0.06211	0.00151	-0.0722	1.26778	0.06441
TYHE2	0.35574	0.12655	0.06445	-0.21115		0.3.241
TYHES	0.35576	0.12657	0.00001	0.23 .188	3.27411	O. 0.3338
THFE4	0.35576	0.12657	0.0nnó	0.18451	3.24 t 21	0.5308
-LHSEXI	0.35577	0.12657	0.00001	$0.14+91$	2.44878	$\begin{aligned} & 0.43051 \\ & 1-2750 \end{aligned}$
chityd	0.35577	0.12657	0.0000	O.0600\%	$2.44878$	$\begin{aligned} & 1.40729 \\ & 0-43705 \end{aligned}$
(LGH:TANT)			- 0 ,	0.0600	$1.74195$	0.42795

MULTIPLE REGRESSION
Belief Score - Form B


MULTIPLE K	0.20207
R SUUAKE K SGUARE	0.64063
AK.JUSTEW	0.62870
STANLAKL ERROK	2.64898


MMALYSIS OF MEGKESSION RESIDUAL	VARIANCE	$\begin{array}{r} \text { OF } \\ 960 \\ 3607 \end{array}$	SUM OF SOUARES 1118.42903 26273.15958	MEAN SGUARE 124.20989 7.26394	$17.06081$


VAMIAdit	MULTIPLE R	R SQUARE	RSO CHANGE	SIMPLE R	6	UETA
SCHSEx3	0.08771	0.00769	0.00769	-0.02711		
\$1	O.08049	0.007 P	0.20014	-0.00896	16.09077	2.39046 0.02574
FYPt	$\begin{aligned} & 0.12242 \\ & 0.12242 \end{aligned}$	$0.01499$	0.0076	0.05626	-0.22971	0.025752
1YPEt	$0.1224 \%$	$0.01499$	0.00006	0.06804	2.95184	$0.53168$
TVPEく	0.19860	0.03944	0.02445	-0. 14974	2.55630	4.43761
TYFE4	0.19809	0.03948	0.0060 00000	0.12853	3.93463 $\times, 9673$	0.56294
SLMSEXI	-.20207	0.04083	0.00135	0.04960	K. 136933 13.96246	6.40716
SCHSEAR	0.20207	0.04083	0.00000	0.06177	14.40197	.82458 1.95633



－11．1．	$\cdots$	－atil4
r S．．rane		U．16－12
4．J．${ }^{\text {a }}$ ：	k ¢，Man	1．1t．141
（4）Anl		erv



SUMMANY TABLE

vanlabl	MJITIPLEK	R STUARE	RSO CHANGE	SIMPLIR	8	FETA
$\therefore \rightarrow$－ 4 ，	1）10．4A5	n．02711	0.02711	－0． 1 ctar 5	24．05052	3.92678
$\cdots 1$	1－30．34	0.11945	0.09244	－0． O ¢FA 1	－1．46625	－c．25714
＇ $\mathrm{ir}^{\text {c }}$	（1－3¢int	U．1？47A	0.00442	0.6116	O． 20415	0．ne320
1r．a：	1.33471	0.125 Fz	0.00144	－0．017479	－6．84269	－1．1pe72
1ras．	0．－16， 9	0.19017	0.06505	－0．14AAt	－7．24487	－1．20083
1！．．．	ก．－1501	0.1906	O． Onno 2	6． 211031	－5．08469	－0．62501
180！	i． 41041	0.190149	0.0000	$0.20<42$	－5．09＋04	－0．blnto
	3．44014	0.16372	0.00283	$0.20,92$	34．6．3626	3.014615
	U．64014	0.14372	0.00000	－0．07854	23.67834	3.14083

MULIIPLA：REGRESSION
Conceptual ：core－Form C
VANIAMLT（S）FMTEREO UN STEP NUMAER $1 .$.


ANALTSIS DF    ME ？It．bic	VARIANCE	$\begin{gathered} \text { DF } \\ 9 . \\ 354 . \end{gathered}$	$\begin{array}{r} \text { SUM OF SOUARES } \\ 142 \\ 11843.76176 \end{array}$	$\begin{array}{r} \text { MrAM SLUARE } \\ \text { ISA. } 4755 \\ 3.33721 \end{array}$


vastarli
（tays）
Sta
Stat
YYup：
1ras
1Yヶく3
1 Yar
$\therefore \begin{gathered}\text { ¢－}\end{gathered}$
SWHうt＊
（LCOSTAMT）




SUMMARY TABLE						
vaklabat	multiple R	$R$ Square	RSO Change	SIMPLE R	8	
	O. 14551	n.03117	0.02117	-0.14551	3.06400	PETA
$\begin{aligned} & \text { sex } \\ & \text { sil } \end{aligned}$	0.16112	0002596	0.00478	-0. 0.06458	3.06400 $-6.3 P 452$	-0.48950
1rtel	0.18078	0.03254	0.00588 0.00066	0.03181 -0.0452	0.73661	-N.n6199
TYPE?	0.28084	0.07 A 7	$\bigcirc \cdot 0.0063$	-0.04522	2.03223	0.34544
Trues	0.? ${ }^{\text {a }}$ - 140	0.07919	0.00032	0.19675	1.63248	0.26476
StMSEXI	n. $2814 n$	n. $\begin{array}{r}\text { Ofl } \\ 0.019\end{array}$	O.Onnnत	ก.15218	3.42486	0.43742
Scnsiat	O.28148	0.07923	0.00005 0.00000	0.13772	$3.27 c 60$	$0 \cdot 33542$
(COMSIAmt)	0.28140	-0793	0.00000	0.04975	$\begin{aligned} & 3.3 i 235 \\ & 3.3300 \end{aligned}$	0.42469

191

1. Albone, Eric s. "pollution of the Air". In: Goldsmith, Edward (ed) Can Brital:: Survive? London: Tom Stacey Led., 1971
2. Ildous, Tony. Battle for the Environment. Glasgow: William Collins Sons and Co. Ltd., 1972.

Allaby, Michael. "British Farming: Revolution or Suicide?". In: John Barr (ed) The Environmental Handbook. Action Guide for the U.K. Lundon: Pan Books Ltd., 1971.
4. Allen, Robert. "Limits to Demographic Growth". In: Goldsmith, Edward (ed) Can Britain Survive? Iondon: Tom Stacey Ltd., 1971.
5. American Nuclear Society. Nuclear Power and the Environment. Questions and Answers. Illinois: Anerican Nuclear Society, 1974.
6. Arthur, Jon R. Survival. Man and His Environment. London: The English Universities Press Ltd., 1969.
7. Arvill, Rooert. Man and Environment. Harmondsworth, England: Penguin Books Ltd., 1973.
8. Atman, Kathryn S. "Investigating the Relationship Between Cognitive and Affective Cr-oonents of Instruction in a Social Studies Unit." Dissertation Abstracts International 32 (7): 3658-A, 1972.
9. Aynsley, Eric. "How Air Pollution Alters Weather". In, Boughey, * Arthur S. Readings in Man, the Environment, and Human Ecolcgy. New York: MacMillan Publishing Company, Inc., 1973.
10. Backstrom, Charles H. and Hursh, Gerald D. Survey Research. Evanston: Northwestern University Press, 1963.
11. Barbour, Ian G. (ed). Western Mar and Environmental Ethics. Attitudes Toward Nature and Technolory. Reading, Mass.: Addison-Wesley Publishing Company, 197.
12. Beddis, R. A. Britain's Environment: Enserve or Destroy? London: University of London Press, Ltd., 1975.

L3. Berry, Peter $S$. iNational Survey into Environmental Education in Secondary Schools. Report and Recommendations. Walton-onThames, Su: ey: The Conservation Trust, 1974.
4. Biological sciences Curriculum Study. Biological Science. Molecules to Man. Boston: Houghton Mifflin Company, 1968.

```
Motいr: Fi!"
 Plaster L.eaf Print
ir. il:|`
1. Gat!mer luaver matshdn.
```




```
 M01:!
A. Attor it mardens a little, press a leaf ori it firmi. and remove.
b. ilsmri halruis for mamoer.
b. whers dry, remove and paint.
You nered:
 Luaves, small fluted paper plates or milk cartons cut off an
 inch from the bottom, plaster of Paris, water, containtr
 to mix it in, petroleum jelly, hairpin, paints.
 9%
```

```
\because:a":! r'*
Nature's Numbers
Try thir:
Give :.. Sudent a can with a specific mumber of objects in it (using
tne nu:i.fs that vou are worting with!. Example: one leaf, two
Omus, tnree flowers, etc. Hold un the beaded number card without
L.lli:M tle child what the nunter is. The child looks irte the can
* Sima the number of onjects judicated. Do this until you have
Oc:lseted all of the numbers that you want the child to hnow.
*:.rd the crild for success by vertal praise.
•ロ:1!口こ!!
 &uves, urass, tree twics, sitchs, flowers, open-top can
...! ; :
Tha &lass should so on a walr prior to this activity, identifying
ami coliecting thinas we see in nature: trees, leaves, drass, flowers,
\becauset.. ihe tedcher lioeds a medium size, open-top can, beaded number
Gards.

Try this:
1. Go outside and smell the air after it rains.
2. Smell grass, flowers, dirt.
3. Does this thing have a smell? (rock, flower, grass)
4. Is the smell good or bad?
5. Compare smell of flowers to perfume.

You need:
Perfume

\section*{99}

Try this:
Soak a package of dried peas for at least six hours. Be sure they are covered by water. Get a box or two of round toothpicks. Stick the toothpicks into the peas; they will serve as connectors. Build houses, buildings, shapes. As the peas dry, they will make a strong joint. Houses may be covered with tissue paper.

You need:
```

Dried peas
Round toothpicks
Large bowl
Water

```

Hints:
Soah peas overnight or at least 6-7 hours. Be sure they are covered by at least an inch of water.
```

Trythis:

1. Take the inildren outdocrs amd ask them to nich up small natural
objects such as rocks, twigs, leaves, seeds, fods, etc., and to
put them into a rag.
?. Return to the classroomi and gather around a table.
2. Give each a sheet of heavy paper. Each child is to choose
severdl of the found objects and qlue them on his/her paper.
More:
The natural objei:s may be glued on in designs or patterns.
You need:
Gac, heavy paper for each child, glue
Hints:
Survey the area to be sure there is a diverse array of small natural
objects to be found.
```

101
Try this:
1. Give students a colur card (ex. green). Have them take the card
 with and find something the same color as their card (orass,
 leaves).
2. Show students a green card for a few seconds.
\(\therefore \quad \because \quad\) :ll students to find something green.
You need:
 Color cards, paint chips
Hints:
Be sure there are materials outside that match the colors you want
the students to find.

102
```

A以い!゙い":"
Show Pie
i: : : i

1. Srab rocrilfrun a pítare of a tree, flower, eto.
\therefore. \thereforest tho! to 20irt to one lite it in the outdoor enviromment.
1./. NOE..:
Oictures of objects the teacher rnows will be in the area in
whicn the dctivity will take place.
```
 103

Try this:
Go outside and hunt for four-leaf clovers.

Hints:
Locate an area with clover.

104

\section*{Try this:}
1. Gzther plants with leaf mold, moss, small picees of wood, rocks.
2. Fut pieces of moss on bottom of container upsidedown. Add rocks, peat moss and plants. Put a few pieces of charcoal on the moss.
3. Pour in water. Add small, ceramic animals.
4. Seal with plastic wrap and put in a cool window.

You need:
Glass jar, fish bowl, or aquarium, plants with leaf mold, mosses, bird gravel or rocks, peat moss, a few oieces of charcoal, plastic wrap, long handled spoon, container for water.

Try this:
Children will visit an outdoor area and find three or four different kinds of seeds. Example: pine cones, milkweed pods. Classify them according to how they travel--air, hitch-hikers, pop from plants.

You need:
Assorted seeds

\section*{106}

Try this:
Demonstrate effect oí waier on plants.
1. Place two plants in same window sill.
2. Water only one plant.
3. Record on calendar.
4. Observe differences in two plants as time passes.

You need:

> Two small plants
> 107
```

Awaromoss
Peanut Butter Snack for the Rirds
Tryt!i`:

1. Wi` pearat buiter wit! cormmed` or oats.
2. ise a brife to soread it cr pine cones.
?. Tie a strinc arourd each cone.
\therefore. ar for a wal: and tie tre fine cones to tushes and low tree limbs.
3. Wat.!i for hirds.
You need:
pine cones, peanut butter, ajes or cornmeal, knife, string.
```

106

```

iry tals:

```


```

tre bac: + trg irgo. Eronse soasmpal pitiurer from cards and rata-

```

```

|ッr. ,
A!+"

```


\(\because!\) !

fictuss erala of picturas

\(10!9\)

\[
\therefore \quad \because, 1,1 \quad . \quad!\cdot \cdot \quad 1 \quad . ., \quad r a ; 1!1 .
\]
\[
\text { . } 1 \cdot 1 \quad \text { M..., oth :a, rattit .atiern, white glue }
\]

110
```

Iry :ris:
!s, flar:.l rodrd to illustrate clothes for warm and cold weather.
\&\&f Guderts differentiate between warm and cold by putting their
*rat th. .indow, alacin; their hand on a radiator, feeling the
ar fo f:| *, Su: or feeling warp and cold water from bathroom
4:.!.!
: !, ....:
Flamon :oard
:*:Gures-one dressed for cold and one for hot weather

```
```

A\#\#rにな
Dress lip

```
```

\because! ! !

```
```

\because! ! !

```


```

* Gl:h, Have the children decide what to wear in various kinds

```
* Gl:h, Have the children decide what to wear in various kinds
o:ur:"... :f you have the dolls, have the children put the clothes
o:ur:"... :f you have the dolls, have the children put the clothes
| : % Or mof :rer select tne picture of what clothes are appropriate.
| : % Or mof :rer select tne picture of what clothes are appropriate.
E.f!r. : 's cold, have ther select a warm coat, mittens, a hat,
E.f!r. : 's cold, have ther select a warm coat, mittens, a hat,
 \because.
```

    \because.
    ```
Yo. 1: : !
```

Acore, af cletnes (seasonal clothes) or

```
A., out \(\therefore\) alls wit seasonal clothes

11~
Awareness Falling Leaves
Try this:Rake piles of leaves, kick, tumble, bury one another, feel, smell, ijstento the norse the leaves make.
You need:
Leaves
113

Try this:
A table game to help the pupil identify the characteristics of each season.

Print name of season at top of each large card.
Glue seasonal pictures on small cards.
File in a larae manila envelope.

You need:
Four cardboard cards \(\varepsilon \times 8\)
Sixteen cardboard cards \(3 \times 4\)
Seasonal pictures - cards
wildife stamps, magazines

\section*{114}
```

Amargeness
wedtherperson
Try :n:%:
US tre daii% weatifr to teach the children dbout ilos weather. Make
ap a caieridar witr, large spaces for each day. Cover it with clear
contact paper.
Mabe wedther symbols. Example: a sun with a smiley face for a sunny
day, a cloud witr raindrops for a iaimy day, etc.
Each day have the children notice the weather. Discuss it. Assign
one child each day to be the "weatherperson." Select the weather
symbol which fits the day'. Then help place it on the calendar on
tnr: proper day.
You reer!:
Calendar covered with contact paper
beather symbols backed with tape

```
Try this:
Collect smow and frozen soil, let children feel the cold. Melt it.
Observe soil tecoming moist and then softening. After melting, feel
textures of soil and melting snow.
```

You need:
Snow and frozen soil

116

```
Try iris:
Ering in tranches from early-blooming plants. Place the stems in
water in a warm place to force the leaves and blossoms (pussy
willow, for,ythid, flowering crab). Keep a record of the number of
days that buss before they bloom.
ynu need:
```

Branches, jar and water

## $11 /$

```
Motor: Fine Skills Weed Seed Art
Try this:
Go outside and gather dry weeds (some with roots), seeds, and leaves
for a picture.
Let pupils pick favorite color for background. Glue seeds, plants,
and leaves on paper. Dot open areas with glue and sprinkle on bits
of colored tissue paper. Cover with plastic wrap and staple on a
black paper frame.
You need:
 Dry weeds, seeds, and leaves, construction paper, tissue
 paper, stapler.
Hints:
Survey area for dry weeds and leaves. Cut black construction paper
frames.
1:
```

Science
Watching Trees

Try this:
Select a tree for the class to observe during the school year (at leas four times). Visit or observe tree. Draw a picture as a record of seasonal chances.
you need:

> Tree, crayon, drawing paper

119

Try this:
Students place egg shells on the window sills and watch the warm sunlight dry them out during the day. After the shells have dried out, use water colors to paint them in a variety of pastel shades. Glue the pieces of painted egg shells to make pictures that have been outlined on construction paper.
you
: ... s, water colors, paint brushes, glue, pictures outlined ol "i iruction paper

Hints:
Teacher and fupils bring egg shells from home. The teacher outlines pictures on construction paper.

$$
180
$$

Try this:
The class needs to go on a walk to fill medium size containers with dry sand. Use cardboard squares size 9 in. by 11 in. to write the numbers from 1 to 10 , using a separate card for erch number. Use any type of commerci.' glue to trace over the numbers that have been written in pencil. Before tre glue dries, sprinkle the sand over the numbers, shaking off any excess. Allow all of the numbers to dry. The finished product of this activity will be hard, raised numbers made of sand, which serves for good tactile experiences in learning to read numbers understandably.

You need:
Sand, commercial type glue, size 9 in. by 12 in. paper, pencils

Hints:
The teacher should be sure that an area is available fo. obtaining sand.

Awareness: Tactile

Try this:
Sit around a sand pile. Let the children sift through the sand with fingers and toes. They can pour sand into containers or from container to container.

More:
Wet the sand and build a castle.

You need:

> Bucket of water Empty containers Small hand shovel


[^0]:    
    Documents acquired by ERIC include many informal unpublished

    * materials not available from other sources. ERIC wakes every effort * to obtain the best copy available. Nevertheless, items of marginal * reproducibility are often encountered and this affects the quality * of the microfiche and hardcopy reproductions ERIC makes available * via the ERIC Document Reproduction Service (EDRS). EDRS is not * * responsible for the quality of the original docnment. Reproductions * * supplied by EDRS are the best that can be made fron the original.

[^1]:    ${ }^{\text {Results }}$ of testing tne null hypotheses may be found on $p .85$. 16

[^2]:    2 Th
    The average age of pupils involved in the survey was 15.4 years. However it should be noted that this average was computed from data in which pupils reported their ages in whole years only.

[^3]:    $3^{3}$ This title varies between LEAs. Other common titles for the chief officer are Director of Education and County Edication Officer.

[^4]:    *These LEAs agreed to participate in the survey after the deadline and therefore could not be included in the sample.

[^5]:    * $p \leq 0.0001$

