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Abstract

This paper introduces a new class of methods, which we call Möbius schemes, for
the numerical solution of matrix Riccati differential equations. The approach is based
on viewing the Riccati equation in its natural geometric setting, as a flow on the Grass-
manian of m-dimensional subspaces of an (n + m)-dimensional vector space. Since the
Grassmanians are compact differentiable manifolds, and the coefficients of the equation
are assumed continuous, there are no singularities or intrinsic instabilities in the associ-
ated flow. The presence of singularities and numerical instabilitites is an artefact of the
coordinate system, but since Möbius schemes are based on the natural geometry, they
are able to deal with numerical instability and pass accurately through the singularities.
A number of examples are given to demonstrate these properties.

1 Introduction

The matrix Riccati differential equation [1] is the equation

ẏ = a(t)y + b(t) − yc(t)y − yd(t), (1)

where the unknown y(t) is an n×m matrix function, and the known coefficients a(t), b(t), c(t),
d(t) are n×n, n×m, m×n, and m×m matrix functions respectively. The coefficient functions
are all assumed continuous in the interval of interest, and, where required, differentiable
to the appropriate order. One of the properties of Riccati equations is the existence of
movable singularities, i.e. singularities whose position depends on the initial conditions.
In applications to boundary value problems [2] it may be necessary to integrate through
singularities.

Our aim in this paper is to show that the initial value problem for (1) can be effectively
integrated even through singularities via explicit, one-step numerical schemes of the form

yi+1 =
(

α̃(ti, h)yi + β̃(ti, h)
) (

γ̃(ti, h)yi + δ̃(ti, h)
)−1

. (2)

Here yi is an approximation to y(ti) and (2) specifies how to construct an approximation yi+1

to y(ti+1), where ti+1 = ti +h. The functions α̃(ti, h),β̃(ti, h), γ̃(ti, h),δ̃(ti, h) are constructed
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from the coefficient functions a(t), b(t), c(t), d(t) by formulae of the form:

α̃(ti, h) = In + ha(ti) + o(h)

β̃(ti, h) = hb(ti) + o(h) (3)

γ̃(ti, h) = hc(ti) + o(h)

δ̃(ti, h) = Im + hd(ti) + o(h)

(In denotes the n×n identity matrix). Schemes of this type can be constructed with arbitrary
order. Moreover, by correct construction of α̃, β̃, γ̃, δ̃ from a, b, c, d, problems of stiffness can
be avoided.

It is known that one can integrate through singularities either by changing coordinates
[3], or by integrating a larger linear system associated with the Riccati equation. Recursion
formulae of type (2), which we call Möbius schemes (since they use generalized Möbius
transformations), accomplish this directly in the original variables. Substantial attention has
been paid in the literature to the numerical integration of Riccati equations: see [4], [5], [6],
[7], [8], [9] and references therein. Despite this, it seems the only scheme of the form (2) that
has previously been used is the modified Davison-Maki method of Kenney and Leipnik [5].
Had they used their method to integrate through a singularity they would have succeeded,
and may well have developed the ideas we describe here. In [3], Keller and Lentini also
noticed a recursion of the form (2) arising naturally as an iterative scheme for solving Riccati
equations. We emphasize that standard approaches (e.g. Runge-Kutta methods) applied
to Riccati equations are not of the form (2), and this is why they fail to integrate through
singularities.

A full explanation of the rationale for Möbius schemes and why they can pass singularities,
requires a geometric viewpoint, which we present in section 2. (This geometric viewpoint is in
fact necessary to understand in what sense the solution of a Riccati equation can be extended
through a singularity.) However from a conventional viewpoint, we can understand Möbius
schemes as an efficient method of solving via linearization (cf. [3]). Recall that if the n × m
matrix u(t) and the m × m matrix v(t) solve the linear system

˙(

u(t)
v(t)

)

=

(

a(t) b(t)
c(t) d(t)

)(

u(t)
v(t)

)

, (4)

then y(t) = u(t)v(t)−1 solves the Riccati equation (1). Now, since (4) is a linear system, any
of the standard numerical methods (explicit or implicit) for integration also has linear form

(

ui+1

vi+1

)

=

(

α̃(ti, h) β̃(ti, h)
γ̃(ti, h) δ̃(ti, h)

)(

ui

vi

)

, (5)

where α̃, β̃, γ̃, δ̃ obey the conditions (3). Defining yi = uiv
−1
i , an elementary manipulation

gives the formula (2) for yi. Thus we evidently can work with (2), at least away from
singularities. The main point of this paper, as will be presented in section 2, is that there
is a much deeper geometric reason for using Möbius schemes, which gives them much wider
applicability.

The contents of the rest of this paper are as follows: we conclude the introduction by giving
a simple example of the use of a Möbius scheme to integrate a Riccati equation through a
singularity, and the application of this to a boundary value problem. (Apart from here, in
the rest of the paper we focus on the initial value problem for the Riccati equation, and
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do not discuss at the moment applications to linear boundary value problems from which
Riccati problems arise.) Section 2 describes the geometry behind Möbius schemes. In section
3 we discuss the construction of methods of the form (2), i.e. how to chose α̃, β̃, γ̃, δ̃ from
given a, b, c, d, and in particular how to do this to avoid stiffness. Section 4 explores the issue
of stiffness in greater detail. Sections 5 and 6 report the results of application of Möbius
schemes: In section 5 we look at four problems, taken from [8], two of which are autonomous
and two of which are time dependent, and for which, in all cases, we are seeking nonsingular
solutions (though as we shall see, singularities are often lurking nearby). In section 6 we
reconsider the integration of two of the problems from section 5 in the case where we are
seeking singular solutions. Section 7 contains some concluding comments.

A Simple Example Consider the boundary value problem

ẍ + x = 0, t ∈ [0, L], x(0) = 0, ẋ(L) = 1 . (6)

Provided L 6= (n + 1
2)π for some integer n, there is a unique solution x(t) = sin t/ cos L. In

the invariant imbedding approach to this problem, we first reformulate the equation as a first
order system; writing, say u(t) = x(t), v(t) = ẋ(t), we have

(

u̇
v̇

)

=

(

0 1
−1 0

)(

u
v

)

, u(0) = 0, v(L) = 1 . (7)

Introducing now the function y(t) defined, where v(t) 6= 0, by u(t) = y(t)v(t), elementary
manipulations show we can solve the problem by the following steps:

1. Integrate the Riccati problem

ẏ = y2 + 1, y(0) = 0, (8)

forwards from t = 0 to t = L, to find y(t).

2. Integrate the linear problem

v̇ = −yv, v(L) = 1, (9)

backwards from t = L to t = 0 to find v(t).

3. Reconstruct x(t) from x(t) = u(t) = y(t)v(t).

The exact solution of the Riccati problem is y(t) = tan t, so this approach is usually only
considered valid if L < π/2; otherwise a singularity must be passed (the sense in which
y(t) = tan t is the unique solution of the initial value problem for all t will become clear in
section 2). Standard numerical methods cannot pass the singularity; for example the Euler
method and the backward Euler method with stepsize h give, respectively, the recursions

yi+1 = yi + h(y2
i + 1), y0 = 0 (10)

yi+1 =
1

2h

(

1 −
√

1 − 4hyi − 4h2

)

, y0 = 0 (11)

which evidently fail (the first because it defines a monotonically increasing sequence {yi},
and the second because the recursion is not defined for yi > 1/4h). The first order Möbius
scheme for Riccati equations, that we will define later on, leads, however, to the recursion

yi+1 =
yi + h

1 − hyi
, y0 = 0. (12)
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Since this expresses the fact that yi+1 is obtained from yi by an i-independent Möbius trans-
formation, it is straightforward to solve this recursion explicitly, obtaining

yi =
1√
−1

(1 +
√
−1h)i − (1 −

√
−1h)i

(1 +
√
−1h)i + (1 −

√
−1h)i

= tan(i tan−1 h). (13)

Setting i = t/h, we have the numerical solution using stepsize h:

yh(t) = tan rht, rh = (tan−1 h)/h ≈ 1 − h2/3. (14)

For small h this solution is evidently both qualitatively and quantitatively accurate through
many singularities of the solution. Furthermore, we can use it to solve the original boundary
value problem; using the Euler method for the linear problem (9) gives the recursion

vi+1 = (1 − hyi)vi, vN = 1 , (15)

where we have assumed L = Nh for some integer N . This can be explicitly solve to give

vi =
cos(i tan−1 h)

(1 + h2)(N−i)/2 cos(N tan−1 h)
, (16)

giving a numerical solution of the original boundary value problem

xh(t) =
sin rht

(1 + h2)(L−t)/2h cos rhL
. (17)

For small h the validity of this result is not restricted to L < π/2.

The reader will have no problem programming the recursions (12) and (15) and checking
there are no numerical stability problems for generic L and h. It is possible that a problem
could arise that, for some i, yi = tan(i tan−1 h) may be too large for the computer to handle
properly, giving an overflow error. In practice we have not encountered problems of this
nature. Note that close to a singularity there are almost always large absolute errors in the
computed yi, compared to the corresponding exact values y(ih). These are to be expected,
but do not impair the accuracy once the singularity has been passed, as will be explained in
the next section.

2 Riccati Equations as Flows on A Grassmanian

An n × m matrix y defines an m-dimensional subspace of Rn+m; denoting the coordinates
of Rn+m by z1, . . . , zn+m, the subspace associated with y is the space of solutions of the n
equations







z1
...

zn






= y ·







zn+1
...

zn+m






. (18)

Not all m-dimensional subspaces of Rn+m arise this way, but a dense open subset of the
collection of all such subspaces does. This collection forms a topological space, in fact a
differentiable manifold, known as the Grassmanian Gr(m,m + n). The topology of the
Grassmanian can be obtained by making it into a metric space using the distance function

d(p1, p2) = sup
u∈p1, ||u||=1

sup
v∈p2, ||v||=1

||u − v|| , (19)
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where || · || denotes the standard Euclidean norm on Rn+m. The manifold structure of
Gr(m,m + n) comes from its representation as O(n + m)/O(n) × O(m), which also demon-
strates that it is compact. [10]

There is a natural action of GL(m+n) on Rm+n, and this induces a GL(m+n) action on
Gr(m,m+n). Let us first consider the effect of an GL(m+n) transformations infinitesimally
close to the identity:







z1
...

zn+m






→







z′1
...

z′n+m






=







z1
...

zn+m






+ ǫ

(

a b
c d

)







z1
...

zn+m






, (20)

where a, b, c, d are n × n, n × m, m × n, and m × m matrices respectively. Assuming that
the point (z1, . . . , zn+m) lies in the subspace defined by y (i.e. the coordinates satisfy (18)),
a brief calculation (ignoring O(ǫ2)) shows that the point (z′1, . . . , z

′
n+m) lies in the subspace

defined by y′, where
y′ = y + ǫ(ay + b − ycy − yd) . (21)

We thus have the classic result (see, for example, [12]) that the Riccati equation corresponds
to a flow by infinitesimal GL(m + n) transformations on the Grassmanian Gr(m,m + n).

A similar calculation gives the full GL(m + n) action on the Grassmanian. A general
GL(m + n) transformation on Rm+n takes the form







z1
...

zn+m






→







z′1
...

z′n+m






=

(

α β
γ δ

)







z1
...

zn+m






, (22)

where α, β, γ, δ are n×n, n×m, m×n, and m×m matrices respectively, with det

(

α β
γ δ

)

6= 0.

The relation (18) implies






z′1
...

z′n






= y′ ·







z′n+1
...

z′n+m






. (23)

where
y′ = (αy + β)(γy + δ)−1 , (24)

provided det(γy + δ) 6= 0. If det(γy + δ) = 0, this does not mean the action of the GL(m+n)

transformation

(

α β
γ δ

)

is not defined on the plane y; it is defined, but the image point does

not lie in the dense open subset of Gr(m,m + n) which can be written in the form (18).

We now combine the results of the last two paragraphs. Since the Riccati equation cor-
responds to a flow by infinitesimal GL(m + n) transformations, the solution at time t0 + h
must be given by a transformation of the form (24) on the solution at time t0, In other words,
there must exist matrices α(t0, h), β(t0, h), γ(t0, h), δ(t0, h) such that

y(t0 + h) = (α(t0, h)y(t0) + β(t0, h))(γ(t0, h)y(t0) + δ(t0, h))−1 , (25)

The matrices α(t0, h), β(t0, h), γ(t0, h), δ(t0, h) define a generalized Möbius transformation
that generates the solution at t0 +h from the solution at t0, independent of the value of y(t0).
This provides the justification for (2).
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The flow on Gr(m,m + n) underlying the Riccati equation should be considered as the
fundamental object. Since it is the flow associated with a continuous vector field on a compact
manifold (a(t), b(t), c(t), d(t) are assumed to be continuous), it can be extended for all time
[11], and there are no singularities. The singularities in solutions of the Riccati equation for y
arise simply as result of the flow leaving the dense open subset where the “local coordinate”
y can be used, corresponding to values of h in (25) for which det(γ(t0, h)y(t0) + δ(t0, h)) =
0. Generically, the vanishing of the determinant occurs only for isolated values of h, and
consequently generic solutions of Riccati equations have at most pointlike singularities, and
can be extended past these. Formula (25) specifies how to do this: it is valid even when there
is a singularity in the interval (t, t + h).

This explains why, in principle, Möbius schemes of the form (2) can jump singlarities,
provided we can adequately approximate α(t0, h), β(t0, h), γ(t0, h), δ(t0, h) (this is the topic
of the next section). But there remain several concerns that need to be addressed. First,
near a singularity, close y orbits must diverge, i.e. there is an intrinsic instability. Like the
singularities themselves, this is a coordinate artefact; the underlying flow on Gr(m,m + n)
has no intrinsic instability. Orbits that are close on Gr(m,m + n) (in a natural metric on
Gr(m,m + n), such as (19)) can appear to be diverging when expressed in terms of y. This
phenomenon was evident in the simple example in the introduction, where large absolute
errors in y were present close to the singularity, but disappeared soon thereafter. Thus the
intrinsic instability need not concern us; but (2) also involves inversion of a matrix which near
a singularity will certainly be ill-conditioned, and we have to worry about numerical insta-
bility. (Of course, the chance that the matrix becomes genuinely singular — corresponding
to landing exactly on a singularity — is negligible.) In fact, we claim that since Möbius
schemes can tolerate large “apparent” errors (deviations in y) close to singularities, numeri-
cal instability is also of limited concern. Nevertheless, we chose in our numerical work, only
to implement Möbius schemes with some form of error control; the effect of this was that
when very high accuracy was demanded, our algorithms failed to pass singularities, but for
moderate accuracy, excellent results could still be obtained.

We conclude this section with a note on the title of this paper. Because the map from
yi to yi+1 described by (2) takes the form of a yi-independent Möbius transformation, which
is the known form of the transformation from y(ti) to y(ti+1), Möbius schemes are natural
schemes for the integration of Riccati equations (in the same way as it is natural to integrate
the linear system (4) via linear schemes of the form (5)).

3 Construction of Algorithms and Eliminating Stiffness

As explained in section 2, to construct Möbius schemes requires approximation of the matrices
α(t0, h), β(t0, h), γ(t0, h), δ(t0, h) appearing in (25). We do this using a linearization result
for the Riccati equation that is slightly less well-known than the one presented in Section 1.
Assemble the coefficients of the Riccati equation (1) into a single (n + m)× (n + m) matrix:

A(t) :=

(

a(t) b(t)
c(t) d(t)

)

. (26)

If the (n + m) × (n + m) matrix Γ(t) satisfies

Γ̇(t) = A(t)Γ(t), Γ(t0) = In+m, (27)
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and we decompose Γ(t) into sub-blocks of dimensions n × n, n × m, m × n, and m × m via

Γ(t) =

(

α(t) β(t)
γ(t) δ(t)

)

, (28)

then it is straightforward to check that

y(t) = (α(t)Y + β(t))(γ(t)Y + δ(t))−1 (29)

satisfies the Riccati equation (1), with initial condition y(t0) = Y . The solution to (27) can
be written down using the the time ordered exponential [13]:

Γ(t) = In+m +
∞
∑

r=1

∫

. . .

∫

t0≤s1≤...≤sr≤t
A(sr) . . . A(s1)ds1 . . . dsr. (30)

So, in particular, we have (with a slight modification of notation)

y(t0 + h) = (α(t0, h)y(t0) + β(t0, h))(γ(t0, h)y(t0) + δ(t0, h))−1, (31)

where

Γ(t0, h) :=

(

α(t0, h) β(t0, h)
γ(t0, h) δ(t0, h)

)

(32)

= In+m +
∞
∑

r=1

∫

. . .

∫

0≤s1≤...≤sr≤h
A(t0 + sr) . . . A(t0 + s1)ds1 . . . dsr.

For the purposes of numerical analysis, we want formulae for approximating y(t0 + h) given

y(t0), for small h. We see this reduces to finding approximations Γ̃(t0, h) =

(

α̃(t0, h) β̃(t0, h)
γ̃(t0, h) δ̃(t0, h)

)

to the time ordered exponential Γ(t0, h) for small h. Any such approximation gives us a
Möbius scheme (2). This observation, we note, was already made by Kenney and Leipnik in
their construction of the modified Davison-Maki method [5].

Before we construct approximations to Γ(t0, h), we emphasize again that equation (31) is
an exact formula, that holds for all h except those for which det(γ(t0, h)y(t0) + δ(t0, h)) = 0
(this relation defines the singular points of the solution). So if we have an approximation
Γ̃(t0, h) to Γ(t0, h), then this can be used to construct an approximation to y(t0 + h) from an
approximation to y(t0), regardless of the presence of a singularity in the interval (t0, t0 + h).
This is the key observation that allows us to integrate through singularities. There remains
the possibility that we might select h such that γ̃(t0, h)y(t0) + δ̃(t0, h) is ill-conditioned for
inversion, so we must carefully impose an error control procedure.

In (32), the r-th term in the sum is of order hr, so to estimate the time ordered exponential
to order hp, we need only consider the first p terms of the sum. To obtain a fourth order
formula we retain the first four terms in the sum, and estimate each of these to the necessary
order using the Taylor series expansion of A(t + s) − A(t). This gives the approximation

Γ̃4(t0, h) = In+m + hA + h2

2 (A′ + A2) + h3

6 (A′′ + 2A′A + AA′ + A3) (33)

+ h4

24

(

A′′′ + AA′′ + 3(A′)2 + 3A′′A + 3A′A2 + 2AA′A + A2A′ + A4)
)

,

where all occurrences of A and its derivatives are evaluated at t0. Truncating at order h1

gives the first order approximation

Γ̃1(t0, h) = In+m + hA(t0), (34)
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and truncating at order h2 gives us a second order approximation, which differs only by O(h3)
terms from the simple formula

Γ̃2(t0, h) = In+m + hA(t0 + h
2 ) + h2

2 A(t0 + h
2 )2. (35)

This latter approximation, which is convenient because no derivatives of A appear, was the
main one we used in calculations. A fourth order approximation containing no derivatives,
but involving evaluations of A at three different points, can be obtained by polynomial
approximating of the integrands in the first four terms of the sum in (32). The first order
approximation (34) was used in the “simple example” in the introduction.

At this stage a subtlety arises. Specifying A(t) uniquely determines the related Riccati
equation, but the converse is not true. Equation (1) is evidently unaffected by the substitu-
tions

a(t) → a(t) + p(t) In (36)

d(t) → d(t) + p(t) Im,

where p(t) is a scalar function. This can be written in the equivalent form

A(t) → A(t) + p(t) In+m. (37)

We usually specify a particular Riccati equation by giving one possible choice of the matrix
A(t); but we should always recall it can be changed in the manner just described. Under the
replacement (37),

Γ(t0, h) → exp

(

∫ h

0
p(t0 + s)ds

)

Γ(t0, h), (38)

i.e. Γ(t0, h) undergoes an overall rescaling; this leaves the y(t0 +h) in equation (31) invariant,
as expected. Looking at the approximations Γ̃4(t0, h), Γ̃2(t0, h), Γ̃1(t0, h) introduced above,
we see that since we have truncated the infinite sum, changing A(t) by (37) does not just
have the effect of an overall rescaling. For example, we find

Γ̃2(t0, h) → (1 + hp + 1
2h2p2)Γ̃2(t0, h) − 1

2h3pA(pIn+m + A + 1
2hpA), (39)

where here it is understood that p and A are to be evaluated at t0 + 1
2h. It follows that

replacement of A via (37) does not leave a given approximation scheme invariant; therefore
to fully specify an integration method for a Riccati equation, we have to discuss the choice
of A.

This freedom turns out to be an enormous advantage. (37) describes a time dependent shift
of the spectrum of A(t). It is well-known that for the linear system Eq. (27) the occurrence
of stiffness is associated with eigenvalues of A(t) with negative real part and large absolute
value, while accuracy is determined, in general, by the largest eigenvalue in absolute value.
This suggests that for low accuracy integrations, where stiffness may be an issue, we should
translate the spectrum of A(t) so that there are no eigenvalues with negative real part, but
for high accuracy, we should shift the spectrum to minimize the largest absolute value of the
eigenvalues. Although it requires some modification (as we shall see in the next section),
numerical examples support this basic philosophy well. In particular we found our methods,
after suitable shifts, gave excellent low cost/low accuracy results for stiff systems. There
is much room for further research here, and ultimately we would like to have an adaptive
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algorithm, that adjusts the freedom in A(t) in response to required accuracy, much like
existing algorithms for stepsize control.

The observation that “approximations to Γ(t0, h) need not have the same properties as
Γ(t0, h)” can also be exploited to find many approximations other than the ones Γ̃2 and Γ̃4

we have written above. In particular, let us consider the identities

Γ(t0, h) = Γ(t0 + h,−h)−1 = Γ(t0 + h,−h
2 )−1Γ(t0,

h
2 ). (40)

When we approximate the time ordered exponentials appearing in these expressions by keep-
ing only a certain number of terms in the relevant sums, the above identities are no longer
true to all orders, and thus each of these three expressions gives different approximations to
Γ(t0, h). The third expression gives particularly attractive Padé approximant formulae: for
example we have the second and fourth order approximations

Γ̃2 Padé =
(

In+m − h
2A
)−1 (

In+m + h
2A
)

Γ̃4 Padé =
(

In+m − h
2A − h3

24

(

1
2A′′ + A′A − AA′ − A3

))−1
× (41)

(

In+m + h
2A + h3

24

(

1
2A′′ + A′A − AA′ − A3

))

,

where here A and its derivatives are all evaluated at t0 + h
2 . We have not used this formula,

because it requires substantial symbolic computing to implement, but the efficiency of using
such approximations certainly merits investigation. In greater generality, many other possible
schemes for constructing approximations Γ̃ exist, and we have only selected the simplest for
the purpose of demonstrating the efficacy of Möbius schemes.

4 Eliminating Stiffness: An Example

To investigate more concretely the spectrum-translating strategy suggested in the last section
for handling stiffness, we consider application of the simplest first order Möbius scheme to
the constant coefficient Riccati differential equation. Thus we are approximating solutions of

ẏ = ay + b − ycy − yd (42)

via the recursion
yi+1 = [(In + ha)yi + hb] [hcyi + (Im + hd)]−1 (43)

Claim. The fixed points of (43) coincide (precisely, for all h) with the critical points of
(42). In the generic case, the asymptotic behavior of (43) near its fixed points reproduces
qualitatively the asymptotic behavior of (42) near its critical points, but only provided h is
sufficiently small.

Proof. The critical points of (42) are points y = Y , where Y is any solution to the algebraic
Riccati equation aY + b − Y cY − Y d = 0. A simple manipulation shows that yn = Y is a
fixed point of the recursion (43) also precisely when Y obeys this algebraic Riccati equation.

We now look at the differential equation and the recursion in the neighborhood of a
critical/fixed point Y . The “genericity” assumption that we make is that the n × n matrix
a − Y c and the m × m matrix (d + cY )T each have a complete set of eigenvectors, i.e. that
we can find n linearly independent n−dimensional vectors vr, r = 1, . . . , n, such that

(a − Y c)vr = λrvr for some scalar λr , (44)

9



and m linearly independent m−dimensional vectors ws, s = 1, . . . ,m, such that

(d + cY )T ws = µsws for some scalar µs . (45)

The mn rank one matrices of the form vrw
T
s span the space of n × m matrices.

Consider first the differential equation in the neighborhood of Y . Writing y = Y + ǫ, we
have

ǫ̇ = (a − Y c)ǫ − ǫ(d + cY ) + O(ǫ2) . (46)

Expanding ǫ via

ǫ =
n
∑

r=1

m
∑

s=1

ǫrsvrw
T
s , (47)

we find

ǫ̇rs = (λr − µs)ǫrs + O(ǫ2)
r = 1, . . . , n
s = 1, . . . ,m

. (48)

The mn numbers λr − µs determine the behavior of the orbits of the equation (42) near the
critical point Y . We note that under a spectrum translation in the equation, viz. a → a+pIn,
d → d + pIm for some constant p, we have λr → λr + p and µs → µs + p and the differences
λr − µs are left unchanged, as expected.

Turning now to the recursion, we write yi = Y + ǫi, and a simple calculation gives

ǫi+1 = [In + h(a − Y c)] ǫi [Im + h(cY + d)]−1 + O(ǫ2
i ) . (49)

Expanding

ǫi =
n
∑

r=1

m
∑

s=1

ǫi,rsvrw
T
s , (50)

we have

ǫi+1,rs =

(

1 + hλr

1 + hµs

)

ǫi,rs
r = 1, . . . , n
s = 1, . . . ,m

. (51)

The mn numbers (1 + hλr)/(1 + hµs) determine the behavior of the recursion near the fixed
point. Since

1 + hλr

1 + hµs
= 1 + h(λr − µs) + o(h) , (52)

for sufficiently small h we are guaranteed to qualitatively reproduce the asymptotic behavior
of the differential equation near Y . But evidently for larger h, this need not be the case. •

Stiffness is the phenomenon that to obtain qualitatively correct behavior from a numerical
scheme near a stable critical point of an ODE we are forced to use very small h. In our case,
from (48), the critical point y = Y is stable if all the differences λr − µs have negative real
part. To obtain qualitatively correct behavior from the recursion we need

∣

∣

∣

∣

1 + hλr

1 + hµs

∣

∣

∣

∣

< 1 (53)

for all r, s. Assuming Re(λr−µs) < 0, this condition is automatic if |µs| ≥ |λr|, and otherwise
implies

h <
2Re(µs − λr)

|λr|2 − |µs|2
. (54)

Stiffness can happen, but the criterion for stiffness is not the eigenvalues of A having negative
real part and large absolute value, as was tentatively suggested in the previous section (we

10



will see confirmation of this in the numerical example in section 5.5). Nevertheless, spectrum
translation can resolve stiffness. Under spectrum translation we have

1 + hλr

1 + hµs
→ 1 + h(λr + p)

1 + h(µs + p)
=

1 + h
1+hpλr

1 + h
1+hpµs

, (55)

showing spectrum translation relaxes the condition on the stepsize h (instead of h being
small, h/(1+hp) must be small). Unfortunately it is not easy to determine from this analysis
(particuarly in the time dependent context) what p should be chosen for a given equation.
In our numerical studies we took p to be the largest eigenvalue of A in absolute value, which
seemed to work well.

We conclude this section with several notes:

1. In the introduction we presented Möbius schemes as an implementation of linearization
techniques for Riccati equations in the original variables. We have now shown that stiffness
can occur for Möbius schemes, but its occurence does not coincide with the occurence of
stiffness for the associated linear system. This shows that there can be substantial differences
in the effectiveness of the two types of method. See also section 5.5.

2. From the above analysis we see that if the recursion (43) converges, it converges to a
solution of the algebraic Riccati equation aY + b − Y cY − Y d = 0. Under the circumstances
that this algebraic Riccati equation has a unique stable solution (a solution for which all
the differences λr − µs have negative real part), as happens in a number of cases of interest,
implementing the recursion (43), using arbitrary starting value y0 looks like a potentially
useful method for finding this stable solution (one could of course exploit the higher order
methods of section 2 as well). This method for solving the algebraic Riccati equation has
many similarities to the recursive method for computing the sign function of the matrix A,
and using this to solve the associated algebraic Riccati equation [14]. We thank one of the
referees for pointing this out.

3. It is interesting to generalize the above analysis for higher order Möbius schemes. Un-
fortunately, for a general Möbius scheme applied to the general constant coefficient Riccati
equation, the fixed points of the recursion need not coincide exactly with the critical points of
the ODE. If we restrict to the case b = 0, and look only at the critical point at y = 0, which
will be a fixed point for all the Möbius schemes we have considered, then a general theory
can be developed, analogous to the standard stability theory for linear ODEs. Stability of
a scheme, for a given h, is determined by the eigenvalues of a and d, which now are exactly
the eigenvalues of A; the region of stability is changed by spectrum translation, and it is
possible to estimate the spectrum translation needed to produce stability for a given h. For
the general case (b 6= 0), none of this is possible without a priori knowledge of the critical
point Y . (If Y is known, then substituting z = y − Y the equation is brought to b = 0 form
ż = (a − Y c)z − zcz − z(d + cY ).)

5 Examples 1: Nonsingular Solutions

5.1 Numerical Procedure

In the following examples, we performed numerical integrations of Riccati equations using
Möbius schemes (2). The approximation Γ̃(ti, h) used was Γ̃2 from (35) in all examples. In
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addition Γ̃4 from (33) was used in the third example below (section 5.4). Each Riccati equa-
tion was specified by an initial choice of A(t), and the effects of various spectrum translations
of the form (37) were considered.

A standard stepsize control procedure was used throughout. At each step, the program
receives the current value t of the independent variable, the computed value of y(t), and h,
the last stepsize used. Using this data the program computes two approximations to y(t+h),
the first, y1, by application of the given numerical method once with stepsize h, and the
second, y2, by application of the given numerical method twice, with stepsize h/2. A local
error estimate is then obtained using the simple absolute error

||y1 − y2|| =
n
∑

a=1

m
∑

b=1

|y1ab − y2ab|. (56)

The use of a pure absolute error formula was intended to be extremely constraining when
integrating through singularities. Once ||y1 − y2|| is computed, it is compared with a preset
tolerance ∆. If the error exceeds 2∆, the step is rejected, and all calculations are repeated
using a smaller stepsize hnew, obtained from (hnew/h)p+1 = ∆/||y1−y2||, where p is the order
of the method. Otherwise, the step is accepted, with the approximation to y(t + h) taken to
be the extrapolated value (2py2 − y1)/(2

p − 1). The stepsize h is passed on to the next step,
unless ||y1 − y2|| < ∆/2, in which case it is updated to hnew via the formula given above.

This stepsize control procedure should be sensitive to the problem of ill-conditioning in
the matrices that need to be inverted to construct yi+1 from yi.

5.2 Problem 1: A constant coefficient example

As a first example we look at example 1 from [8], in which

A(t) =









0 0 0 1
−10 −1 10 0
0 1 0 0

100 0 −100 −1









, (57)

and we consider the problem on t > 0 with initial condition y(0) =

(

0 0
−1 0

)

. The exact

solution is

y(t) =
1

1 + 2.331e−22t + .42e−11t − 1.21e−21t
(

1 + 2.1e−22t − 1.89e−11t − 1.21e−21t .11 − .231e−22t + .121e−21t

−2.541e−22t −.1 − .21e−22t + .189e−11t + .121e−21t

)

.

In practice we consider integration over the interval 0 < t < 5; by t = 5 the solution is

extremely close to its asymptotic value y(∞) =

(

1 .110
0 −.1

)

. The eigenvalues of the matrix

A(t) given above are 10, 0,−1,−11. We considered using this A(t), and three other choices
of A(t), translated by +10 I4, +20 I4, and −10 I4. Results, given as a log-log plot of number
of steps used against inverse tolerance, are displayed in Figure 1. In all cases the integration
was found to be reliable over the large range of tolerances displayed, with the tolerance giving
a good measure of the magnitude of global error. For tight tolerances all 4 methods showed
the expected linear increase of the number of steps required with 1/(tolerance)1/3, with best
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Figure 1: Results for Problem 1. The legend indicates how much the matrix A(t) has been
shifted. Base 10 logarithms are used.

performance by the original choice of A(t), for which the eigenvalues are most symmetrically
placed about the origin. For broader tolerances there is a marked difference in behavior
between the methods for which there are large negative eigenvalues (i.e. the initial choice
of A(t), and the choice with A(t) shifted by −10 I4) and the methods for which there are
no large negative eigenvalues. For the former, there are signs of stiffness — stepsize choice
becomes erratic, and the decrease of the number of steps as tolerance is broadened is not
as rapid as expected, because stability issues, and not just accuracy issues, are relevant.
So, as we have predicted, the question of which method is optimal depends on the desired
tolerance; for low accuracy, stiff methods are best, for higher accuracy the choice of A(t)
with eigenvalues symmetric about the origin is preferable. Of course, in the current example,
where the negative eigenvalues are not particularly large, these effects are small, but they are
most definitely present.

5.3 Problem 2: Dieci’s knee problem

Here we consider example 3 from [8], i.e. the scalar equation

ẏ = 1 +
y(y − t)

ǫ
, (58)

for which

A(t) =

(− t
2ǫ 1

−1
ǫ

t
2ǫ

)

. (59)

Here ǫ is a small positive number. We are given an initial condition at t = −1, and it is
desired to integrate over the interval −1 < t < 1.

This is a difficult problem for numerical analysis. The ǫ dependence can be scaled out,
and the solutions take the form y(t) =

√
ǫY (t/

√
ǫ) where Y (T ) is plotted in Figure 2. From

this figure the general behavior can be seen: for t < 0 the solutions are attracted (possibly
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Figure 2: Y (T ) as a function of T = t/
√

ǫ for Problem 2. The solutions of Problem 2 are
given by y(t) =

√
ǫY (T ). The vertical lines indicate asymptotes of solutions.

through a singularity) towards y(t) = t, which is an exact solution. For t > 0 the solution
y(t) = t becomes unstable, and solutions are attracted towards an asymptotic solution y(t) =
ǫ/t+O(ǫ2) (Y (T ) = 1/T + . . .). What is less evident from the figure, because of the rescaling,
is just how rapidly solutions are pulled towards the stable asymptotic solutions in t < 0 and
t > 0. If we take initial condition y(−1) = −1 − m, the exact solution takes the form

y(t) = t − me(t2−1)/2ǫ

1 + m
ǫ

∫ t
−1 e(s2−1)/2ǫds

, (60)

and from this
|y(0)| ≤ |m| e−1/2ǫ. (61)

For small ǫ and moderate m, this is very, very small, and, bearing in mind that whatever
integration scheme we use has some error, y(0) will be essentially indistinguishable from 0.
What this means is that once we reach t = 0, all information about the initial condition will
have been lost.

If all information about the initial condition has been lost, all that we can ask from a
numerical method is qualitatively correct behavior, i.e. that for t > 0 it should reach the
appropriate asymptotic solution y(t) = ǫ/t+O(ǫ2). Now, from Figure 2, we see that solutions
with y(0) > 0 reach the asymptotic solution via a singularity, while solutions with y(0) < 0
do not. Since we have no control over whether y(0) > 0 or y(0) < 0, an apparent sine qua
non for dealing with this problem is the ability to pass through singularities. In fact, the
situation is a little better than this: any method, while integrating up the stable solution
y(t) = t in t < 0, will have a systematic error, whose sign will be typically purely method
dependent, i.e. not dependent on choice of stepsize/error tolerances. Should the systematic
error be negative, the method will report y(0) < 0 and there will be no need to go through
a singularity. Of course, it is doubtful that there exists a method not suited to dealing
with singularities, which happens to correctly avoid the need to do so in all problems. The
argument given here is an explanation of how methods that cannot handle singularities might
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Figure 3: Results for Problem 2, ǫ = 10−3 (left) and ǫ = 10−5 (right). For methods other
than “best”, reliable integrations could not be obtained at low accuracy.

still produce correct results in the current problem. It is certainly not a justification for their
generally applicability.

Having established that we are only looking for qualitatively correct behavior in this
problem, particularly in the presence of singularities, let us present results. We took initial
condition y(−1) = −1.1, and considered 4 choices of A(t),

“symmetric” : A(t) =

(− t
2ǫ 1

−1
ǫ

t
2ǫ

)

“goodright” : A(t) =

(

0 1
−1

ǫ
t
ǫ

)

“goodleft” : A(t) =

(− t
ǫ 1

−1
ǫ 0

)

“best” : A(t) =

(− t
2ǫ 1

−1
ǫ

t
2ǫ

)

+

∣

∣

∣

∣

t

2ǫ

∣

∣

∣

∣

I2.

The “best” method has no negative eigenvalues, and agrees with the “goodleft” method for
t < 0 and the “goodright”method for t > 0. The “symmetric” method has the two eigenvalues
of A(t) symmetrically placed around the origin. Results for ǫ = 10−3 and ǫ = 10−5 are
presented in Figure 3.

All methods except “best” cannot be reliably run for broad error tolerances. On the other
hand, “best” gives excellent, reliable results in this region. To illustrate this, we present the
runs for this method at tolerances 0.08, 0.09, 0.10, 0.11 for ǫ = 10−5 in Table 1. The method
produces — to within the tolerance level — the correct behavior for both t < 0 and t > 0,
with, in fact, surprising accuracy in the latter region. Bearing in mind the complexity of this
problem, these are remarkable results. To demonstrate further the reliability of our method,
in Table 2 we present a similar set of runs obtained for a modified Dieci knee problem [15],
the equation

ẏ = ǫ +
y(y − t)

ǫ
(62)
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tolerance 0.11 tolerance 0.10 tolerance 0.09 tolerance 0.08

t y t y t y t y

-0.5688 -0.7125 -0.6778 -0.7852 -0.7008 -0.8005 -0.7246 -0.8164
-0.1376 -0.2812 -0.3556 -0.4629 -0.4016 -0.5013 -0.4492 -0.5410
0.2937 0.04597 -0.0333 -0.1406 -0.1024 -0.2021 -0.1738 -0.2655
0.7249 1.483e-5 0.2889 0.01102 0.1968 0.03435 0.1016 0.01050
2.0186 0.512e-5 0.7560 1.398e-5 0.4960 2.155e-5 0.3770 2.291e-5

2.1575 0.474e-5 1.3936 0.739e-5 1.2032 0.803e-5

Table 1: Samples runs of method “best” for the Dieci knee problem

tolerance 0.11 tolerance 0.10 tolerance 0.09 tolerance 0.08

t y t y t y t y

-0.5688 -0.7124 -0.6778 -0.7851 -0.7008 -0.8004 -0.7246 -0.8163
-0.1376 -0.2810 -0.3556 -0.4628 -0.4017 -0.5012 -0.4492 -0.5409
0.2936 0.04563 -0.0334 -0.1402 -0.1025 -0.2018 -0.1739 -0.2653
0.7248 -0.76e-8 0.2888 0.01016 0.1967 0.03382 0.1015 0.01303
2.0183 0.51e-8 0.7675 1.00e-8 0.4959 -5.66e-8 0.3769 -10.22e-8

2.2037 0.46e-8 1.3934 0.74e-8 1.2030 0.80e-8

Table 2: Similar results for the modified Dieci knee problem

(run with identical initial condition and ǫ = 10−4), for which the stable solution for t < 0 takes
the form y(t) = t+ ǫ/t+ . . . and the stable solution for t > 0 takes the form y(t) = ǫ2/t+ . . ..

Several other features of Figure 3 deserve mention. First, at high accuracy, the “goodright”
method outperforms the others substantially, in needing far fewer steps. This is a coincidence.
A detailed analysis shows that for this method in the t < 0 region, the dominant systematic
error term present for the other methods is absent. Consequently it integrates far better in
this region if there are no stability problems. However there are stability problems for broad
tolerances, for which a reliable integration could not be achieved. Of the other 3 methods,
“symmetric” works best, as expected. Second, we note the strange behavior of the plots for
the method “best” for broad tolerances. Despite the absence of stiffness, there is no reason
to expect anything approaching linear behavior of the plot except in the region where the
typical stepsize is substantially less than the natural scale of the problem,

√
ǫ. In fact the

onset of the linear regime in the plots we have obtained is perfectly within expectations. One
contributory factor to the rapid increase in the number of steps as the tolerance is tightened
is the fact that the solutions obtained with the method “best” go through a singularity to
latch on to the correct asymptotic solution for t > 0. For the reasons we have explained,
there is no reason why they should not do this.

5.4 Problem 3: A matrix time dependent example

Here we consider example 4 from [8], for which

A(t) =









0 t
2ǫ

1
2 1

0 0 0 1
1
ǫ 0 − t

2ǫ 0
0 1

ǫ 0 0









, (63)
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Figure 4: Results for Problem 3, ǫ = 10−3 (left) and ǫ = 10−5 (right)

and we integrate over the interval −1 < t < 1 with initial condition

y(−1) =

(

0 0
0 0

)

. (64)

Straightforward calculations show this equation has the following stable solutions:

y(t) =

(−ǫ/t + O(ǫ2) (t/2) +
√

ǫ + O(ǫ)
0

√
ǫ

)

t < 0 (65)

y(t) =

(

t/2
√

ǫ
0

√
ǫ

)

t > 0. (66)

The eigenvalues of A(t) as given above are

± 1√
ǫ
,
−t ±

√
t2 + 8ǫ

4ǫ
. (67)

We therefore implemented our methods with two choices of A(t), the one given above, and
the above shifted by (t/2ǫ)I4 in the region t > 0. We note the latter choice leaves a negative
eigenvalue −1/

√
ǫ for t < 0, but removes the much larger negative eigenvalue that appears

for t > 0. We used ǫ = 10−3 and ǫ = 10−5, and considered both the second order and fourth
order methods given in Section 3. Results are displayed in Figure 4, and are completely
in line with expectations. Having left a moderate negative eigenvalue in even the shifted
method, we found the broadest tolerance usable for the shifted method was not as low as in
the example of the Dieci knee problem, but still we could get very fast, reliable low-accuracy
integration for tolerance 10−2.

5.5 Problem 4: A large matrix example and (the absence of) stiffness

Finally, we consider example 1 from [7] (which is equivalent to example 6 from [8]). Here y(t)
is an N × N matrix, k is a positive real, and we consider the equation

ẏ = k2 IN − y2 t > 0. (68)
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The general solution is

y(t) = k

(

tanh kt IN +
y(0)

k

)(

IN +
tanh kt

k
y(0)

)−1

. (69)

We consider two choices of the matrix A(t) for this equation, both constant:

A1 =

(

0 k2 IN
IN 0

)

(70)

A2 =

(

kIN k2 IN
IN kIN

)

. (71)

A1 has eigenvalues ±k, each repeated N times, and A2 has eigenvalues 0, 2k, each repeated
N times. Applying our method with constant stepsize h gives the recursions

yi+1 = (αa(h)yi + βa(h)) (γa(h)yi + δa(h))−1 (72)

where

Γ̃2,a(h) =

(

αa(h) βa(h)
γa(h) δa(h)

)

= I2N + hAa +
h2

2
A2

a, a = 1, 2 (73)

=



















(

1 + h2k2

2

)

(

IN
hk2

1+h2k2/2IN
h

1+h2k2/2
IN IN

)

a = 1

(

1 + hk + h2k2
)

(

IN
hk2(1+hk)
1+hk+h2k2 IN

h(1+hk)
1+hk+h2k2 IN IN

)

a = 2

. (74)

It is straightforward to diagonalize and compute powers of the matrices Γ̃2,a(h), and thereby
solve the recursions. For both a = 1, 2 the solution takes the form

yi = k

(

tanh ikh IN +
y(0)

k

)

(

IN +
tanh ikh

k
y(0)

)−1

, (75)

where

kh =

{

1
2 ln

(

1+hk+h2k2/2
1−hk+h2k2/2

)

a = 1
1
2 ln(1 + 2hk + 2h2k2) a = 2

. (76)

The meaning of these results is that if the recursions were implemented exactly, their solutions
follow the solution curves of the differential equation, but the propagation rate down the curve
is not necessarily correct; the ratio of the observed rate to the correct rate is kh/kh. For
small enough h (hk << 1), this is approximately 1, but for larger h it can be substantially
less than 1. (Other Möbuis schemes allow the asymptotic solution to be approached faster
than the real rate, for suitable values of h. For the second order Padé approximant method
mentioned at the end of Section 3, we find kh = ln |(1 + hk/2)/(1 − hk/2)|, which can exceed
kh.)

The above results do not automatically imply that Möbius schemes will be successful for
equation (68). Depending on the value of y(0), the exact solution curve can tend to a variety
of limit points as t → ∞, but only one of these is stable (in the sense of section 3), the limit
y → kIN , and a good integration scheme should always reach this limit. We numerically
integrated (68) for the cases N = 10 and 50, k = 10 and 1000, over the interval 0 < t < 5,
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Figure 5: Results for Problem 4, N = 10 (left) and N = 50 (right)

via method 1 (using A1) and method 2 (using A2), with the usual stepsize control technique.
The initial condition chosen was y(0) = U diag(1, 2, . . . , N) U−1, where U was an N × N
matrix of random numbers between 0 and 1. Correct limit behavior was always achieved,
and results on the number of steps required are presented in Figure 5.

In figure 5, no signs of stiffness are evident, even for k = 1000 with method 1, for which
the matrix A = A1 has large negative eigenvalues. As was discussed in section 3, the true
stiffness criterion for Möbius schemes is somewhat different, and in fact for the simple first
order Möbius scheme the criterion of qualitatively correctness with the choice A = A1 can
easily be verified to be |(1 − hk)/(1 + hk)| < 1, which holds for all hk > 0.

Figure 5 conceals one minor subtlety. For method 1, we see from Eq. (76) that hk is
bounded as a function of hk; this means that irrespective of the stepsize chosen, we go no
more than a certain distance down the solution curve. For method 2, this is not true. In
particular, if given the option of taking a “giant” step, it can move directly, in one step, to
the asymptotic solution, and stepsize control will not prevent this, as it is actually doing the
correct thing. Thus the results for method 2 turned out to be dependent on the initial h
fed to the stepsize routine. The results presented used a small initial h of 0.1; increasing the
initial h over a certain threshold would make the integration finish in (essentially) one step.

6 Examples 2: Singular Solutions

In this section we illustrate integration through singularities, using two of the equations of
the previous section.

First, we consider the Dieci knee problem, equation (58), with ǫ = 1, and initial condition
y = 0 at t = −1. From Figure 2, we see that the corresponding solution passes through a
singularity at some positive t. Integrating numerically, using method “best” from Section 5.3,
we found, for a wide range of tolerances, that the numerical solution reproduced the correct
behavior; relevant data is reproduced in Table 3. For tolerance 10−10 and smaller, we found
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tolerance y changes from positive to negative
between and

10−1 0.3168888327 0.5167669143
10−2 0.4309325461 0.4457121281
10−3 0.4383197809 0.4401761636
10−4 0.4391577864 0.4392703998
10−5 0.4392164717 0.4392278245
10−6 0.4392223764 0.4392238105
10−7 0.4392228711 0.4392232076
10−8 0.4392231157 0.4392231199

Table 3: Numerical integration through a singularity in the Dieci knee problem

that the numerical method got “stuck” in the sense that it took smaller and smaller step
sizes as it approached the singularity, and failed to pass it. This can be attributed directly to
the manner in which we we computed error estimates, viz. equation (56). An absolute error
formula is too constraining when dealing with quantities of large magnitude. We made the
decision to use absolute error estimates precisely to demonstrate that despite this we could
integrate through singularities. Using relative error estimates (for large values of y) allows us
to integrate even at tighter tolerance; we have tested tolerances down to 10−13. For smaller ǫ
in the Dieci knee problem, the minimum tolerance permitted when using only absolute error
estimates decreases (for ǫ = 10−4 we could use tolerance 10−11 without problem); this is
because as ǫ is decreased the approach to singularity is more rapid.

At low tolerances we expect to get so close to the singularity that the issue of machine
number handling may become relevant. This could cause failure of the method, or at the
least a loss of accuracy. In practice we have yet to see this.

Moving to the problem of Section 5.5, equation (68), the exact solution (69) shows there
are singularities whenever tanh kt = −k/λ, where λ is an eigenvalue of y(0). The singularity
is a pole of order equal to the multiplicity of the corresponding eigenvalue λ. We ran method
1 from section 5.5 on this problem, taking N = 3, k = 10, and y(0) = U D U−1, where U is a
matrix of random numbers between 0 and 1, and D = diag(λ1, λ2, λ3). We took (λ1, λ2, λ3)
to be (−20,−30,−40), (−20,−20,−30) and (−20,−20,−20). (In the last case, since D was
a multiple of the identity, U played no role). The singularity associated with eigenvalue −20
occurs at t ≈ 0.0549306144, that associated with eigenvalue −30 occurs at t ≈ 0.0346573590,
and that associated with eigenvalue −40 at t ≈ 0.0255412812. Results are shown in Table 4.
The tolerances used give an idea of when the method works despite the use of absolute error
estimates; using relative errors it can be substantially extended. The effect of the order of
the pole on the ease with which it can be passed is not currently clear to us.

7 Concluding Comments

In conclusion, there are some open issues we would like to mention. The underlying idea of
this paper comes from group theory — that if a differential equation tells us that a function
is evolving via infinitesimal group transformations of a certain type, the recursions used in
numerical simulations should be group transformations of the same type. However, certain
aspects of our implementation are not natural, in the group theoretic sense, in particular the
error estimate and extrapolation procedure described in Section 5.1. In the notation of that
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eigenvalues tolerance y changes from positive to negative
between and

(−20,−30,−40) 10−1 0.025304245 0.025724295
0.034544911 0.034767249
0.054868592 0.054977271

10−3 0.025539348 0.025543016
0.034656892 0.034657922
0.054930411 0.054930951

2 × 10−5 0.025541235 0.025541319
0.034657355 0.034657369
0.054930607 0.054930617

10−5 0.025541260 0.025541300
0.034657358 0.034657361

fails to pass next singularity

(−20,−20,−30) 10−1 0.034525551 0.034809718
0.054826677 0.055057440

10−3 0.034655129 0.034659164
0.054929646 0.054931847

10−5 0.034657350 0.034657370
0.054930595 0.054930630

(−20,−20,−20) 10−1 0.054678140 0.055058566
10−3 0.054926294 0.054933468
10−5 0.054930602 0.054930637
10−6 0.054930609 0.054930617

Table 4: Numerical integration through singularities in Problem 4

section, the natural way to estimate the error in y1, y2 is to estimate the minimal deviation
from the identity element of those group elements transforming y1 to y2. We intend to return
to this issue. Similarly, extrapolation should be done in a group theoretic — not necessarily
linear — way. In practice, we do not expect these issues to have very serious effect on the
results of implementations, but they are of theoretical interest, not just for the numerical
integration of Riccati equations, but also for the host of other equations for which symmetric
methods are relevant.

It is also of interest to construct multistep or multivalue methods for Riccati equations,
with the expectation that these may be computationally cheaper for higher order calcula-
tions. Presumably this involves exploitation of higher dimensional representations of Möbius
transformations. Also, it is of interest to apply our methods to so-called symmetric Riccati
equations, for which various different transformation groups are relevant.
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