
A Natural Deduction Approach

to Dynamic Logic∗

Furio Honsell1 and Marino Miculan1,2

1 Dipartimento di Matematica e Informatica, Università di Udine
Via delle Scienze 206, I-33100 Udine, Italy. {honsell,miculan}@dimi.uniud.it

2 Dipartimento di Informatica, Università di Pisa
Corso Italia 40, I-56100 Pisa, Italy. miculan@di.unipi.it

Abstract. Natural Deduction style presentations of program logics are
useful in view of the implementation of such logics in interactive proof
development environments, based on type theory, such as LEGO, Coq,
etc. In fact, ND-style systems are the kind of systems which can take
best advantage of the possibility of reasoning “under assumptions” offe-
red by proof assistants generated by Logical Frameworks. In this paper
we introduce and discuss sound and complete proof systems in Natural
Deduction style for representing various “truth” consequence relations of
Dynamic Logic. We discuss the design decisions which lead to adequate
encodings of these logics in Coq. We derive in Dynamic Logic a set of
rules representing a ND-style system for Hoare Logic.

Introduction

Computerized proof assistants are very useful, and probably necessary, in using
logical systems for reasoning about programs. In fact, the amount of (often
trivial and repetitive) routine details involved in using program logics renders
error-prone the activity of a human prover.

Type Theories, such as the Edinburgh Logical Framework [9, 3] or the Cal-
culus of Inductive Constructions [5, 27] were especially designed, or can be fruit-
fully used, as a general logic specification language, i.e. as a Logical Framework
(LF). Thus they can streamline the process of generating interactive proof de-
velopment environments tailored to the peculiarities of any given logics. In fact,
any interactive proof development environment for these type theories (LEGO
[16], Coq [14] and ELF [21]), can be readily turned into one for a specific lo-
gic, as soon as we fix a suitable environment corresponding to the encoding
of the logic. Although these editors are not as efficient as some of those espe-
cially designed for a specific logic, nevertheless Logical Frameworks can be very
useful for at least three reasons. First of all, they provide a common medium
for integrating different systems. Hence LF-derived editors rival special purpose

∗ Work partially supported by the Esprit BRP no.6453, Types for Proofs and Programs,
and italian MURST 40%-60% grants. Some of the results of this papers have been
communicated by the second author at the TYPES Annual Meeting in B̊astad, 1994.

editors when efficiency can be increased by integrating independent logical sy-
stems. Secondly, LF-generated editors are natural. A user of the original logic
can transfer immediately to them his practical experience and “trade tricks,”.
They do not force upon the user the overhead of unfamiliar indirect codings, as
would editors derived from FOL editors, via an encoding. On the contrary, it is
a frequent experience that encodings in Logical Frameworks provide the “ulti-
mate” or “normative” formalization of the logical system under consideration.
The specification methodology of Logical Frameworks, in fact, forces the user
to make precise all tacit conventions. Thirdly, Logical Frameworks are based on
Type Theory presented in Natural Deduction style via the analogy “judgements
as types”. Therefore, they naturally allow the user of an LF-generated editor to
reason “under assumptions” and go about in developing a proof the way mathe-
maticians normally reason: using hypotheses, formulating conjectures, storing
and retrieving lemmata, often in top-down, goal-directed fashion. This feature
offered by Logical Frameworks urges the designer/implementor of an editor for
a given object logic, to look for a presentation of the logic which can take best
advantage of the possibility of manipulating assumptions.

The crucial concept involved in discussing the notion of assumption for a
given logic is that of consequence relation (CR) [2]. CR’s are abstract representa-
tions of logical dependencies between assumptions and conclusions. They play
a crucial rôle in stating and proving adequacies of encodings in Logical Fra-
meworks. Usually, a logic gives rise to more than one CR. For instance, in FOL
we have the validity CR and the truth CR, according to how we understand
free variables in assumptions. In modal logics further CR’s arise, according to
whether we focus on frames or worlds. Usually, CR’s differ on the form of “de-
duction theorem” that they yield. Truth CR’s are those which yield the simplest
deduction theorems. Validity CR’s are best suited for capturing the notion of
derivabilty from sets of axioms and hence the notion of theoremhood. Many more
different CR’s can be defined for program logics if we take into account the
possibility of restricting attention to interesting subclasses of models.

Before building an editor for a given logic, the designer/implementor has to
clarify two equally important, apparently orthogonal, issues. Which CR is the
one to focus on? Which style of presentation is best for actually “using” the
logic, e.g. Hilbert, Natural Deduction (ND) or Gentzen (sequent) style? In the
methodology of Logical Frameworks, answering the first question amounts to
decide which judgements to encode. Experience shows that ND-style systems
representing truth CR’s, are best suited for exploiting the reasoning power of
assumptions provided by Logical Frameworks.

In this paper we investigate logical systems for Dynamic Logic (DL) in view of
their encoding in the interactive proof development environment Coq. Similarly
to what happens for FOL, both validity and truth CR’s arise for DL, and pro-
gram logics in general. Sound and (relative) complete systems for representing
the validity CR’s restricted to finite sets of assumptions, can be readily derived
from any Hilbert systems for DL [1, 8, 15]. But, surprisingly, little attention has
been payed so far, in the literature, to “truth CR’s” for program logics. Hence,

in line with the remark above, in this paper we introduce and discuss Natural
Deduction style systems for representing truth CR’s.

In developing ND-style systems for DL, one of the most delicate and compli-
cated issues one has to deal with, is that of free logical variables versus program
identifiers. New difficulties arise when we consider derivations under assump-
tions, since assumptions on program variables enforce local constraints on the
environments of subderivations. However, the type-theoretic metatheory provi-
ded by Logical Frameworks, which allows to express schematic (i.e. generalized)
assumptions, provides interesting solutions to these difficulties. Another pro-
blematic issue arises in connection with “infinitary rules”. Logical Frameworks,
such as Coq, offer also in this case a remarkable metatheoretic solution. Since
they embody the power of a higher order intuitionistic logic of inductive defini-
tions, many recursive functions can be defined in them. Other difficulties arise
in connection with “rules of proof” (i.e. rules which can be applied only to pre-
mises which depend on no assumptions), or with “proper sequent-style” rules,
such as Scott’s rule (i.e. rules which modify substantially the structure of all
the assumptions). Some of these problematic side conditions in the rules can be
internalized in the framework at the expense of a slight modification of the basic
judgment, exploiting again the possibility of using schematic premises in rules.

In the encodings, we exploit thoroughly the higher-order features provided
by Logical Frameworks.

In this paper, for the sake of simplicity we consider only the datatype of
natural numbers.

The paper is organized as follows. In Section 1 we introduce sound and com-
plete ND-style systems with respect to the truth CR for Dynamic Logic (DL)
over the first order language of Peano Arithmetic. Encodings of these systems
in type theory are given in Section 2. In Section 3 we describe the derivation of
an impure ND-style system for the truth CR of Hoare Logic. In Section 4 we
compare our work with the KIV System (which is a special purpose editor for
DL [23]) and an implementation of Hoare Logic in the Cambridge HOL [6]. Final
remarks appear in Section 5. In Appendix A we give the syntax and semantics
of Peano Arithmetic (PA), Hoare Logic and DL. In Appendix B we give the
notion of Consequence Relation and related basic logical notions. Throughout
the paper we use standard proof theoretic notions and notations (see e.g. [22]).
Terminology and notations concerning Logical Frameworks are as in [9].

The Coq code of these implementations and examples is available at the
URL http://www.dimi.uniud.it/∼miculan/DL. The authors are grateful to
the referees for their useful remarks on an earlier version of the paper.

1 ND-style Proof Systems for Dynamic Logic

Dynamic Logic (see App.A for definitions) has been thoroughly investigated
from the model theoretic point of view. Not as much attention, however, has
been payed to its proof theory or to the possibility of representing consequence

relations different from that of validity. The relevant concept being that of theo-
remhood, the proof systems considered have been mainly Hilbert-style systems
[7, 8, 15, 26]. There is only one remarkable exception, albeit unpublished, of
ND-style System for Deterministic DL due to C. Stirling [25] (see Sect.5).

Besides absolute validity and absolute truth, various CR’s can be introduced
according to the class of models that one focuses on. Since in this paper we focus
on the language of Peano Arithmetic (PA), we consider two classes of models:
the class of all first-order structures which are models of PA, and that consisting
only of the standard model (denoted by N). Truth and validity CR’s for DL are
defined by suitably specializing the following general definition:

Definition 1 Truth and Validity on First-Order Structures. Let L be a
first-order language, and let Γ range over sets of formulæ, p over formulæ of L.

1. Let M be a first-order model for L (see Appendix A);
– the truth CR |=L

M wrt M is the relation defined by

Γ |=L
M p ⇐⇒ [[Γ]]M ⊆ [[p]]M;

– the validity CR ||=L
M wrt M is the relation defined by

Γ ||=L
M p ⇐⇒ ([[Γ]]M = SM ⇒ [[p]]M = SM).

2. The (absolute) truth CR is the relation |=Ldef
=
⋂

M |=L
M; the (absolute) vali-

dity CR is the relation ||=Ldef
=
⋂

M ||=L
M, where M ranges over all first-order

models for L. ut

We introduce a ND-style system for |=, SND(DL), by adding to the usual
ND-style system for Peano Arithmetic [22] the rules in Fig.1. By pt

x we denote
the formula obtained by replacing all occurrences of x, which are not bound by
the ∀-quantifier, with t (possibly α-converting p in order to avoid capturing free
variables in t). The set of variables in p whose occurrences are not all bound
by ∀ is denoted by FV(p). We write Natural Deduction rules and proofs in the
linearized notation, hence “π : Γ ` p” denotes a proof tree π whose premises
and conclusion are Γ and p respectively. The system is infinitary system, i.e. Γ

is possibly an infinite set.
The system SND(DL) is sound and complete with respect to the truth CR:

Theorem 2. ∀Γ, p : Γ `SND(DL) p ⇐⇒ Γ |= p.

A proof can be obtained by modifying suitably the proof of Theorem 3.15 in [8];
see [20] for further details.

The system SND(DL) is indeed a ND-style system, since there are introduc-
tion rules for each program constructor and the corresponding elimination rules
are induced by the introduction rules. The rules for equality and the quantifier
are more involved than the usual ones for FOL, due to the presence of com-
mands. Reflexivity of equality can be encoded immediately, but the rules of
congruence have to be rephrased with care: derivations like [x := 0] (x = 0), x =

:=-I
Γ, y = t ` py

x

Γ ` [x := t] p
y 6∈ FV(Γ, p, t) := -E

Γ1 ` [x := t] p Γ2, p
y
x, y = t ` q

Γ1, Γ2 ` q

y 6∈ FV(Γ2,
p, q, t)

;-I
Γ ` [c1] [c2] p

Γ ` [c1; c2] p
;-E

Γ ` [c1; c2] p

Γ ` [c1] [c2] p

∗-I
{Γn ` [c]n p | n ∈ N}

∪n Γn ` [c∗] p
∗-E

Γ ` [c∗] p

Γ ` [c]n p
n ∈ N

where [c]0 p = p,
[c]n+1 p = [c] [c]n p

?-I
Γ, b ` p

Γ ` [b?] p
?-E

Γ1 ` [b?] p Γ2 ` b

Γ1, Γ2 ` p

+-I
Γ1 ` [c1] p Γ2 ` [c2] p

Γ1, Γ2 ` [c1 + c2] p
+-E

Γ ` [c1 + c2] p

Γ ` [ci] p

∀-I
Γ ` p

Γ ` ∀xp
x 6∈ FV(Γ) ∀-E

Γ1 ` ∀xp Γ2, p
y
x, y = t ` q

Γ1, Γ2 ` q
y 6∈ FV(Γ2, ∀xp, t, q)

CongrId
Γ1 ` p Γ2 ` x = y

Γ1, Γ2 ` py
x

y 6∈ FV(p) Congr
Γ1 ` pt1

x Γ2 ` t1 = t2

Γ1, Γ2 ` pt2
x

p is com-
mand-free

Fig. 1. The system SND(DL).

1 ` [x := 0] (1 = 0) have to be prevented. To this end, we introduce two rules:
Congr and CongrId. Congr can be applied only to command-free formulæ,
i.e. formulæ where no command appears (see App.A). CongrId, can be applied
to any formula, since it merely replaces all occurrences of an identifier with a
new identifier.

The non traditional form of ∀-elimination is due to the fact that, in general,
the quantified formula p may contain commands, and therefore not all occurren-
ces of a bound variable can be replaced by a term. For instance, ∀x. [x := 0] (x =
0) holds, but its näıve instantiation [1 := 0] (1 = 0) is clearly meaningless. A
correct formulation of instantiation of quantified variables is in fact one of the
most difficult technical issues to deal with in encoding DL. In Hilbert systems
this is usually achieved by replacing, whenever required, any program c with
the equivalent “normal form” z1 := x1; . . . ; zn := xn; c′; x1 := z1; . . . ; xn := zn

where the xi’s are all the identifiers appearing in c, the zi’s are fresh and c′ is
obtained from c by replacing the xi’s with zi’s (see [8]). This solution is clearly
cumbersome if we want to use practically the formal system. The problematic
nature of instantiation of quantifiers lies, as in the case of the congruence rules,
in the different nature of pure logical identifiers and program variables. In fact,
the property “s ∈ [[pt

x]] ⇐⇒ s[x 7→ [[t]]s] ∈ [[p]]” does not hold for DL.
Our solution to the instantiation problem is to replace the bound variable x

with a fresh variable y, and to assume y = t in the minor premise. The usual
∀-elimination rule is derivable in the case of command-free predicates.

The infinitary nature of rule ∗-I is essential for achieving the completeness
of `SND(DL) with respect to the full |= and not only to |= ∩(P<ω(P) × P). In
fact, proofs in finitary systems can take into account only a finite number of
assumptions, and since DL does not satisfy compactness (consider e.g. the set
{[x := x−1]

n
x 6= 0 | n ∈ N}∪{¬ [(x := x−1)∗]x 6= 0}), we can easily find a true

consequence which is underivable in any finitary system (e.g. {[x := x−1]
n

x 6=
0 | n ∈ N} |= [(x := x−1)∗] x 6= 0).

The useful, albeit “impure”, [·]-intro rule ∅`p
∅`[c]p and Scott’s rule Sc Γ`p

[c]Γ`[c]p

(where [c]Γ
def
= {[c] p | p ∈ Γ}) are clearly admissible for SND(DL).

Focusing on consequences true in all models of Peano Arithmetic, the sy-
stem SND(DL) rules out many interesting consequences which are true when
reasoning about real programs which utilize as datatype the real integers. For

instance, the formula p
def
= 〈(x := x− 1)∗〉 (x = 0) is not valid: take any nonstan-

dard model N ∗, and consider the state s such that s(x) = ν, ν a nonstandard
integer; then, s 6∈ [[p]]N∗ . The same happens with the while-termination formula
〈while x > 0 do x := x− 1〉 (x = 0). This is the reason for focusing on the sole
standard model of arithmetic and the associated CR’s ||=N, |=N.

In order to represent |=N, we extend the standard ND-style system SND(DL)
to a hybrid Natural Deduction-Modal system, namely Sa

ND(DL), by adding either
the convergence rule or the equivalent dual induction principle rule:

Conver
∅ ` px+1

x ⊃ 〈c〉 p Γ ` pt
x

Γ ` 〈c∗〉 p0
x

x 6∈ FV(c)

Induc
∅ ` [c] p ⊃ px+1

x Γ ` [c∗] p0
x

Γ ` pt
x

x 6∈ FV(c)

Both rules are “impure” in the sense of Avron [2], and are proof-rules, since the
first premise is a theorem. One can easily see that `Sa

ND
(DL) 〈(x := x− 1)∗〉 (x =

0) and `Sa
ND

(DL) 〈while x > 0 do x := x− 1〉 (x = 0). Indeed, Sa
ND(DL) is sound

and complete with respect to the standard model of integers.

Theorem 3. ∀Γ, p : Γ `Sa
ND

(DL) p ⇐⇒ Γ |=N p.

A proof can be readily derived from that of Th.2.
It is interesting to notice that the rule ∗-I is enough to recover the full power

of the ω-rule of infinitary first order logic:

Theorem 4. Let p be any command-free formula; then, the ω-rule
{Γ`pn

x|n∈ω}
∀xp

is derivable in Sa
ND(DL).

Proof. (Sketch) The proof relies upon the fact that command iteration is nonde-
terministic, hence ∀xp is equivalent to y = 0 ⊃ [y := y + 1∗] py

x (y fresh). Each
premise pn

x in the ω-rule can be rendered by means of the formula y = 0 ⊃
[y := y + 1]

n
py

x (y fresh); applications of ∗-I and Induc yield the ω-rule. ut

Instead of introducing proof rules, we could have used alternatively non-
interference judgments à la Reynolds [24] as side conditions of the rules. These
are judgments which generalize side-conditions such as x 6∈ FV(A). See [20] for
further details.

2 Encoding ND-style Systems for DL

In this section we apply and generalize the methodology developed in [9, 3] and
define an encoding of SND(DL) and of Sa

ND(DL) within the Calculus of Inductive
Constructions, as it is implemented by the Coq V5.10 proof assistant [14].

X, Te, B, C, P : Set

¬b : B → B

⊃b,∧b : B → B → B

¬ : P → P

⊃,∧ : P → P → P

isId : X → Te

0, 1 : Te

+, ∗ : Te → Te → Te

=b, <b : Te → Te → B

=, < : Te → Te → P

[·] · : C → P → P
∗ : C → C

? : B → C

; , + : C → C → C

:= : X → Te → C

Fig. 2. Representation of L(DL) in Σ(DL) (some constructors).

An important difference with respect to the encoding of HOL in [9] is that
we can no longer treat on a par object language identifiers and metalanguage
schematic variables (see [3] for similar difficulties in handling Hoare Logic). In
fact, the presence of identifiers in formulæ standing for left-hand values which
cannot be substituted for, forces us to introduce a specific type for identifiers.
Therefore, substitutions of terms for identifiers cannot be handled any mor “for
free” by the metalanguage, using higher order syntax. Nevertheless, we can still
handle at the metalevel substitution of identifiers for identifiers.

2.1 The Encoding of SND(DL): the Signature Σ(DL)

Syntax. Each syntactic category is represented by an inductive set (denoted by
the same name in this font), and each syntactic constructor is represented by a
functional constant (Fig.2). There is also a function b2p : B → P, defined by in-
duction on the syntax, which embeds propositional formulæ into formulæ. When
clear form the context, it will be omitted for sake of readability. Applications of
b2p are computable (Simplifable) in the Coq environment.

Let ξ : B∪X∪T∪C∪ P → B∪X∪T∪ C∪ P be the compositional bijective
representation of syntactic classes. For the sake of simplicity, ξ will be often
omitted; therefore, with the same term we will denote a formula as well as its
encoding in the LF signature; similarly we shall deal with sets of assumptions.

We represent the universal quantifier by the syntactic constructor ∀ : (X →
P) → P and hence we can take care of α-conversion of bound variables at the
metalevel. Consequently, ξ(∀xp) = ∀(λx.ξ(p)), and, for instance, ∀x [x := 0] (x =
0) is represented by ∀(λx : X. [x := 0] (isId(x) = 0)).

Rules. Since SND(DL) is in ND-style, most of the rules are encoded straightfor-
wardly following the methodology of [9, 3], using as judgment T : P → Prop

(Fig.3). The intended meaning of (T p) is that the formula p holds.
In the following, we will briefly discuss some interesting points concerning

the encoding of the most complex rules.

The infinitary rule ∗-I. Due the presence of ∗-I, the system SND(DL) has to
take into account infinite sets of premises. Hence we need to be able to refer to
infinite sets of formulæ. We represent infinte sets of assumptions by a Coq term
of type nat → Prop. Thus, the version of the rule ∗-I we encode in Coq is the
following:

∗-I
for all n ∈ N : I(c, p, n)

[c∗] p
where

I : C → P → N → P

I(c, p, 0) = p, I(c, p, n + 1) = [c] I(c, p, n)

∧-I :
∏

p,q:P

(T p) → (T q) → (T (p ∧ q)) ;-I :
∏

p:P

∏

c1,c2:C

(T [c1] [c2] p) → (T [c1; c2] p)

⊃-I :
∏

p,q:P

((T p) → (T q)) → (T (p ⊃ q)) ;-E :
∏

p:P

∏

c1,c2:C

(T [c1; c2] p) → (T [c1] [c2] p)

∗-I :
∏

p:P

∏

c:C

(

∏

n:nat

(T (I c p n))

)

→ (T [c∗] p) where (I c p 0) = p,

∗-E :
∏

p:P

∏

c:C

(T [c∗] p) →
∏

n:nat

(T (I c p n)) (I c p (S n)) = [c] (I c p n)

Fig. 3. Representation of some rules of SND(DL) in the signature Σ(DL).

:=-I :
∏

A:X→P

∏

x:X

∏

t:Te

(

∏

y:X

(isnotin y P ∀A)→(isnotin y Te t)→(T (y = t))→(T (A y))

)

→ (isnotin x P ∀A) → (T ([x := t](A x)))

:=-E :
∏

A:X→P

∏

q:P

∏

x:X

∏

t:Te

(

∏

y:X

(isnotin y P ∀A) → (isnotin y Te t) → (isnotin y P q) →

(T (y = t)) → (T (Ay)) → (T q)

)

→ (isnotin x P ∀A) →

(T ([x := t] (A x))) → (T q)

Fig. 4. The LF encoding of the rules for assignment.

Therefore, using this encoding, we can refer only to premises which can be enu-
merated by a function provably total in PAω, pratically, this is more than enough.

The assignment rules. As remarked earlier, we cannot exploit higher-order syn-
tax directly to encode ()t

x, the substitution operator, as was possible in [3, 9, 18].
The näıve encoding of the assignment constructor, :=: Te → Te → C, could yield
meaningless commands such as 0 := 1. Substitution has to be dealt with diffe-
rently from [9], rather in the style of [4]. The encodings of the rules :=-I and
:=-E appear in Fig.4. We need to express the fact that an identifier is “fresh”,
i.e. that it is different from any other pre-existing identifier. To this end, we
generalize Mason’s idea [3] later expounded in [4, 19], and we introduce the two
auxiliary judgments, isin, isnotin : X →

∏

A:Set
A → Prop. The intuitive meaning

of (isin x A a) is “the identifier x appears in the phrase a whose type is A;”
dually for isnotin. These two judgments are derivable by means of a simple set
of rules which are polymorphic in the syntactic constructors (Fig.5). The infe-
rence of these judgments is completely syntax-driven: it is sufficient to look at
the top-level constructor of the phrase for deciding which rule has to be applied.
The premise (isnotin x P ∀A) of the :=-I rule enforces the fact that the context
A(·) does not contain any occurrence of x. In both rules we have also to reify the
“freshness condition” of variables locally quantified in premises. This is achieved
by assuming suitable isnotin judgments. Such reified assumptions are needed to
deal with “contexts” such as A(·) above, or the CongrId rule below.

isin x :
∏

x:X

(isin x X x)

isin 1 :
∏

x:X

∏

s1,s2:Set

∏

op:s1→s2

∏

p:s1

(isin x s1 p) → (isin x s2 (op p))

isin 2l :
∏

x:X

∏

s1,s2,s3:Set

∏

op:s1→s2→s3

∏

p1:s1

∏

p2:s2

(isin x s1 p1) → (isin x s3 (op p1 p2))

isin 2r :
∏

x:X

∏

s1,s2,s3:Set

∏

op:s1→s2→s3

∏

p1:s1

∏

p2:s2

(isin x s2 p2) → (isin x s3 (op p1 p2))

isin n :
∏

s1,s2:Set

∏

op:(X→s1)→s2

∏

p:X→s1

(

∏

y:X

(isin x s1 (p y))

)

→ (isin x s2 (op p))

isnotin symm :
∏

x,y:X

(isnotin y X x) → (isnotin x X y)

isnotin zero :
∏

x:X

(isnotin x Te zero) isnotin false :
∏

x:X

(isnotin x P false)

isnotin 1 :
∏

x:X

∏

s1,s2:Set

∏

op:s1→s2

∏

p:s1

(isnotin x s1 p) → (isnotin x s2 (op p))

isnotin 2 :
∏

x:X

∏

s1,s2,s3:Set

∏

op:s1→s2→s3

∏

p:s1

∏

p:s2

(isnotin x s1 p1) → (isnotin x s2 p2) → (isnotin x s3 (op p1 p2))

isnotin el :
∏

x,y:X

∏

s:Set

∏

p:s

(isnotin x s p) → (isin y s p) → (isnotin y X x)

isnotin n :
∏

s1,s2:Set

∏

op:(X→s1)→s2

∏

p:X→s1

(

∏

y:X

(isnotin x X y) → (isnotin x s1 (p y))

)

→ (isnotin x s2 (op p))

Fig. 5. The rules for auxiliary judgments isin, isnotin of Σ(DL).

The congruence rules. The encodings of Congr and CongrId appear in Fig.6.
In encoding CongrId, we have to check that the context A(·) does not contain
any occurrence of x, y. This is enforced as for :=-I, :=-E, via the premises
(isnotin x P ∀A) and (isnotin y P ∀A) In encoding Congr we have to check that
the predicate A is command-free. This is easily achieved by introducing a new
judgment BF : P → Prop, whose rules are the following:

BF false : (BF false) BF forall :
∏

p:X→P

(
∏

x:X
(BF (p x))

)

→ (BF (∀p)

BF eq :
∏

t1,t2:Te
(BF (t1 = t2)) BF and :

∏

p,q:P
(BF p) → (BF q) → (BF (p ∧ q))

BF not :
∏

p:P
(BF p) → (BF (¬p)) BF imp :

∏

p,q:P
(BF p) → (BF q) → (BF (p ⊃ q))

Clearly, derivations of BF are syntax-driven and can be mostly automated in
the Coq environment using the Auto tactic.

CongrId :
∏

x,y:X

∏

A:X→P

∏

w:U

(isnotin x P ∀A) → (isnotin y P ∀A) →

(T (A x)) → (T ((isId x) = (isId y))) → (T (A y))

Congr :
∏

t1,t2:Te

∏

A:Te→P

(T (A t1)) → (T (t1 = t2)) → (BF (A t2)) → (T (A t2))

Fig. 6. The LF encoding of the congruence rules.

∀-I :
∏

A:X→P

(

∏

x:X

(isnotin x P ∀A) → (T (A x))

)

→ (T (∀A))

∀-E :
∏

A:X→P

∏

q:P

∏

t:Te

(

∏

x:X

(isnotin x Te t) → (isnotin x P q) → (isnotin x P ∀A) →

(T (x = t)) → (T (A x)) → (T q)

)

→ (T ∀A) → (T q)

Fig. 7. The LF encoding of the ∀-I, ∀-E rules.

The ∀-quantifier rules. The encoding of the rules for ∀ appearing in Fig.7, is
not as straightforward as in the standard FOL case. We have to deal with side-
conditions and reify “freshness” assumptions on the variables locally quantified
in premises, as was the case for the :=-I and :=-E rules.

Adequacy of the encoding. The statement of the Adequacy Theorem for the
encoding Σ(DL) is more problematic than in the “paradigm case” of FOL [9],
since we have to take into account infinite sets of formulæ. Clearly, this cannot
be done in full generality and we will be able to state the Adequacy Theorem
only with respect to representable sets of assumptions, i.e. sets of formulæ whose
encodings can be enumerated in Coq. Formally, Γ = {pn | n ∈ N} is representable
(in a context ∆) if there exists a term G such that ∆ `Σ(DL) G : nat → P and
for all n ∈ N : ∆ `Σ(DL) (G n̄) = ξ(pn)

Given a representable set of assumptions Γ , in order to define γ(Γ), the Coq
representation of Γ , we proceed as follows. First of all, we assume, for each free
identifier appearing in Γ , the identifier itself and the judgment asserting that
it is different from any other identifier (notice that, for obvious reasons, we are
interested in considering only a finite set of identifiers at any given time); we put

ι(Γ)
def
= {x : X | x ∈ FV(Γ)} ∪ {ixy : (isnotin x X y) | x, y ∈ FV(Γ), x 6= y}

If Γ = {p1, . . . , pn} is finite then we put

γ({p1, . . . , pn}) = ι(Γ) ∪ {u1 : (T ξ(p1)), . . . , un : (T ξ(pn))}

Otherwise, if Γ = {pn | n ∈ N} is infinite and representable by a term G in
ι(Γ), we put γ(Γ) = ι(Γ) ∪ {U :

∏

n:nat
(T (G n))}. Thus we have the following

theorem, which is proved by induction.

Theorem 5 Adequacy of Σ(DL). Let Γ be a representable (in ι(Γ)) set of
assumptions. Then

1. ∀Γ, if γ(Γ) ` M : A, where A ∈ {X, Te, B, C, P}, then

(∃u.γ(Γ) `SND(DL) u : (isin x A M)) ⇐⇒ x ∈ FV(M)

(∃u.γ(Γ) `SND(DL) u : (isnotin x A M)) ⇐⇒ x 6∈ FV(M)

2. ∀Γ, p : Γ `SND(DL) p ⇐⇒ ∃d. γ(Γ) `Σ(DL) d : (T p).

2.2 The Encoding of S
a

ND
(DL): the Signature Σ

a(DL)

The new problematic issues is that of encoding proof rules. In fact, in the un-
derlying theory there is no direct way of enforcing on a premise the condition
that it is a theorem (i.e. that it depends on no assumptions) or, more generally,
that a formula depends only on a given set of assumptions. The solution we
give exploits again the possibility provided by the Logical Frameworks of consi-
dering locally quantified premises, i.e. general judgments in the terminology of
Martin-Löf.

The basic judgment of Σa(DL) is U : P → W → Prop where W is a set with
no constructors. Elements of W will be called worlds for suggestive reasons. We
can now define a new signature for SND(DL), namely Σw(DL), whose rules are
obtained from the corresponding rules of Σ(DL) by just replacing T with U, and
quantifying universally over the extra parameter; e.g.,

⊃-I :
∏

p,q:P

∏

w:W

((U w p) → (U w q)) → (U w (p ⊃ q))

The Conver rule can now be adequately encoded as follows:

Conver :
∏

A:Te→P

∏

c:C

∏

t:Te

∏

w:W

(

∏

w′:W

∏

x:X

(U w′ (A t)) → (isnotin x P ∀A) → (isnotin x C c)

→ (U w′ (p (succ (isId x)))) → (U w′ (〈c〉 (A (isId x))))

)

→ (U w (〈c∗〉 (p 0)))

The idea behind the use of the extra parameter is that in making an assump-
tion, we are forced to assume the existence of a world, say w, and to instantiate
the judgment also on w. This judgment then appears as an hypothesis on w.
Hence, deriving as premise a judgment, which is universally quantified with re-
spect to W, amounts to estabilishing the judgment for a generic world on which
no assumptions are made, i.e. on no assumptions. This simple encoding of the
proof rule [·]-I illustrates the point:

[·]-I :
∏

p:P

∏

c:C

(

∏

w:W

(U w p)

)

→
∏

w:W

(U w [c] p)

Ass
Γ ` {p[t/x]}x := t{p}

Cons
Γ1, p ` p1 Γ2 ` {p1}c{q1} q1 ` q

Γ1, Γ2 ` {p}c{q}

If
Γ1 ` {p ∧ b}c1{q} Γ2 ` {p ∧ ¬b}c2{q}

Γ1, Γ2 ` {p}if b then c1 else c2{q}
While

` {p ∧ b}c{p}

` {p}while b do c{p ∧ ¬b}

Or
Γ ` {p}c1{q} Γ ` {p}c2{q}

Γ ` {p}c1 + c2{q}
Comp

Γ1 ` {p}c1{r} ` {r}c2{q}

Γ1 ` {p}c1; c2{q}

While Termin
` p(n + 1) ⊃ b Γ ` [p(n + 1)]c[p(n)] ` p(0) ⊃ ¬b

Γ ` [p(n)]while b do c[p(0)]
n 6∈ FV(c)

Fig. 8. The rules of the system SND(HL).

This idea, suitably generalized to take care of infinite sets of premises, can
be used also to encode Scott’s rule:

Sc :
∏

G:nat→P

∏

p:P

∏

c:C

(

∏

w:W

(

∏

n:nat

(U w (G n))

)

→ (U w p)

)

→

∏

w:W

(

∏

n:nat

(U w [c] (G n))

)

→ (U w [c] p)

This is a general methodology which allows to encode adequately arbitrary
proper sequent-like rules. For lack of space we do not discuss adequacy formally;
see [20, 12] for more details.

3 Derivation of Truth Hoare Logic

In this section we outline the derivation in Coq of the rules of a ND-style sy-
stem for representing the truth CR for Hoare Logic Σ(DL). The truth CR for
Hoare Logic can be obtained from Definition 1 by istantiating the appropriate
parameters, which appear in App.A.

For lack of space we cannot elaborate on the different CR’s for Hoare Logic
and on the formal systems for representing them. The area of truth CR’s and
ND-style systems for Hoare Logic is almost unexplored (see [11, 20]). Even the
system in [3] is sound only wrt the validity CR. There are various possibilities of
defining ND-style systems for Hoare Logic utilizing the non-interference judge-
ments of [24]. Interesting systems, which successfully scale up to languages with
procedures, arise also if we take seriously reasoning under assumptions. Such are
conceptually appealing in that they connect naturally to the language of DL. We
expect them to be practically significant. Here we consider the system SND(HL),
appearing in Fig.8, which is sound and complete for the truth CR.

Proposition 6. The partial correctness rules of SND(HL) are derivable in
SND(DL) ∪ {Sc}; the rule While Termin is derivable in Sa

ND(DL) ∪ {Sc}.

Proof. (Sketch) We examine only the case of While (Fig.8). Recall that

while b do c
def
= (b?; c)∗;¬b?, and suppose that πh :` p ∧ b ⊃ [c] p. Then, for all

n ∈ N, p ` [b?; c]
n

p, where π0 = p ` p and πn+1 is defined inductively:3

(p)2
πn

[b?; c]
n

p

∅
p (b)1 πh

p ∧ b p ∧ b ⊃ [c] p
[c] p

[c] [b?; c]
n

p
(2); †

[b?] [c] [b?; c]
n

p
(1)

[b?; c] [b?; c]
n

p

where † is an application of Sc for Γ = {p}. Then, the following derivation is a
proof of While in SND(DL).

(p)2 (¬b)3

p ∧ ¬b

[¬b?] (p ∧ ¬b)
(3)







(p)1
πn n ∈ N

[b?; c]
n

p







[(b?; c)∗] p
†

[(b?; c)∗] [¬b?] (p ∧ ¬b)
(2); ‡

[(b?; c)∗;¬b?] (p ∧ ¬b)

p ⊃ [(b?; c)∗;¬b?] (p ∧ ¬b)
(1)

where †, ‡ are sound applications of ∗-I and Sc respectively. ut

The use of Sc is not essential, since this rule is admissible. However, the
derivation of SND(HL) is much easier if we assume Sc as an explicit rule of our
system. In fact, due to the rules with discharged hypotheses, Coq does not allow
for an inductive definition of the truth judgment U . Hence, we cannot reason
inductively on proofs and derive in the system the admissibily of Sc.

The formal counterpart to Prop.6 has been carried out in Coq quite easily
in the signature Σw(DL) ∪ {Sc}.

4 Comparison with Related Work

To our knowledge, there is no published ND-style proof system for Dynamic
Logic. Our approach was inspired by some unpublished notes by Colin Stirling
[25], where a ND-style system for Deterministic Dynamic Logic is sketched.
Stirling’s fundamental idea is to “divorce the notion of free occurrence of a
variable from that of substitution”. The system deals with assertions of the form
pθ, where θ is called an (explicit) substitution: θ ::= ε | (t

xθ). A prefix of the form
t1
x1

. . .tn
xn

represents a sequence of “delayed” substitutions. Substitutions are not
performed until the formula on which they are applied is command-free. This idea
is inspiring but it is clearly impractical. SND(DL) retains something of this idea,
while it overcomes the “explicit substitution” problem in the assignment rules,

3 The display of derivations is slightly non-standard but should be self explicatory.

by taking full advantage of assumptions, i.e. distributing the substitution in the
proof context. Of course, this is sound only with respect to the truth consequence
relation. The technique of treating substitutions by means of sets of assumptions
has been introduced by Burstall and Honsell [4] and fully exploited in [19] in the
context of encoding Natural Operational Semantics of programming languages
in Type Theories.

A number of interesting issues arise if we compare the proof development en-
vironments generated by the signatures Σ(DL) and Σw(DL), to two remarkable
examples of mechanized environments for program logics: the Karlsruhe Inte-
ractive Verifier (KIV) [10, 23] system and the implementation of Hoare Logic in
the Cambridge HOL [6].

The KIV system is a tactical theorem prover based on (Deterministic) Dyna-
mic Logic which realizes an environment for the development of verified software.
In the tradition of the Edinburgh LCF, KIV provides a metalanguage which can
be used for representing both the logic as well as the tactics and strategies
for proof search and proof management. KIV is an Hilbert-style proof system:
as in [7, 15], Dynamic Logic is axiomatised by means of several axioms and
few rules. User-defined strategies and tactics make this unnatural calculus more
user-friendly. The intended consequence relation of KIV is that of validity, not
that of truth. As a consequence of this, KIV does not enjoy the Deduction Theo-
rem (“Γ, p1 ` p2 ⇐⇒ Γ ` p1 ⊃ p2” fails), which on the contrary is built in
the system SND(DL) which deals with “truth”. Both KIV and the encodings of
SND(DL) represent the infinitary rule by means of a quantification over naturals,
but while in the KIV system the quantification is at the level of the logic, in our
approach it is at the meta-level (at the level of Coq). This makes our encoding
closer in spirit to the original proof system. Furthermore, the higher order featu-
res of Coq provide “metavariables” for free: we can quantify over programs and
carry out “schematic” proofs which can be reused.

The Hilbert-style proof system SH(HL) for Hoare Logic, implemented in the
Cambridge HOL, among other aspects features a very interesting treatment of
program variables: they are represented by objects of type string. This encoding
provides naturally an infinite set of variables, different from one other, without
the need of supplementary assumptions. This technique could be used to simplify
our treatment of identifiers. However we still need the judgments isin, isnotin, to
deal with, e.g., variables quantified locally to assumptions.

5 Final Remarks and Directions for Future Work

Pragmatics. Although the systems presented in this paper are quite powerful
and rather natural, the proof development environments Coq-generated by their
encodings are probably not yet effectively usable on large case studies. A serious
pragmatic problem is that we have to duplicate at the level of the object logic (i.e.
P), a lot of the machinery already present in Coq, and hence we cannot take full
advantage of built-in tactics and strategies. However, it is still open whether it is
possible to extend the formula-as-types paradigm to boxed formulæ of Dynamic
Logic, or to explain them away using HOL constructs.

A possible pragmatic improvement of our approach would be that of auto-
matizing derivations connected to side-condition judgments such as isin, isnotin,
BF which are deterministically syntax-driven. This could be done using a logic
programming language like Elf [21], or defining suitable tactics.

Systems of Dynamic Logic over other data types, beyond PA, should be
investigated.

Finitary vs. Infinitary systems. Our systems are essentially infinitary, since
we are interested in strongly complete representations of |=. It would be intere-
sting to investigate the power of finitary proof systems. For instance, we could
replace the ∗-I rule by the finitary invariance rule:

∗
f -I

Γ ` p p ` [c] p

Γ ` [c∗] p

The system SND
f (DL)

def
= SND(DL)\{∗-I}∪{∗f -I} is incomplete, since it does

not allow to derive the fundamental axiom of iteration ([15, Theor.3(7)]), i.e.
6`SND

f (DL) [c∗] p ⊃ [c] [c∗] p. However, SND
f (DL) ∪ {[c∗] p ⊃ [c] [c∗] p} is strongly

complete with respect to |= ∩(P<ω(P)× P).

Equivalences of Programs. An interesting application of the proof editor ge-
nerated from the signature Σ(DL) using Coq is the possibility of proving formally
the equivalences of programs. Following Meyer and Halpern [17], two programs
c, d ∈ C are equivalent ([[c]] = [[d]]) if ∀M : [[c]]M = [[d]]M. In other words, there
is no model in which we can distinguish between the two programs. The enco-
dings of SND(DL) could be particularly suited for computer-assisted proofs of
equivalence of programs, since they naturally provide metalogical facilities such
as quantifications on predicates (i.e. second-order quantifications) and proofs by
induction on the structure of predicates.

Arithmetical Completeness. Completeness of Dynamic and Hoare Logics is
usually discussed in terms of arithmetical (or expressive) models and arithmetical
(Cook’s) completeness [1, 8, 15]. A Hilbert-style system SH is Cook complete
w.r.t. a class A of arithmetical models if ∀M ∈ A, ∀p : (|=M p ⇒ Th(M) `SH

p),
where Th(M) denotes the collection of all command-free formulæ valid in the
model M. This means that completeness w.r.t. a particular model M is achieved
by adding to the system all the first order properties of that model. This is
different from our completeness results (Th.2, 3), where no extra axioms are
needed. Indeed, the whole first order theory of N can be derived by Sa

ND(DL),
due to the power of the infinitary rule ∗-I. On the other hand, Theorem 3 holds
only for the special case of the standard model of arithmetic. If we want to give
a natural deduction formulation of systems such as those of [1, 8, 15], we need to
introduce an auxiliary unary predicate symbol, isnat, whose intended meaning
is the set of standard integers (see [8, p.29]). In this case, the Conver rule has
to be modified as follows:

Conver
∅ ` (isnat(x) ∧ px+1

x) ⊃ 〈c〉 p Γ ` isnat(t) ⊃ pt
x

Γ ` 〈c∗〉 p0
x

x 6∈ FV(c)

A Syntax and Semantics of DL

Syntax and Semantics of PA. The language L(PA) of Peano Arithmetic is defi-
ned as follows:

Identifiers X : x ::= i0 | i1 | i2 | i3 | . . .
Terms T : t ::= 0 | 1 | x | t + t | t ∗ t

Propositional Formulæ B : b ::= t = t | t < t | b ⊃ b | b ∧ b | ¬b

Formulæ P : p ::= t = t | t < t | p ⊃ p | p ∧ p | ¬p | ∀xp

The interpretation functions T [[·]]M : T → SM → DM, F [[·]]M : P →
P(SM) are defined in the style of Denotational Semantics over a model M =
〈DM, 0, 1, +, ·, . . .〉 for Peano Arithmetic. SM = X → DM is the domain of envi-
ronments and it is ranged over by s, s1, s2. These two semantic functions are defi-
ned on the syntax of phrases in the obvious way. The semantics of formulæ is na-

turally extended to sets of formulæ: i.e. if Γ ⊆ F then F [[Γ]]M
def
=
⋂

p∈Γ F [[p]]M.
Then, the usual Tarski’s interpretation relation |=M⊂ SM×F amounts to mem-
bership, i.e. s |=M p ⇐⇒ s ∈ F [[p]]M.

Syntax and Semantics of Hoare Logic. Since in this paper we focus on PA, we give
the definition of HL and DL only with respect to the first order theory of PA. The
language L(HL) is defined by restricting L(PA) to quantifier-free formulæ and
by introducing the new syntactic domains of nondeterministic while programs,
Hoare triples and assertions as follows:

Non- W : c ::= x := t | c; c | c + c

deterministic | if b then c else c

While Programs | while b do c

Hoare Triples H : h ::= {p}C{q}

Assertions A : a ::= p | h

The semantics of Hoare Logic is given by naturally extending the interpretation
to the new syntactic domains, i.e. W[[·]]M : W → SM → P(SM), H[[·]]M :
H → P(SM), A[[·]]M : A → P(SM). Hoare triples are interpreted as usual:

H[[{p}c{q}]]M
def
= {s ∈ SM | s ∈ F [[p]]M ⇒ C[[c]]Ms ⊆ F [[q]]M}.

Syntax and Semantics of DL. The language L(DL) is defined by extending
L(PA) with a new formula constructor, [·]·, and by introducing the new syn-
tactic domains, of command-free formulæ and of regular programs, as follows:

Command-free Formulæ F : p ::= t = t | t < t | p ⊃ p | p ∧ p | ¬p | ∀xp

Regular Programs C : c ::= x := t | b? | c; c | c + c | c∗

Formulæ P : p ::= t = t | t < t | p ⊃ p | p ∧ p | ¬p | ∀xp | [c] p

The semantics of DL is given by extending the interpretation to the domain C.
The function C[[·]]M : C → SM → P(SM) is defined as follows (the composition
operator is extended in the obvious way):

C[[x := t]]M
def
= λs.{s[x 7→ T [[t]]Ms]}

C[[c1; c2]]
def
= C[[c2]] ◦ C[[c1]] C[[c∗]]

def
= λs. ∪n∈ω C[[c]]ns

C[[b?]]
def
= λs.F [[b]] ∩ {s} C[[c1 + c2]]

def
= C[[c1]] ∪ C[[c2]]

Finally, the semantics of formulæ F [[·]]M : P → P(SM) is extended in the

extra case, by putting F [[[c] p]]M
def
= {s ∈ SM | C[[c]]s ⊆ F [[p]]}.

B Consequence Relations

Definition 7 CR. A (single-conclusioned) Consequence Relation on a set F of
formulæ is a binary relation |=⊆ P(F)×F which satisfies the following properties:
Reflexivity: p |= p for every formula p ∈ F;
Transitivity, or “Cut”: if Γ1 |= p and Γ2, p |= q then Γ1, Γ2 |= p.

Γ is called the antecedent or set of assumptions, and p is the conclusion. ut

This definition differs from the one of [2] only in that we allow for possibly
infinite sets of assumptions and exactly one conclusion.

CR’s are usually defined in a completely abstract way, e.g. using semantics.
Therefore, definitions of CR’s are usually ineffective, and cannot be used in
practice in order to establish consequences of formulæ from sets of assumptions.
In order to use a CR one needs a concrete way of representing it. This is achieved
by defining a formal proof system (called “calculus”). The objects of a formal
proof systems usually are not simply formulæ of the logic, but can be formal
representations of consequentiality (i.e. sequents, or even proofs of formulæ).

Definition 8 FPS. A Formal Proof System S, or Calculus, for a CR |= on a set
F of formulæ is a method for defining a CR on F, denoted by `S .

1. `S is sound (faithful) if `S⊆|=, that is, ∀Γ, p : Γ `S p → Γ |= p;
2. `S is complete if ∀p : ∅ |= p → ∅ `S p;
3. `S is strongly complete if |=⊆`S , that is, ∀Γ, p : Γ |= p → Γ `S p. ut

The assertion “Γ `S A” is called a (formal) sequent and is read “A is derivable
from Γ (in the system S).”

Following [2], rules in ND-style calculi are general schemata of the form

∀Γ1, . . . , Γn

Γ1, ∆1 ` p1 . . . Γn, ∆n ` pn

Γ1, . . . , Γn ` p
C

where C is a possible side condition, that is a restriction (max. level 2, in the
terminology of [2]) on the applicability of the schemata.

References

1. K. R. Apt. Ten years of Hoare’s logic: A survey — part I. ACM Transactions on
Programming Languages and Syms, 3(4):431–483, Oct. 1981.

2. A. Avron. Simple consequence relations. Inform. Comput., 92:105–139, Jan. 1991.
3. A. Avron, F. Honsell, I. A. Mason, and R. Pollack. Using Typed Lambda Calculus

to implement formal systems on a machine. Journal of Automated Reasoning,
9:309–354, 1992.

4. R. Burstall and F. Honsell. Operational semantics in a natural deduction setting.
In Huet and Plotkin [13], pages 185–214.

5. T. Coquand and G. Huet. The calculus of constructions. Information and Control,
76:95–120, 1988.

6. M. J. C. Gordon. Mechanizing program logics in higher order logic. In P. A. Sub-
rahmanyam and G. Birtwistle, editors, Current Trends in Hardware Verification
and Automated Theorem Prover, pages 387–439. Springer-Verlag, 1989.

7. D. Harel. First-Order Dynamic Logic. No.68 in LNCS. Springer-Verlag, 1979.
8. D. Harel. Dynamic logic. In D. Gabbay and F. Guenthner, editors, Handbook of

Philosophical Logic, volume II, pages 497–604. Reidel, 1984.
9. R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. J. ACM,

40(1):143–184, Jan. 1993.
10. M. Heisel, W. Reif, and W. Stephan. A dynamic logic for program verification. In

A. Meyer and M. Taitslin, editors, Proc. of LFCS (Logic at Botik), number 363 in
Lecture Notes in Computer Science, pages 134–145. Springer-Verlag, 1989.

11. F. Honsell and M. Miculan. Encoding program logics in type theories. In
J. Despeyroux, editor, Deliverables of the TYPES Workshop Proving Properties
of Programming Languages, Sophia-Antipolis, Sept. 1993.

12. F. Honsell, M. Miculan, and C. Paravano. Encoding modal logics in Logical Fra-
meworks. To appear, 1996.

13. G. Huet and G. Plotkin, editors. Logical Frameworks. CUP, June 1990.
14. INRIA, Rocquencourt. The Coq Proof Assistant Reference Manual, July 1995.
15. D. Kozen and J. Tiuryn. Logics of Programs. In J. van Leeuwen, editor, Handbook

of Theoretical Computer Science, volume B, pages 789–840. North Holland, 1990.
16. Z. Luo, R. Pollack, and P. Taylor. How to use LEGO (A Preliminary User’s Ma-

nual). Department of Computer Science, University of Edinburgh, Oct. 1989.
17. A. R. Meyer and J. Y. Halpern. Axiomatic definition of programming languages:

A theoretical assessment. J. ACM, 29(2):555–576, Apr. 1982.
18. S. Michaylov and F. Pfenning. Natural Semantics and some of its Meta-Theory in

Elf. In L.-H. Eriksson, L. Hallnäs, and P. Schroeder-Heister, editors, Proceedings of
the Second International Workshop on Extensions of Logic Programming, number
596 in LNAI, pages 299–344, Stockolm, Sweden, Jan. 1991. Springer-Verlag.

19. M. Miculan. The expressive power of structural operational semantics with explicit
assumptions. In H. Barendregt and T. Nipkow, editors, Proceedings of TYPES’93,
number 806 in LNCS, pages 292–320. Springer-Verlag, 1994.

20. M. Miculan. Encoding Logical Theories of Programs. PhD thesis, Università di
Pisa, 1997. To appear.

21. F. Pfenning. Elf: A language for logic definition and verified metaprogramming. In
Fourth Annual Symposium on Logic in Computer Science, pages 313–322. IEEE,
June 1989.

22. D. Prawitz. Natural Deduction. Almqvist & Wiksell, Stockholm, 1965.
23. W. Reif. The KIV system: Systematic construction of verified software. In

D. Kapur, editor, Proc. of CADE-11, number 607 in Lecture Notes in Computer
Science, pages 753–757. Springer-Verlag, 1992.

24. J. C. Reynolds. Syntactic control of interference. In Conference Record of the Fifth
Annual ACM Symposium on Principles of Programming Languages, pages 39–46,
Tucson, Oct. 1978. The Association for Computing Machinery.

25. C. Stirling. Logics for While Programs: Algorithmic/Dynamic Logics. Unpubli-
shed notes, 1985.

26. C. Stirling. Modal and Temporal Logics. In S. Abramsky, D. Gabbay, and
T. Maibaum, editors, Handbook of Logic in Computer Science, volume 2, pages
477–563. Oxford University Press, 1992.

27. B. Werner. Une théorie des constructions inductives. PhD thesis, Université Paris
7, 1994.

