In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA 2014).

A Natural Language Planner Interface for Mobile Manipulators

Thomas M. Howard!, Stefanie Tellex> and Nicholas Roy!

Abstract— Natural language interfaces for robot control
aspire to find the best sequence of actions that reflect the
behavior intended by the instruction. This is difficult because
of the diversity of language, variety of environments, and
heterogeneity of tasks. Previous work has demonstrated that
probabilistic graphical models constructed from the parse
structure of natural language can be used to identify motions
that most closely resemble verb phrases. Such approaches
however quickly succumb to computational bottlenecks imposed
by construction and search the space of possible actions.
Planning constraints, which define goal regions and separate
the admissible and inadmissible states in an environment model,
provide an interesting alternative to represent the meaning of
verb phrases. In this paper we present a new model called
the Distributed Correspondence Graph (DCG) to infer the
most likely set of planning constraints from natural language
instructions. A trajectory planner then uses these planning
constraints to find a sequence of actions that resemble the
instruction. Separating the problem of identifying the action
encoded by the language into individual steps of planning
constraint inference and motion planning enables us to avoid
computational costs associated with generation and evaluation
of many trajectories. We present experimental results from
comparative experiments that demonstrate improvements in
efficiency in natural language understanding without loss of
accuracy.

I. INTRODUCTION

Advances in human-robot interaction have improved our
ability to communicate with robots. Though progress has
been made, contemporary approaches are often tailored for
specific platforms and domains. Robots still require detailed,
low-level guidance in the form of commands in a restrictive
language to perform non-trivial tasks. Although more recent
work based on probabilistic graphical models has pushed
towards connecting natural language to robot actions [1],
grounding language in this manner is quite difficult in
practice as even coarse approximations of the state-action
space can be computationally prohibitive for inferring how
a robot should respond to an instruction.

Rather than inferring a sequence of actions directly from
the instruction, a more natural approach may be to in-
fer a representation of the task that permits the robot to
independently compute the desirable sequence of actions.
It is then the responsibility of the individual platforms to
determine how best to articulate its degrees of freedom to
satisfy the objectives of the inferred task in the current
environment model. Planning constraints are a logical choice
of representation, because they partition the state-space into

I'T.M. Howard and N. Roy are with the Computer Science and Artificial
Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge,
MA 02139, USA

2S. Tellex is with the Computer Science Department at Brown University,
Providence, RI, 02912, USA

o1

04

Fig. 1. An illustration of the robot trajectory x () generated from planning
constraints that were inferred from the natural language instruction “move
near the red box and the blue crate” using the Distributed Correspondence
Graph (DCG) model. The dark gray, light gray, and white regions represent
the goal states, admissible states, and inadmissible states respectively. The
variables o; ...04 identify the four objects in the environment model.

admissible, inadmissible, and goal regions. If we can infer
how the shape of the admissible and goal regions varies over
the course of the tasks, we can apply trajectory planning
algorithms to solve for the sequence of actions that navigate
through this space. An example of our approach is illustrated
in Figure 1 where a trajectory and the admissible and goals
regions are shown for the command “move near the red
box and the blue crate”. We could try to identify the best
state-action sequence directly from the instructions, but the
number of state-action sequences to be considered quickly
becomes intractable with the complexity of the robot and
the utterance. If instead we identify the admissible region of
states and the goal region, we can use one of a variety of
motion planning algorithms to generate the desired motion.

We present a model, called the Distributed Correspon-
dence Graph (DCG), that can be used to efficiently infer
the most likely set of planning constraints given the natural
language instruction and environment. The main advantages
of this model in the context of planning constraint inference
are improvements in efficiency and generality. The DCG
model assumes conditional independence of the primitives
that compose a phrase grounding to reduce the computational
complexity of probabilistic inference. Since the space of
trajectories is no longer required at inference time, we do not
need to ground linguistic constituents in the infinitely large,
continuous space of robot actions. Generality is improved
because the shape of the admissible regions is a function of
the constraints, the robot, and the environment model.

II. NATURAL LANGUAGE UNDERSTANDING OF
ROBOT INSTRUCTIONS

The overall goal of natural language interfaces for robot
control is to find the trajectory (x(r) = [x(f;) ... x (t7)]) that
best performs the activities described by an instruction (A)
in the context of the world model (Y):

argmax p (x (1) [A,Y) (1)
x(1) eRK

In practice, Equation 1 is difficult to compute because
of the diversity of language, environments, and trajectories.
The Generalized Grounding Graph (G®) model [1] is a
contemporary technique for generating robot actions from
natural language instructions. This model is a factor graph
that is trained from a corpus of labeled examples to ground
language with objects, locations, and paths. Grounding is the
process of assigning physical meanings to natural language.
For example, it is common to associate nouns with objects,
prepositions with locations, and verbs with actions. The
structure of the factor graph follows the parse tree of the
instruction by connecting phrases (A = [A; ... 4,]) to ground-
ings "= [y1...%]) and correspondence variables (® =
[1...0n)). In this model the random variables that represent
phrases and correspondence variables are known and the
groundings are unknown. To find the values of the grounding
variables that most closely resemble the command, we search
for the assignments of I' that maximize Equation 2.

argmax p (®|7 ..
N

A Y))

The G* model assumes that the groundings for linguistic
constituents are conditionally independent. This permits the
probability of the groundings and the language to be factored
across individual phrases. This is shown in Equation 3, where
I';, is the array of the groundings from phrases that are
children of the current phrase (A;).

argmax [p (911 % A, Tops T) 3)
Nt i

An example parse tree and grounding graph for the com-
mand “move near the red box and the blue crate” is shown
in Figures 2 and 3. In Figure 2 the instruction is broken
down into phrases, parts of speech, and words. The sentence
has three noun phrases (“and”, “the red box”, and “the blue
crate”), one verb phrase (“move”), and one prepositional
phrase (“near”). While it is straightforward to associates
individual object with “the red box” and “the blue crate”,
the grounding for “and” requires an association with both
of these objects. This means that the space of groundings
must be the power set of objects in the world model to
correctly ground noun phrases, leading to an exponential
number of locations and paths that must be evaluated by
both prepositional and verb phrases.

We observe two shortcomings with the solution proposed
by the G® model. First, it is difficult to efficiently approx-
imate the space of possible motions for non-trivial robot
systems. Second, for environments where we must infer

I

PP

NP\
NP NP
/1IN /1IN
VB IN DT J] NN CC DT JJ] NN

move near the red box and the blue crate

Fig. 2. A parse tree for the sentence “move near the red box and the blue
crate”. Part-of-speech tags in the parse tree are from the Penn Treebank [2].

the red box the blue crate

near and

Fig. 3. The factor graph resulting from the parse tree in Figure 2, used
by the G* algorithm to infer the groundings of the instructions. Each
linguistic is grounded to a object, location, or action through a factor that
incorporates the grounding of its children. Black boxes, white spheres, and
gray sphere are factors, known random variables, and unknown random
variables respectively.

sets of objects, the number of groundings that we must
evaluate grows exponentially. This means that the algorithm
can quickly become intractable in environments with even a
relatively small number of objects. These observations pro-
voke the question of whether paths and locations are the best
candidates for grounding verbs and prepositions. In many
scenarios there are numerous samples from the continuum
of paths and locations that may equally correspond to phrase
and child groundings. A far more efficient method would
search across sets of equally probable paths or locations
instead of individual samples. If we instead search for the
boundaries and preferences of robot motion we could use
natural language instructions to formulate robot planning
problems, rather than try to infer solutions directly from the
continuum of robot trajectories.

III. PLANNING CONSTRAINT INFERENCE

We begin the description of a natural language planner
interface with a formal description of the problem that
we will solve. We formulate the robot planning problem
generally as constrained optimization:

minimize : (tf —|—/ L(x(¢),u(r),t)dt (4)
subjectto: x (1) = fpvm (x (1), u(t) ,1))
X (t;) = X1 (6)

c(x(t),u(r),r)=0 @)

In this description of the robot planning problem, x ()
represents the state of the robot as a function of time.
Equation 4 describes a cost function that outlines prefer-
ences for the behavior of the robot (e.g., minimum time,
minimum energy). Equation 5 characterizes the state-space
response to actions (u(¢)) in the form of a predictive motion
model (fppm (x(¢),u(¢),7)). Equation 6 defines the initial
conditions of the world model. Equation 7 describes a set of
constraints ¢(x(7),u(¢),t) to define the admissible states of
the environment. We define a constraint as a function over the
robot state, input, and time. The constraint function implicitly
specifies a subregion of the state space and a window of
time; the function returns O if the configuration is inside the
region during the time window and some non-zero value if
the configuration is outside the region. The function also
returns O for all configurations outside the time window.

c1 (x(t),u(r),1)
e (x(2),u(t),t)

c(x(t),u(t),t)= te (titg] (8

Ci(x(l),u(t),t):{ gi(x(t),u(r),r) ifte(tj,n] ©)

0 otherwise

The sequence of time windows that are defined by the con-
straints correspond to a sequence of admissible regions of the
configuration space. Individual constraints are deemed active
when ¢ is within 7; and # and inactive when not. Constraint
parameters ; and f; may vary for individual constraints, but
the minimum ¢#; must equal #; and the maximum # must equal
ty. Constraints in the constraint set may overlap and jointly
filter states as the intersection of n time-varying configuration
spaces. Inactive constraints do not influence the shape of the
admissible region.

Our approach to natural language understanding of robot
instructions replaces search in the continuum of actions with
search for the set of constraints that most likely represents
the utterance in the context of the perceived environment.
We address the issue of the size of the space of groundings
with two observations. First is that the space of planning
constraints that can be understood by our planner is finite.
The number of constraints is bounded by the quantity of
objects in our environment and the number of relationships
between objects that the planner can consider. Second is
that the expression of many, if not all of the constituents
of a grounding can be evaluated independently from each
other. If we assume that verbs are grounded to constraint sets,
constraints in a constraint set are conditionally independent,
and that the constraints are known, we can factorize the
model defined in Equation 3 across individual constituents. In
this model we search for both the unknown correspondence
variables (¢;; € ®) and unknown groundings (% € I') to
maximize the product of individual factors:

argmax HP(‘Pi|7i7li7rc,v»T)HP(¢ij|7’ij,li,rq,7Y) (10)

hET, ¢ €D

The variables ¥ and 7; are random variables from the
set I" that represent the groundings of i phrase and the ;"

constituent of the grounding of the i phrase respectively.
Likewise, the variables ¢; and ¢;; are random variables
from the set & that represent the correspondence of the
i grounding and the ;” constituent of the i’ ground-
ing respectively. If we further assume that all phrases are
conditionally independent and all groundings are composed
of conditionally independent elements (e.g. constraint sets,
object sets), we could further factorize the model defined in
Equation 3 to form a model where only the correspondence
variables are not known:

argmaxnp ((j),-j|y,»j,/’L,~,FC,.j,Y)

0i; €P

(1)

We use log-linear models with binary features as factors
to approximate the probability of a correspondence variable
given the groundings and language. Since the function ex-
pressed by a factor is guaranteed to be convex, we apply
the Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-
BFGS) algorithm [3] to optimize the binary feature weights
U from a corpus of labeled training examples.

argmale]l(¢ij77’ij»)*iarc,'j’r) (12)
9ijEP
eZz Hifi (¢i.i YijiAisLe; j I)
v (¢ij, cijs Ai, Tey, X)) = (13)

Zq eZl M fy <¢q-,%j,/1i-,1"c,_, ,Y)

For the model described in Equation 11 all of the random
variables that represent the groundings are known. What is
not known is how a constraint corresponds to the current
phrase in the context of the child groundings. If we were to
use the binary correspondence variable from the G* model
it would allow us to evaluate whether it is more likely
that a constituent should or should not be expressed in
the grounding. A constraint however defines two disjoint
regions and it is desirable to evaluate whether a region or
its complement should be expressed. We therefore introduce
a ternary correspondence variable for constraint groundings
that allows us to evaluate whether a constraint should be
active, inverted, or inactive. This reduces the likelihood of
inferring constraints whose intersection is the empty set
because a constraint and its complement could not both be
actively expressed. It also facilitates inference by reducing
the number of factor evaluations from four (a pair of fac-
tors with two evaluations each) to three (a single factor
with three evaluations) for a single relationship. We call
the model described in Equation 11 the Distributed Corre-
spondence Graph (DCG) because it distributes conditionally
independent elements of phrase groundings across multiple
factors and we search for the correspondences for known
constituents. We call the model in Equation 10 the Hybrid
G>-DCG model because it searches across both unknown
groundings and unknown correspondence variables to ground
the natural language expression. The Hybrid G3*-DCG and
DCG models for the parse tree from Figure 2 are illustrated
in Figure 4. In this example, there are four objects in the
environment, four possible regions in the region set, and four
possible constraints in the constraint set. In this example, we

=

©0 006 006 006

move near and the blue crate

the red box

(a) Hybrid G3-DCG Model

N
R
(-

the blue crate

move " the red box

(b) DCG Model

Fig. 4. An illustration of the Hybrid G3-DCG and DCG models that result from the parse tree in Figure 2. Black boxes, white spheres, and gray sphere
are factors, known random variables, and unknown random variables respectively. The values of the known grounding constituents c¢j...c4 and o0;...04
represent four constraints from the constraint set and four objects from the environment model.

assume that there are four objects in the environment and
four relationships that can be expressed in two ways, for a
total of eight possible constraints in the constraint set.

On first inspection it appears that we have increased the
difficulty of the learning problem by introducing more factors
in the graphical model. While it is true that the graphical
models in Figure 4 have more unknown random variables
than the one shown in Figure 3, the space of values for the
unknown random variables has been reduced significantly.
The number of candidate regions that a state-action must
fill increases exponentially with the number of equivalent
constraints. This leads to exponential growth in the num-
ber of sums of weighted feature evaluations to maximize
the likelihood of a truthful grounding, compared to linear
growth of the sums of weighted feature evaluations required
to maximize the likelihood of a correspondence between
known phrases and groundings with an equivalent number
of constraints. The minimum number of factor evaluations
required to maximize the product of the factors that represent
each phrase in the G, Hybrid G*-DCG, and DCG models
from Figures 3 and 4 are shown in Table I'. For the noun
and prepositional phrases the DCG model requires only half
of the factor evaluations as the G* and Hybrid G3-DCG
models since inclusion or exclusion from the object set that
represents the grounding is evaluated independently. The dif-
ference is even more pronounced for the verb phrase in these
examples because the DCG and Hybrid G*-DCG models
take advantage of four ternary correspondence variables to

'We show the minimum number of factor evaluations because beam
search could be applied with a non-unit beam width

supplant search over the power set of eight constraints (four
pairs of complementary constraints) in the G model.

TABLE I
MINIMUM NUMBER OF FACTOR EVALUATIONS FOR EACH PHRASE IN THE
G3, HYBRID G3-DCG, AND DCG MODELS FOR “MOVE NEAR THE RED
BOX AND THE BLUE CRATE”

phrase
Mo o A M As
G’ 256 16 16 16 16
Hybrid G*-DCG 12 16 16 16 16
DCG 2 8 8 8 8

IV. IMPLEMENTATION

To apply planning constraint inference within the G*
framework, we need the capacity to model an environment,
convert natural language instructions into factor graphs, and
generate trajectories from inferred planning constraints. We
represent the environment as a collection of objects at a
known time. Each object is represented a tree of rigid bodies
connect via revolute, prismatic, or fixed joints. Rigid bodies
in our model have geometric, visual, and inertial properties
as well as a set of semantic tags. Environment dynamics are
modeled using the Bullet physics engine to both initialize
environment models and simulate the effect of actions in
the trajectory planner. Sentences are converted into parse
trees using either the Stanford Parser [4] or the Cocke-
Kasami-Younger (CKY) algorithm [5] with a fixed grammar.
We applied three different types of constraints (distance,

orientation, and contact) at two time intervals between pairs
of rigid bodies in the environment model. Humans assign
natural language instructions to examples using four images
that depict the initial and terminal states of a trajectory that
satisfies the planning constraint set. Each labeled example is
then annotated to provide examples of verb phrases grounded
to constraint sets and noun phrases grounded to rigid bodies.
This process is repeated many times in randomly organized
environments to form a corpus. Trajectories are generated
from constraint sets and a cost function that minimizes time
of execution by searching a tree of actions sampled from a
control library until the goal region is reached.

V. EXPERIMENTS

We propose several experiments to evaluate the ability
of our models to correctly and efficiently infer constraints
from natural language. First, we compare the runtime of
constraint inference in a Hybrid DCG-G® model against
action inference in the G* model baseline. To fairly measure
their comparative performance, the number of trajectories
searched by the G® model will be equal to the number
of non-overlapping regions of admissible states that can be
expressed by the set of constraints in the Hybrid DCG-G>
model. Next, we evaluate the accuracy of the G* and Hybrid
DCG-G® models by training each from two corpora of
labeled examples and measuring whether the correct action
or constraint set is correctly inferred. We then evaluate the
ability to infer constraints from sentences with conjunctions,
transfer the learned model to platforms with similar phys-
ical characteristics, and generate trajectories from natural
language in dynamic environments.

VI. RESULTS
A. Runtime

Two factors that influence the runtime of natural language
interfaces are the time that it takes to construct the model
and the time that it takes to evaluate the model. In Section
III we showed that the size of a state-action space grows
exponentially with a linear increase in the space of planning
constraints. To support this claim, we measure the time that it
takes to compute the most likely correspondence variables for
planning constraint sets of increasing size against the time
that it takes to find the most probable trajectory from the
space of trajectories that can be represented by the planning
constraint set. Figure 5 shows these regions for one, two,
and three constraints in an environment with one robot and
three different colored boxes. The first constraint evaluates
proximity between the robot base and the center of the green
box. Expression and inversion of this constraint produces two
distinct regions inside and outside of the decision boundary.
A second constraint is added that partitions the space based
on the relative position of the robot base to the x-axis of the
coordinate frame of the green box, producing four distinct
regions. A third constraint is added that further divides
the space based on the relative position of the robot base
to the y-axis of the coordinate frame of the green box,
generating eight distinct sets of admissible states. These three

(a) Two regions created by one constraint

(b) Four regions created by two constraints

(c) Eight regions created by three constraints

Fig. 5. An illustration of the regions defined by the expression or inversion
of one, two, and three constraints between the robot base and the green box.

constraints and eight regions could be used to understand
prepositional phrases such as “near the green box”, “in
front of the green cube” or verb phrases like “approach the
right of the smallest box” or “move away from the green
item”. Note that it is not guaranteed that there will be an
admissible region for all combinations of constraints. The
active expression of three proximity constraints between each
of the three colored boxes and the robot base is one example
of three constraints whose intersection would not yield any
admissible states?.

Figure 6 shows the runtime of planning constraint in-
ference and trajectory inference for six planning constraint
sets. The first three planning constraint sets are equivalent to
those illustrated in Figure 5. The latter three constraints add
proximity and half-plane constraints between the robot base
and the blue box. Admissible terminal states of trajectories
are found by randomly sampling in the space of robot and
object positions and orientations. We see the expected linear
and exponential increase in runtime for planning constraint
inference and trajectory inference respectively. Inferring the

2If the trajectory planner is allowed to move boxes, an admissible solution
can be found by relocating two of the boxes near the third.

correct expression of only six planning constraints takes ap-
proximately 88% less time than computing the most probable
trajectory from a space of sixty-four trajectories, not taking
into account the time that it takes to generate the state-action
space. As more objects and relationships between objects
are considered, the computational burden of evaluating the
equivalent state-action space quickly becomes intractable.

Comparison of Inference Runtimes for the State—Action and Planning Constraint Spaces
351

—@— planning constraint space [)
— @ - state-action space ’
’
3r ’
’
’
’
’
25 ’
’
— ’
B ’
s ’
8 2 ,
g ,
g 0
o ’
F .
= 1
o .,
.
’
’
1r _e
-
-
-
-
-
o5 =T L
_____ L

[&

<

0 I I I I)

1 2 5 6

Constraints

Fig. 6. Planning constraint inference and state-action inference runtime as a
function of the number of constraints. In this comparison each n constraints
required 2" trajectories to form an equivalent state-action space.

The second factor that influences runtime is the time that
it takes to represent the space of groundings. Effectively
sampling the space of actions from the continuum of robot
motion requires a forward model of the system dynamics.
If deliberative or randomized sampling is used to generate
the space of actions, this space could grow rapidly without
control over their expressiveness or function. If instead
constraints are used to form a variety of well-separated
solutions, we incur the cost of numerous trajectory planning
queries before inference time. The trajectory planner used
to construct the examples in the corpora in Section VI-B
required an average of 2.1 seconds to generate each motion.
We also observed in the experiments described in Section VI-
B that the Hybrid G*-DCG model required only an average
of 34.7 milliseconds to compute the most likely constraint
set in the context of the language and the environment.
Since the amount of time required to infer the most likely
constraint set is relatively small and the minimum number
of trajectories required to form a state-action space that is
equivalent to a constraint set grows exponentially with the
number of constraints, in practice it is far more efficient to
infer the formulation of a planning problem and solve it
once to find the trajectory that most likely corresponds to
the natural language expression.

B. Accuracy

In the second experiment we assess the ability of plan-
ning constraint inference to determine the correct planning
constraints from natural language instructions. We developed

two corpora for this purpose. The first corpus consisted of
8 constraint sets and 16 environment models. Each environ-
ment consisted of four objects and one ground plane modeled
as single rigid bodies and one robot that was modeled as a
tree of 45 rigid bodies linked through prismatic and revolute
joints for a total of 50 distinct objects. We generated a
trajectory for each constraint set and environment for a
total of 128 pairs of constraint sets and trajectories. We
examined images of each trajectory and assigned 3 natural
language instructions that describe the robot behavior. This
initial dataset hand designed with purposefully varying verbs,
adjectives, and nouns to create a diverse set of commands.
The instructions in the first corpus contained 68 unique parts
of speech, including 13 adjectives, 13 nouns, and 29 verbs.
The first corpus was randomly divided into a training set of
96 examples and a test set of 288 examples. Three examples
illustrating the environment model, robot trajectory, and
assigned instructions are shown in Figure 7.

L 4

u o 5

(a) “go to the blue
box”

Fig. 7. Images of labeled trajectories generated by constraint and
environment sampling that form the training and test sets for constraint
inference evaluation.

(b) “move towards the
green object”

(c) “travel to the or-
ange object”

Each noun phrase in the G* and Hybrid G3-DCG models
uses a single factor to search the 50 objects for the one that is
best described by the linguistic constituents. The state-action
space for the G model consisted of trajectories that satisfied
each of the eight constraints sets in the current environment.
The constraint set for the Hybrid G3-DCG model consisted
of 570 constraints that could be either active, inverted, or
ignored. Performance of the two approaches on the training
and test sets are shown in Table II. Each approach was
given the command and environment model and asked to
produce either the most likely trajectory or the most probable
constraint set. A trial was deemed successful if it produced
the inferred trajectory or constraint set matching the example
associated with the command and environment model.

TABLE 11
SUMMARY OF RESULTS FROM THE EVALUATION OF CORPUS 1

accuracy (%)
Hybrid G*-DCG (constraint)

training 100.00
test 88.54

G? (trajectory)

94.79
75.69

The second corpus consisted of examples labeled by

experimental subjects to ensure a more realistic evaluation.
Labels that contain more than one verb phrase were excluded
from the experiments for the purposes of simplifying the
annotation process. A total of 77 examples were randomly
divided into a training and test sets of 34 and 43 examples
each. The instructions in these examples contained 51 unique
parts of speech, including 7 adjectives, 11 nouns, and 14
verbs.

Performance of the G* and Hybrid G3*-DCG models on
the second corpus is shown in Table III. We observe that
performance of both approaches is slightly inferior to that of
the models trained by the first corpus. This is an expected
result as the number of training examples is quite small in
relation to the variety of language in the second corpus. We
observe in both Table II and Table III that the two approaches
share similar performance in both the training and test sets.

TABLE III
SUMMARY OF RESULTS FROM THE EVALUATION OF CORPUS 2

accuracy (%)
Hybrid G3-DCG (constraint)

training 90.91
test 76.74

G? (trajectory)

81.81
65.11

C. Conjunctions

The experiments from Section VI-B demonstrate that the
Hybrid G3-DCG model enables robots to search the space
of planning constraints without reducing the likelihood of
generating the desired trajectory. The Hybrid G3-DCG model
does however suffer from the same exponential growth in
runtime when the space of groundings for objects transitions
from individual objects to sets of objects, as it must for the
expression illustrated by the models in Figures 3 and and 4.
To show that the DCG model is capable of correctly inferring
sets of objects and constraints, we augmented the first corpus
from Section VI-B with examples that included more com-
plex expressions that include conjunctions and the expression
of multiple proximity and/or orientation constraints. In this
example we assumed that there were 48 constraints between
the parts of the robot and objects in the environment in
the constraint set and and 50 objects in the object set. An
example of the trajectory and the configuration space for
the constraint set that was inferred by the DCG model for
the natural language expression “move near the red box and
the blue crate” is illustrated in Figure 1. The model correctly
inferred the active expression of distance constraints between
the robot base the two named objects and the inversion of
the contact constraints between the robot body and the four
boxes to avoid collisions in approximately 25 milliseconds.

D. Transferability

The ability to infer constraints from natural language
instructions enables a number of interesting capabilities. First
and foremost is the opportunity for transferability across
platforms with similar physical characteristics. Since our

inference model has geometric, kinematic, and semantic
features and treats all robots simply as collections of rigid
bodies, it is possible to train a model for one platform and
apply it to another. To illustrate our point, we applied the
inference model trained from the first corpus in Section VI-
B to a simulated YouBot robot in a similar environment.
We were able to correctly infer the active expression of a
proximity constraint between the base of the YouBot robot
and the green object for the command “go towards the
green box”, even though the model factors were trained with
examples from a different platform and the command did not
appear in the training examples. The phrases “go towards”
and “the green box” did appear separately in the corpus
but paired with different verb and noun phrases, illustrating
one of the benefits of applying grounding graphs to natural
language understanding. The generated trajectory, illustrated
in Figure 8, used a platform-specific predictive motion model
and control library that enables it to drive both forwards and
backwards to the goal region.

Fig. 8. A trajectory generated for a simulated YouBot robot subject to the
command “go towards the green box” using a constraint inference model
trained with examples from a different platform, such as the ones illustrated
in Figure 7.

E. Dynamic Environments

Another feature of constraint inference is the ability to
seamlessly handle dynamic environments. Since we only
infer a set of desired relationships between rigid bodies, it
is not necessary to explicitly sample paths or states in the
time dimension. Figure 9 illustrates trajectories generated
from the constraint set inferred from the command “approach
the blue box”. In each example, one of the three objects
is assigned a non-zero velocity, sometimes disturbing other
objects in the environment. Although paths vary significantly,
the desired relationship between the robot and the blue box
at the terminal state remains consistent across scenarios.

VII. RELATED WORK

Algorithms for inferring actions from language permeate
the artificial intelligence and human-robot interaction litera-
ture. Most research centers on training probabilistic models
from a corpus of examples to evaluate the correspondence
between controllers, actions, or paths. Kress-Gazit et al [6]
applies Linear Temporal Logic (LTL) to map structured
language to robot trajectories. Vogel and Jurafsky [7] and
Branavan et al [8] applies reinforcement learning to learn
an optimal policy from language. Chen and Mooney [9]

R~

N\
.

(a) ‘Vboxbme (t())‘ >0

Fig. 9. Trajectories generated from a constraint set inferred from the
command “approach the blue box™ in three different dynamic environments.
In each the initial conditions of objects vary, resulting in significant
differences in the generated path.

() [Vhoxorange (0)] >0 (€) |Vboxgreen (f0) | >0

searches semantic maps for action sequences that maximize
the metric of words and graphs. Matuszek, Fox, and Koscher
[10] map utterances to a path description language to follow
directions in a labeled map. Zender et al [11] builds a
navigation roadmap of admissible states from sensor data and
a natural language dialog system. Branavan et al [12] learns
precondition relationships between objects in an environment
from text to generate high-level plans. Duvallet et al [13]
learns a policy that predicts the sequence of actions for
direction following in unknown environments. The approach
described in this paper differs from these works by using
natural language instructions and environmental models to
infer the most probable planning constraint set that defines
the time-varying admissible regions of a task. The output
from our inference algorithm is not a controller, action, path,
policy, or set of precondition relationships, but rather is a
description of the problem that can be solved by trajectory
planning algorithms.

Silver, Bagnell, and Stentz [14] learn cost functions to
indicate preference for terrain and maneuvers for mobile
robot navigation. Cost functions do not explicitly restrict
the configuration space and mix quantities to optimize (e.g.
time, energy) with conditions that you want to satisfy (e.g. no
collisions, no tip-over). This work is therefore complimentary
to those that apply constrained optimization formulations of
the trajectory planning problem.

VIII. CONCLUSIONS

Constraint inference improves the efficiency and gener-
ality of human-robot interaction by inferring the admissible
regions of the state-space from a natural language instruction.
Our approach preserves many of the benefits of traditional
grounding graphs (e.g., infinite recursion of noun phrases) by
only replacing factors used to infer single actions with many
factors that infer the expression of constraints. This technique
is compatible with recent advances in trajectory planning
since we only use machine learning to form problems, rather
than attempt to solve them.

One limitation of this approach is the requirement that all
constraints intersect. A more general approach would permit
additional set operators, such as unions or differences, en-
abling robots to perform commands with several acceptable
outcomes. Efficient techniques for searching this larger space

of constraints are an open area for investigation. Another
weakness is the dependency on accurate sentence parsing.
Since a sentence can have several different parses that are
grammatically correct, a better approach could infer the
desired parse structure from the environment or encode the
uncertainty of the parse structure directly in the probabilistic
graphical model. One last limitation is the reliance on aligned
training data. We are interested in applying the techniques
described in [15] to train model factors for planning con-
straint inference from an unaligned corpus of examples.

IX. ACKNOWLEDGMENT

This work was partially supported by the Robotics Con-
sortium of the U.S Army Research Laboratory under the
Collaborative Technology Alliance Program, Cooperative
Agreement WI911NF-10-2-0016, and by the Office of Naval
Research under MURI N00014-09-1-1052.

REFERENCES

[1] S. Tellex, T. Kollar, S. Dickerson, M. Walter, A. G. Banerjee, S. Teller,
and N. Roy, “Understanding natural language commands for robotic
navigation and mobile manipulation,” in Proc. of the National Conf.
on Artificial Intelligence (AAAI), San Francisco, CA, 2011.

[2] M. Marcus, B. Santorini, and M. Marcinkiewicz, “Building a large
annotated corpus of English: the Penn Treebank,” Computational
Linguistics, vol. 19, no. 2, pp. 313-330, 1993.

[3] D. Lui and J. Nocedal, “On the limited memory BFGS method for
large scale optimization,” Mathematical Programming, vol. 45, pp.
503-528, 1989.

[4] D. Klein and C. Manning, “Accurate unlexicalized parsing,” in Proc.
of the 41st Meeting of the Association for Computational Linguistics,
2003, pp. 423-430.

[5] D. Younger, “Recognition and parsing of context-free languages in
time n3,” Information and Control, vol. 10, no. 2, pp. 189-208.

[6] H. Kress-Gazit, G. Fainekos, and G. Pappas, “Translating structured
english to robot controllers,” Advanced Robotics, vol. 22, pp. 1343—
1359, 2008.

[7]1 A. Vogel and D. Jurafsky, “Learning to following navigational direc-
tions,” in In Proc. of the Association for Computational Linguististics,
2010, pp. 806-814.

[8] S. Branavan, H. Chen, L. Zettlemoyer, and R. Barzilay, “Reinforce-
ment learning for mapping instructions to actions,” in Proc. of the Joint
Conf. on Natural Language Processing, Singapore, August 2009, pp.
82-90.

[9] D. Chen and R. Mooney, “Learning to interpret natural language
navigation instructions from observations,” in Proc. of the 25th AAAI
Conf. on Artificial Intelligence, August 2011, pp. 859-865.

[10] C. Matuszek, D. Fox, and K. Koscher, “Following directions using
statistical machine translation,” in In Proc. of the ACM/IEEE Int. Conf.
on Human-Robot Interaction, 2010, pp. 251-258.

[11] H. Zender, O. Mozos, P. Jensfelt, G. Kruijff, and W. Burgard, “Con-
ceptual spatial representations for indoor mobile robots,” Robotics and
Autonomous Systems, vol. 56, no. 6, pp. 493-502, June 2008.

[12] S. Branavan, N. Kushman, T. Lei, and R. Barzilay, “Learning high-
level planning from text,” in Proceedings of the 50th Annual Meeting
of the Ass. for Computational Linguistics, vol. 1, 2012, pp. 126-135.

[13] F. Duvallet, T. Kollar, and A. Stentz, “Imitation learning for natural
language direction following through unknown environments,” in Proc.
of the 2013 Int. Conf. on Robotics and Automation, May 2013.

[14] D. Silver, J. Bagnell, and A. Stentz, “Learning autonomous driving
styles and maneuvers from expert demonstration,” in Int. Symposium
on Experimental Robotics, June 2012.

[15] S. Tellex, P. Thaker, J. Joseph, and N. Roy, “Learning perceptually
grounded word meanings from unaligned parallel data,” Machine
Learning Journal, 2013.

