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1. Introduction

The efficient use of modern communication networks de-

pends on our capabilities for solving a number of demand-

ing algorithmic problems. An example is the establishment

of routes for connection requests between physically sepa-

rated network endpoints that wish to establish a connection

for information exchange. Many connection requests occur

simultaneously in a network, and it is desirable to estab-

lish routes for as many requests as possible. In many situa-

tions, either due to technical constraints or just to improve

the communication, it is required that no two routes inter-

fere with each other, which implies not to share network

resources such as links or switches. This scenario can be

modeled as follows. Let G = (V,E) be an edge-weighted

undirected graph representing a network in which the nodes

represent the hosts and switches, and the edges represent

the links. Let T = {(sj , tj) | j = 1, . . . , |T |; sj �=
tj ∈ V } be a list of commodities, i.e., pairs of nodes in

G, representing endpoints demanding to be connected by

a path in G. T is said to be realizable in G if there exist

mutually edge-disjoint (respectively vertex-disjoint) paths

from sj to tj in G, for every j = 1, . . . , |T |. The ques-

tion whether T is realizable was early known to be NP-

complete in arbitrary graphs [14] as well as specific types

of graphs [18, 21, 26, 22, 19].

The combinatorial optimization version of this problem

consists in satisfying as many of the requests as possible,

which is equivalent to finding a realizable subset of T of

maximum cardinality. A solution S to the combinatorial op-

timization problem is a set of disjoint paths, in which each
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path satisfies the connection request for a different com-

modity. For any solution S, the objective function value

f(S) is defined as

f(S) = |S| . (1)

We henceforth refer to our problem as the maximum edge-
disjoint paths (EDP) problem.

The EDP problem is interesting for different re-

search fields such as combinatorial optimization, algo-

rithmic graph theory and operations research. It has a

multitude of applications in areas such as real-time com-

munications, VLSI-design, scheduling, bin packing, load

balancing, and it has recently been brought into fo-

cus in works discussing applications to routing and ad-

mission control in modern large-scale, high-speed and

optical networks [3, 23, 1, 2]. Concerning real-time com-

munications, the EDP problem is very much related to

survivability and information dissemination. Concern-

ing survivability, having several disjoint paths available

may avoid the negative effects of possible failures occur-

ring in the base network. Furthermore, to communicate

via multiple disjoint paths can increase the effective band-

width between pairs of nodes, reduce congestion in the

network, and increase the velocity and the probability of re-

ceiving the information [24, 13].

In general, there is a lack of efficient algorithms for tack-

ling the EDP problem. Only some greedy approaches (see

Section 2) and a preliminary ant colony optimization (ACO)

approach [4] exist for tackling the problem. The greedy ap-

proaches are used as approximation algorithms for theoret-

ical purposes, but the quality of the solutions they obtain

are susceptible to improvement. Based on the (basic) ap-

proach in [4], we have evolved a more sophisticated ACO

algorithm.

2. A greedy approach

A greedy heuristic is a constructive algorithm that builds

a solution step-by-step starting from an empty solution. At
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Algorithm 1 SGrA for the EDP problem

INPUT: a problem instance {G, T}
S ← ∅, Ê ← E

for j = 1, . . . , |T | do
if sj and tj can be connected by a path in G = (V, Ê) then

Pj ← shortest path from sj to tj in G = (V, Ê)
S ← S ∪ Pj , Ê ← Ê \ {e | e ∈ Pj}

end if
end for
OUTPUT: the solution S

each construction step, an element from a finite set of so-

lution components is added to the current partial solution.

The element to be added is chosen at each step according to

some greedy function. A characteristic feature of the greedy

algorithms is that, once a decision is made on which element

to add, this decision is never reconsidered again. Greedy

heuristics are usually easy to implement and fast in execu-

tion. In contrast, the quality of the solutions provided is of-

ten far from being optimal.

Greedy algorithms are often used as approximation al-
gorithms to solve optimization problems with a guaranteed
performance. With this aim, some greedy algorithms were

proposed for the EDP problem; examples are the simple
greedy algorithm [15], its constrained variant the bounded-
length greedy algorithm [15, 7, 17] and the greedy path
algorithm [16, 8]. Due to its lower time complexity when

compared to the other greedy approaches we decided to im-

plement the simple greedy algorithm (henceforth denoted

by SGrA) and a multi-start version of it.

The SGrA algorithm (see Algorithm 1) is a natural way

of approximating the EDP problem. It starts with an empty

solution S and then it proceeds through the commodities in

the order that is given as input. For routing each commodity

Tj ∈ T , it considers the graph G without the edges that are

already in the paths of the solution S under construction.

The shortest path (w.r.t. the number of edges) between sj

and tj is assigned as path for the commodity Tj = (sj , tj).
Observe that the SGrA algorithm is deterministic and that

the quality of the solutions it provides depends heavily on

the order in which the commodities are treated. A simple

way of overcoming that dependence on the order is to de-

velop a multi-start version of the SGrA by permuting the

order of the commodities for each restart. This approach

is henceforth called multi-start greedy algorithm (MSGrA).

The output of MSGrA is the best solution found in among all

restarts.

Due to the deterministic decisions that greedy algo-

rithms take during the solution construction, it is some-

times not possible for them to find an existing optimal so-

lution. This is also the case for the SGrA and MSGrA

greedy algorithms presented here. Consider for exam-

ple the instance of the EDP problem depicted in Fig-

ure 1, which consists in the depicted graph and the set

v1 v2 v3 v4 v5 v6 v7

s1 t1

v8 v9 v10 v11 v12 v13 v14

s2 t2

v15 v16 v17 v18 v19 v20 v21

s3 t3

Figure 1. Instance of the EDP problem with
T = {(v1, v7), (v8, v14), (v15, v21)}. Neither SGrA nor
MSGrA can find the optimal solution depicted in
bold font.

T = {(v1, v7), (v8, v14), (v15, v21)} of three commodities

to join. The optimal solution in which all three commodi-

ties are connected is also shown in bold font in Figure 1.

This solution is found by our ACO algorithm, which is pre-

sented next, in a small amount of time (less than 30 ms.). In

contrast, it is impossible for SGrA and MSGrA to find the op-

timal solution. The is because they are based on shortest

paths, and therefore they will connect the commodi-

ties through non-consecutively-numbered vertices. For

example, when trying to connect first the commod-

ity (v1, v7), the SGrA algorithm will establish the path

{v1, v9, v10, v5, v6, v7}. This excludes edge {v9, v10} as a

possibility for being used in other paths, which makes it im-

possible to build disjoint paths simultaneously for the re-

maining two commodities, independently of which one

is built next. Analogous situations occur when start-

ing from any of the other two commodities.

3. An ant colony optimization approach

Ant colony optimization (ACO) [10, 12] is a nature-

inspired metaheuristic for solving hard combinatorial op-

timization problems. Apart from the application to static

combinatorial optimization problems the method has also

gained recognition for routing applications in communica-

tion networks [9]. ACO algorithms are composed by inde-

pendently operating computational units, namely artificial
ants, that generate a global perspective without the neces-

sity of direct interaction. This exclusive use of local infor-

mation is an advantageous and desirable feature when appli-

cations in large-scale environments are concerned in which

the computation of global information is often too costly.

This property makes ACO algorithms a natural choice for

the application to the EDP problem.

ACO is inspired by the foraging behavior of real ants.

While walking from food sources to the nest and vice versa,

ants deposit a chemical substance called pheromone on the

ground. When they decide about a direction to go, they

choose probabilistically paths marked by strong pheromone

concentrations. This behavior is the basis for a cooperative
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interaction which leads to the emergence of shortest paths

between food sources and their nest. In ACO algorithms, ar-

tificial ants incrementally construct a solution by adding ap-

propriately defined solution components to the current par-

tial solution. Each of the construction steps is a probabilistic

decision based on local information, which is represented

by the pheromone information.

In the following we outline our ACO approach, which is

based on a decomposition of the EDP problem. Each prob-

lem instance P = (G,T ) of the EDP problem can be natu-

rally decomposed into |T | subproblems Pj = (G,Tj), with

j ∈ {1, . . . , |T |}, by regarding the task of finding a path for

a commodity Tj ∈ T as a problem itself. With respect to

this problem decomposition, we use a number of |T | ants

each of which is assigned to exactly one of the subprob-

lems. Therefore, the construction of a solution consists of

each ant building a path Pj between the two endpoints of

her commodity Tj . Obviously, the subproblems are not in-

dependent as the set of |T | paths constructed by the ants

should be mutually edge-disjoint.

3.1. Ant solutions and pheromone model

Our algorithm will deal with solutions that contain a

path for each commodity. A solution S constructed by the

|T | ants is a set of non-necessarily edge-disjoint paths. We

henceforth refer to them as ant solutions, in contrast to the

EDP solutions, which only consist of disjoint paths. From

each ant solution a valid EDP solution can be produced by

iteratively removing the path which has most edges in com-

mon with the remaining paths, until all remaining paths are

mutually edge-disjoint.

The objective function f(·) of the problem (see Equa-

tion 1) is characterized by having many plateaus when ap-

plied to ant solutions, because many ant solutions have the

same number of disjoint paths. Thus, we define a more fine-

grained objective function fa(·) for ant solutions. There-

fore, referring to f(S) as a first criterion, we introduce a

second criterion C(S), which quantifies the degree of non-

disjointness of an ant solution and is defined as follows:

C(S) =
∑
e∈E

⎛
⎝max

⎧⎨
⎩0,

⎛
⎝ ∑

Pj∈S

δj(S, e)

⎞
⎠ − 1

⎫⎬
⎭

⎞
⎠ , where

δj(S, e) = 1 when e ∈ Pj ∈ S, and δj(S, e) = 0, oth-

erwise. If all the paths in a solution S are edge-disjoint,

C(S) is zero. In general, C(S) increases whith increas-

ing numbers of edges in S that are used in more than one

path. Therefore, based on the idea that the fewer edges are
shared in a solution, the closer the solution is to disjoint-
ness, a function fa(·) that differentiates between ant soluti-

ons can be defined as follows. For two ant solutions S and

Algorithm 2 ACO algorithm for the EDP problem

INPUT: a problem instance (G, T )
Sgb ← Spb ← ∅, κ1 ← κ2 ← 0, all update ← FALSE

InitializePheromoneValues(τ )
while termination conditions not met do

π ← (1, 2, . . . , |T | − 1, |T |)
for i = 1 to Nsols do

Si ← ConstructSolution(G,π)
if i < Nsols then

π ← GenerateRandomPermutation(|T |)
end if

end for
Choose Sib ∈ {Si | i = 1, . . . , Nsols} s.t.

fa(Sib) ≥ fa(S), ∀S ∈ {Si | i = 1, . . . , Nsols}
if f(Sib) > f(Sgb) then Sgb ← Sib end if
if fa(Sib) > fa(Spb) then

κ1 ← κ1 + 1, κ2 ← 0, Spsave ← Spb, Spb ← Sib

if f(Sib) > f(Spsave) then
Supdate ← ExtractDisjointPaths(Spb)
κ1 ← 0, all update ← FALSE

end if
if all update then Supdate ← Spb end if

else κ2 ← κ2 + 1
end if
if all update and (κ2 > max κ2) then

Spb ← DestroyPartially(Spb)
Supdate ← ExtractDisjointPaths(Spb)
κ2 ← 0, κ1 ← 0

else if not all update then all update ← (κ1 > max κ1)
end if
UpdatePheromoneValues(τ ,Supdate)

end while
OUTPUT: the EDP solution generated from Sgb

S′, fa(S) > fa(S′) if, and only if

(f(S) > f(S′))︸ ︷︷ ︸
1st criterion

or ((f(S) = f(S′) and (C(S) < C(S′))︸ ︷︷ ︸
2nd criterion

.

The problem decomposition as described above requires

that we use a pheromone model τ j for each subproblem Pj .

Each pheromone model τ j consists of a pheromone value

τ j
e for each edge e ∈ E. The set of |T | pheromone models is

henceforth denoted by τ = {τ 1, . . . , τ |T |}. The pheromone

values are bounded in [τmin, τmax], where τmin = 0.001 and

τmax = 0.999, since our ACO algorithm is implemented in

the hyper-cube framework [6] with ideas borrowed from the

MAX -MIN Ant Systems [25].

3.2. Algorithmic framework

Algorithm 2 is a high-level description of our ACO algo-

rithm for the EDP problem. First, all the variables are ini-

tialized. In particular, the pheromone values are initialized

by the procedure InitializePheromoneValues(τ ), which

sets all the pheromone values τ j
e ∈ τ j ∈ τ to the value
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τmin. Second, Nsols ant solutions are constructed per itera-

tion. To construct a solution, each ant applies the function

ConstructSolution(G,π) (see Subsection 3.2.1), where π

is a permutation of T . At each iteration, the first of those

Nsols ant solutions is constructed with the identity permuta-

tion, i.e., by sending the ants in the order in which the com-

modities are given in T . However, for each further ant solu-

tion construction in the same iteration, π is randomly gener-

ated by the function GenerateRandomPermutation(|T |)
in order to avoid bias.

Three different ant solutions are kept in the algorithm:

Sib is the iteration-best solution, i.e., the best ant solution

generated in the current iteration, and Sgb is the best-so-far
solution, i.e., the best ant solution found since the start of

the algorithm. In addition to them, an ant solution Spb is also

kept, which is the currently best solution, i.e., the best ant

solution generated since the last escape action (see Subsec-

tion 3.2.3). The values of these three variables are always

kept updated. Additionally, the Supdate solution is gener-

ated from Spb and used for updating the pheromone values.

The search process has two differentiated phases (see

Subsection 3.2.2) controlled by two variables, κ1 and κ2.

The variable κ1 controles the first phase by counting the

number of successive iterations without improvement of

the first criterion of the objective function. The variable

κ2 counts the number of successive iterations without im-

provement of the second criterion, thus controling the sec-

ond phase. Limits max κ1 (for κ1) and max κ2 (for κ2)

are used to determine when the algorithm should change

phases.1 The direct repercussion of the phase distinction is

the selection of edges for the pheromone update, i.e., the

construction of Supdate from Spb. When the algorithm is

in the first phase only the disjoint paths of solution Spb are

used for updating, but when the algorithm is in the second

phase all paths of Spb are used for updating. Additionally,

the escape mechanism might be applied by destroying Spb

partially (see Subsection 3.2.3).

Finally, the pheromone values are updated in the method

UpdatePheromoneValues(τ ,Supdate) depending on the

edges of the paths included in Supdate. The algorithm is it-

erated until some opportunely defined termination condi-

tions are satisfied, and it returns the EDP solution gener-

ated from the ant solution Sgb. In the following, we explain

in more detail the features concerning the solution construc-

tion, the search procedure and its different search phases,

and the escape mechanism of our algorithm.

3.2.1. Solution construction. The solution construction

is performed in method ConstructSolution(G,π), whose

high-level description is shown in Algorithm 3. At each

construction step, each ant moves from the node where it

is currently located to a neighboring node by traversing one

1 After parameter tuning we set max κ1 = max κ2 = 20.

Algorithm 3 Method ConstructSolution(G,π)

INPUT: a graph G from a problem instance (G, T ), and a per-

mutation π of T .

S ← ∅, κcompleted ← 0, j ← 0
for i = 1 to |T | do Pπ(i) ← ∅ end for
repeat

if not isFinishedPath(Pπ(j+1)) then
Pπ(j+1) ← ExtendOneStepPath(Pπ(j+1),τπ(j+1))
if isFinishedPath(Pπ(j+1)) then

κcompleted ← κcompleted + 1
S ← S ∪ {Pπ(j+1)}

end if
end if
j ← (j + 1) mod |T |

until (κcompleted = |T |)
EvaporatePheromone(τ , S)
OUTPUT: an ant solution S

of the available edges that is not already in its path Pπ(j)

under construction, and that is not labelled forbidden by a

backtracking move.2 Otherwise, the ant returns an empty

path. This way of constructing the solution emulates that

the ants build concurrently their paths. The procedures of

Algorithm 3 are:3

– isFinishedPath(Pi) returns a boolean value indicating

whether a path Pi from si to ti is finished.

– ExtendOneStepPath(Pi,τ i) . For constructing a path

between the endpoints of the commodity (si, ti), an ant first

chooses randomly from which endpoint to start; this is done

when the path Pi is empty. The endpoint other than the one

chosen for starting becomes the so-called goal node and will

be denoted by vg . Afterwards, this method either tries to ex-

tend the path Pi under construction, by adding exactly one

edge or, it performs a backtracking step. Backtracking is

done in case the ant finds itself in a node whose incident

edges have all been used already, or if all the incident edges

are labelled forbidden.

Let us denote by vc the current node, and by I�
vc

the set

of edges in G incident to vc which are not used yet in Pi and

not labelled as forbidden. The length of the shortest path be-

tween two vertices u and v in G is henceforth denoted by

σ(u, v) and it is measured in terms of the number of edges.

From the set I�
vc

of allowed edges, only the two best edges

will actually be considered as candidates. This is called a

candidate list strategy in the context of ACO. The best two

edges are those that maximize the value

τ j
e · p(De) · p(Ue), where

2 Note, that with this strategy the ant will find a path between its source

and its destination, if there exists one.

3 For the sake of readability, we substitute π(j + 1) in the description

of the functions by i.
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p(De={vc,u}) ←
(σ(u,vg)+w(e))−1

P

e′={vc,u′}∈I�
vc

(σ(u′,vg)+w(e′))−1 and

p(Ue) ←
U(e)−1

P

e′∈I�
vc

U(e′)−1

being U(e) = 2 when e is already used in Si, and U(e) =
1, otherwise. p(De) determines the influence of the dis-

tance from vc via u to the goal vertex vg , and p(Ue) de-

termines the influence of the overall usage of edge e in

the paths of another ants for the same solution. Thus, us-

ing this candidate list strategy, we can just consider the set

I
�
vc

= {e∗1, e
∗
2}, where e∗1 is the best edge in I�

vc
, i.e.,

e∗1 = {vc, u} ← argmax {τ j
e · p(De) · p(Ue) | e ∈ I�

vc
},

and e∗2 is the second best edge in I�
vc

.

At each construction step, the choice of where to move

to has a certain probability p to be done deterministically,

and probability 1 − p to be chosen probabilistically among

the elements in I
�
vc

. This is a feature that we adopt from a

particularly effective ACO variant called Ant Colony Sys-

tem (ACS [11]). In 75% of the cases, the next edge to join

the path Pπ(k) under construction will be e∗1, while in the re-

maining 25% of the cases, the next edge is chosen from I
�
vc

according to the following transition probabilities:

p(e | I
�
vc

) =
τj

e · p(De) · p(Ue)
P

e′∈I�vc

τ
j

e′
· p(De′) · p(Ue′)

,∀ e ∈ I
�
vc

The use of the pheromone information τ j
e ensures the flexi-

bility of the algorithm, whereas the use of p(De) ensures a

bias towards short paths, and p(Ue) ensures a bias towards

disjointness of the |T | paths constituting a solution.

– EvaporatePheromone(τ , S). Once the solution S is

completed, some amount of pheromone from the edges that

were used by the ants is evaporate. The reason for this phe-

romone evaporation is the desire to diversify the search in

each iteration.4 Given a solution S, the evaporation is done

as follows:

τ j
e ←

{
(1 − ε) · τ j

e : e ∈ Pπ(j) ∈ S, j ∈ [1, |T |]
τ j
e : otherwise .

3.2.2. Search with distinguished phases. The phero-

mone update procedure is an important component of every

ACO algorithm and determines to a large degree the failure

or the success of the algorithm. We propose a pheromone

updating scheme that is based on the idea that, in order to

maintain a higher degree of freedom for finding also edge-

disjoint paths for the commodities that initially prove to be

problematic, it might be better not to use the non-disjoint

paths for updating the pheromone at the beginning of the

4 After parameter tuning we chose a setting of ε = 0.10.

search. Therefore, we propose a two-phases search process

based on the two criteria of function fa(·): in the 1st phase,

the algorithm will try to improve the first criterion of fa(·)
(while disregarding the second one) and only disjoint paths

are used for updating the pheromone values; the 1st phase

is followed by a 2nd phase which is initiated when no im-

provements of the first criterion can be found over a cer-

tain number of iterations bounded by max κ1. The algo-

rithm will try to improve the second criterion of fa(·) in

this 2nd phase, and all the paths are used for updating the

pheromone values. Once the second phase leads to an im-

provement also in terms of the first criterion, the algorithm

changes back to the first phase.

In the first phase, the solution Supdate that is used for

updating the pheromone values is obtained by applying

function ExtractDisjointPaths(Spb), which implements the

process of returning a valid EDP solution from the ant so-

lution Spb as explained in Section 3.1. In the second phase,

the solution Supdate that is used for updating the pheromone

values is a copy of the ant solution Spb, including possibly

non-disjoint paths. If for a number of max κ2 iterations the

second criterion could not be improved neither, some of the

paths from the EDP solution that can be produced from Spb

are deleted. This action can be seen as a mechanism to es-

cape from the current area of the search space (see Subsec-

tion 3.2.3).

After determining solution Supdate, the pheromone of

the edges conforming its paths are updated in function

UpdatePheromoneValues(τ ,Supdate) as follows:

τ j
e ← max

{
τ j
e + ρ ·

(
1 − τ j

e

)
, τmax

}

for all the edges e ∈ Pj ∈ Supdate, where ρ ∈ (0, 1] is a

constant value which is called learning rate. We set ρ to 0.1.

3.2.3. Escape mechanism. One of the main problems of

metaheuristic search procedures is to detect situations in

which the search process gets stuck, i.e., when some local

minimum is reached. Once detected, an algorithm might es-

cape from such a situation by means of a so-called espace

mechanism. For our algorithm, we propose as escape mech-

anism the partial destruction of the disjoint part of the solu-

tion which is used for updating the pheromone values. This

escape mechanism is implemented through the function

DestroyPartially(Spb) of Algorithm 2. It works by delet-

ing 25% of the longest paths in the EDP solution extracted

from Spb. The idea behind the destruction of the longest

paths is that these paths probably have more conflicts with

other paths. Thus, by removing the longest paths, the num-

ber of total edges available is maximized. The mechanism

is triggered once the algorithm cannot improve the currently

best solution in the second search phase.
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4. Experiments

We present the experimental evaluation of our ACO ap-

proach in comparison to the greedy approaches outlined in

Section 2.5 All the algorithms were implemented in C++ and

compiled using GCC 2.95.2 (option -o3). The experiments

have been run on a Linux PC with Intel(R) Pentium(R) 4

processor at 3.06GHz and 900 Mb of memory. Information

about the shortest paths in the respective initial graphs is

provided to all algorithms as input.

Problem instances. The set of benchmark instances

used to experimentally evaluate our ACO approach in-

cludes graphs representing different communication net-

work topologies. For example, the structures of graph3
and graph4 (from [4]) resemble parts of the communica-

tion network of the Deutsche Telekom AG, Germany. Fur-

thermore, graph0, graph1, and graph2 were created with

BRITE [20]. Their topology defines a 2-level top-down hi-

erarchy (autonomous system plus router level), which

is typical in Internet topologies (see Table 1 for de-

tails).

For each of the five graphs we have randomly generated

different sets of commodities. Hereby, we made the size of

the commodity sets dependent on the number of vertices of

the graph. For each graph G = (V,E) we generated 60 in-

stances: 20 different instances with 0.10|V |, 0.25|V | and

0.40|V | commodities. This makes 300 instances altogether.

Results and conclusions. We applied the SGrA, the

MSGrA, and the ACO algorithm to all 300 instances ex-

actly once. First, we applied MSGrA with 50 restarts to

each of the 300 instances. The computation time of MSGrA

was used as a maximum CPU time limit for the ACO al-

gorithm. We present the results as averages over the 20

instances of each combination of graph and commod-

ity number in Table 2.

Concerning the comparison between SGrA and MSGrA,

we observe a clear advantage of MSGrA. This means that

the order in which the commodities are treated is crucial for

SGrA. However, as there is no obvious way of determining

a good commodity order beforehand, the only way of ex-

ploiting this knowledge is by randomly permuting the com-

modity list and running MSGrA. The price we have to pay

for exploiting this knowledge is the increased computation

time.

When comparing the SGrA and the MSGrA with ACO, we

can observe that in 11 out of 15 cases the ACO approach

beats the greedy approaches. The ACO approach is on aver-

age 4.69% better than MSGrA, and in one case (graph4,

173 commodities) it is even 15.07% better. Additionally,

the ACO approach needs in general less computation time

5 For a detailed description of the parameter settings see [5].
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Figure 2. Representative example of the run-time
behavior of our algorithms. The graphic shows
the evolution in time of the quality of solution Sgb

(graph4, 173 commodities).

than the greedy approaches. This advantage in computation

time increases with increasing number of commodities. Ex-

ceptions are some of the results for small numbers of com-

modities. For this combination MSGrA has often slight ad-

vantages over the ACO approach. Therefore, we recommend

to use a greedy approach when easy problem instances are

concerned, but to use the ACO approach for instances with

a higher number of commodities, since then a clear advan-

tage of the latter is observed in comparison to MSGrA both

in quality and time.

An additional analysis concerns the run-time behaviour

of the algorithms (see Figure 2). The ACO approach finds

relatively good solutions already after a very short compu-

tation time. In general, already the first solutions produced

by the ACO are quite good, whereas the greedy approaches

reach a comparable solution quality only much later in time.

This property of our ACO approach is a desirable feature

in the context of communication networks since the qual-

ity of the solutions that are found after a short execution

time might be often sufficient in practice. Also of interest is

to observe the usefulness of ACO’s escape mechanism and

how the second criterion evolves as a measure for disjoint-

ness (see Figure 3).
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