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Abstract. Assistant robots have received special attention from the research community in the last years. One of

the main applications of these robots is to perform care tasks in indoor environments such as houses, nursing homes

or hospitals, and therefore they need to be able to navigate robustly for long periods of time. This paper focuses on

the navigation system of SIRA, a robotic assistant for elderly and/or blind people based on a Partially Observable

Markov Decision Process (POMDP) to global localize the robot and to direct its goal-oriented actions. The main

novel feature of our approach is that it combines sonar and visual information in a natural way to produce state

transitions and observations in the framework of Markov Decision Processes. Besides this multisensorial fusion,

a two-level layered planning architecture that combines several planning objectives (such as guiding to a goal

room and reducing locational uncertainty) improves the robustness of the navigation system, as it’s shown in our

experiments with SIRA navigating corridors.

Keywords: probabilistic navigation, Partially Observable Markov Decision Processes, multisensorial fusion, plan-

ning under uncertainty, assistant robots

1. Introduction

In the last years, the number of elderly in need of care

is increasing dramatically. In the European Union, it is

estimated that 10–15% of the total population is over

60 years old. The society needs to find new technolo-

gies and alternative ways of providing care to this sector

of the population, where the need of personal assis-

tance is larger than in any other age group. Aware of

this necessity, nowadays there are several projects and

research groups working in the development of assis-

tant robots, such as “Nursebot project”, with robots Flo

(Roy et al., 2000) and Pearl (Montemerlo et al., 2002),

and “I.L.S.A” (Haigh et al.,2002) or “Morpha” (Lay

et al., 2001) projects.

In order to contribute to this research field, the

Electronics Department of the University of Alcalá is

working on the SIRAPEM project (Spanish acronym

of Robotic System for Elderly Assistance). The goal

of this project is the development of a robotic aid

that serves primary functions of tele-presence, tele-

medicine, intelligent reminding, safeguarding, mobil-

ity assistance and social interaction.

Figure 1 shows a simplified diagram of the SIR-

APEM global architecture, based on a commercial plat-

form (the PeopleBot robot of ActivMedia Robotics

(2003)) endowed with a differential drive system, en-

coders, bumpers, two sonar rings (high and low), loud-

speakers, microphone and on-board PC. The robot has

been also provided with a PTZ color camera, a tactile

screen and wireless Ethernet link. The system architec-

ture includes several human-machine interaction sys-

tems, such as voice (synthesis and recognition speech)

and touch screen for simple command selection (for

example, a destination room to which the robot must

go to carry out a service task).
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Figure 1. Global architecture of the SIRAPEM project.

This paper focuses on the navigation module, and

mainly, in the localization and planning systems, whose

final objective is to guide the robot to a goal room. In

this kind of care applications, in which the robot must

perform tasks in indoor environments for long periods

of time, a decisive factor is to achieve a robust navi-

gation system capable of treat real world uncertainties

and solve global localization failures without any user

supervision. Another desired feature for these assistant

robotic systems is to simplify the installation process,

in order to use it in different environments (houses,

hospitals, etc.) without long or difficult configuration

steps. So, they must use simple environment represen-

tations and natural landmarks that can be easily found

in any indoor environment.

Many researchers have already pointed out and

shown that probabilistic representation and reasoning

is appropriate and very effective for navigating in noisy

real world (Kaelbling et al., 1996; Burgard et al., 1996;

Thrun, 2002). The research on this field has diverged to

different approaches categorized with respect to the en-

vironment representation technique adopted: metric or

topological. In both cases, Markov foundations (Fox,

1998) for robot localization have been applied with suc-

cessful results. Even though topological approaches are

less precise due to the coarse discretization of the en-

vironment, they allow to solve global navigation tasks

in which it’s not necessary to know the robot’s pose in

detail. Given robust low-level routines, it is only nec-

essary to know that the robot is in some region to allow

the navigation task.

In the framework of navigation with topological

maps, probabilistic localization and decision-making

adopt the form of Partially Observable Markov Deci-

sion Processes (POMDPs). These models provide so-

lutions to localization, planning and learning in the

robotics context, and have been used as probabilistic

reasoning method in the three modules of the naviga-

tion system proposed in this work (see Fig. 1). One

of the main contributions of this work is the addition

of visual information to the Markov model, taking ad-

vantage of POMDPs as natural framework for sensor

fusion. This visual information is used not only for ob-

servations, but also for state transition detection. As

it will be shown in the results section, the addition of

simple visual information reduces the positional un-

certainty by increasing the observability of the envi-

ronment, and makes the navigation system much more

robust and reliable (without decreasing real-time exe-

cution ability). Another important contribution is the

development of a two-level layered planning architec-

ture that combines global and local policies to achieve

several planning objectives: guidance to a room, reduc-

tion of locational uncertainty and exploration.

This paper is organized as follows. After placing this

work within the context of previous similar ones, a brief

overview of POMDPs foundations is presented as back-

ground in Section 2. Section 3 describes the Markov

model used in this navigation application. Section 4

shows the global architecture of the navigation system.

The localization module is described in Section 5 and

the two layers of the planning system are shown in

Section 6. Finally, we show some experimental results,

whereas a final discussion and conclusion summarizes

the paper.
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1.1. Related Previous Work

Markov models, and particularly POMDPs, have al-

ready been widely used in robotics, and especially in

robot navigation. The robots DERVISH (Nourbakhsh

et al., 1995), developed in the Stanford University, and

Xavier (Koenig and Simmons, 1998), in the Carnegie-

Mellon University, were the first robots successfully

using this kind of navigation strategies for localization

and action planning. In the nursing applications field,

in which robots interact with people and uncertainty is

pervasive, robots such as Flo (Roy et al., 2000) or Pearl

(Montemerlo et al., 2002) use POMDPs at all levels of

decision making, and not only in low-level navigation

routines. However, in all these successful navigation

systems, only proximity sensors are used to perceive

the environment. Due to the typical high perceptual

aliasing of these sensors in office environments, us-

ing only proximity sensors makes the Markov model

highly non-observable, and the initial global localiza-

tion stage is rather slow.

On the other hand, there are quite a lot of recent

works using appearance-based methods for robot nav-

igation with visual information. Some of these works,

such as Gechter et al.(2001) and Regini et al. (2002),

incorporate POMDP models as a method for taking

into account previous state of the robot to evaluate its

new pose, avoiding the teleportation phenomena. How-

ever, these works are focused on visual algorithms, and

very slightly integrate them into a complete robot nav-

igation architecture. So, the above referenced systems

don’t combine any other sensorial system, and use the

POMDP only for localizing the robot, and not for plan-

ning or exploring.

This work is a convergence point between these two

research lines, proposing a complete navigation archi-

tecture that adds visual information to proximity sen-

sors to improve previous navigation results, making

more robust and faster the global localization task. Fur-

thermore, a new Markov model is proposed that better

adapts to environment topology, being completely in-

tegrated with a planning system that simultaneously

contemplates several navigation objectives.

2. POMDPs Review

Although there is a wide literature about POMDPs

theory (Papadimitriou and Tsitsiklis, 1987; Puterman,

1994; Kaelbling et al., 1998), in this section some

terminology and main foundations are briefly in-

troduced as theoretical background of the proposed

work.

2.1. Markov Decision Processes

A Markov Decision Process (MDP) is a model for se-

quential decision making, formally defined as a tuple

{S,A,T,R}, where,

• S is a finite set of states (s ∈ S).

• A is a finite set of actions (a ∈ A).

• T = {p(s ′|s, a) ∀ (s, s ′ ∈ S a ∈ A)} is a state transi-

tion model which specifies a conditional probability

distribution of posterior state s ′ given prior state s

and action executed a.

• R = {r (s, a) ∀ (s ∈ S a ∈ A)} is the reward function,

that determines the immediate utility (as a function

of an objective) of executing action a at state s.

A MDP assumes the Markov property, which estab-

lishes that actual state and action are the only informa-

tion needed to predict next state:

p(st+1 | s0, a0, s1, a1, ..., st , at ) = p(st+1 | st , at ) (1)

In a MDP, the actual state s is always known without

uncertainty. So, planning in a MDP is the problem of ac-

tion selection as a function of the actual state (Howard,

1960). A MDP solution is a policy a = π (s), which

maps states into actions and so determines which ac-

tion must be executed at each state. An optimal pol-

icy a = π∗(s) is that one that maximizes future re-

wards. Finding optimal policies for MDPs is a well

known problem in the artificial intelligent field, to

which several exact and approximate solutions (such

as the value iteration algorithm) have been proposed

(Howard, 1960; Papadimitriou and Tsitsiklis, 1987;

Puterman, 1994).

2.2. Partially Observable Markov

Decision Processes

A POMDP is used under domains where there is not

certainty about the actual state of the system. Instead,

the agent can do observations, and so the model in-

cludes the following elements:

• {S,A,T,R}, the same that in the MDP context.

• O, a finite set of observations (o ∈ O)
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• ϑ={p(o | s) ∀ o ∈ O, s ∈ S} is an observation model

which specifies a conditional probability distribution

over observations given the actual state s.

Because in this case the agent has not direct access

to the current state, it uses actions and observations

to maintain a probability distribution over all possi-

ble states, known as the belief distribution, Bel(S). A

POMDP is still a markovian process in terms of this

probability distribution, which only depends on the

prior belief, prior action and current observation.

In a POMDP, a policy a = π (Bel) maps beliefs

into actions. However, what in a MDP was a discrete

state space problem, now is a high-dimensional contin-

uous space. Although there are numerous studies about

finding optimal policies in POMDPs (Cassandra, 1994;

Littman, 1994; Kaelbling et al.,1998), the size of state

spaces and real-time constraints make them infeasible

to solve navigation problems in robotic contexts. This

paper proposes an alternative approximate solution for

planning in POMDP-based navigation contexts, divid-

ing the problem into two layers and applying some

heuristic strategies for action selection. This method

provides successful results in this kind of robot navi-

gation applications.

3. Markov Model for Global Navigation

A POMDP model for robot navigation is constructed

from two sources of information: the topology of the

environment and some experimental or learned infor-

mation about action and sensor errors and uncertainties.

Taking into account that the final objective of the SIR-

APEM navigation system is to direct the robot from one

room to another to perform guiding or service tasks, we

discretize the environment into coarse-grained regions

(nodes) of variable size in accordance with the topol-

ogy of the environment, in order to make easier the

planning task. As it’s shown in Fig. 2 for a virtual envi-

ronment, only one node is assigned to each room, while

the corridor is discretized into thinner regions. The lim-

its of these regions correspond to any change in lateral

features of the corridor (such as a new door, opening or

piece of wall). This is a suitable discretization method

in this type of structured environments, since nodes are

directly related to topological locations in which the

planning module may need to change the commanded

action.

3.1. The Elements: States, Actions and Observations

In the context of robot navigation, the states of the

Markov model are the locations (or nodes) of a topo-

logical representation of the environment. Actions are

local navigation behaviors that the robot can execute to

move from one state to another, and observations are

all kind of environment information the robot can ex-

tract from its sensors. In this case, the Markov model is

partially observable because the robot may never know

exactly which state it is in.

The states (S) of our Markov model are directly re-

lated to the nodes of the topological graph. A single

state corresponds to each room node, while four states

are assigned to each corridor node, one for each of the

four orientations the robot can adopt during corridor

navigation.

The actions (A) selected to produce transitions from

one state to another correspond to local navigation be-

haviors of the robot. We assume imperfect actions, so

the effect of an action can be different of the expected

one (this will be modelled by the transition model T).

These actions are:

(1) “Go out room” (aO ): to traverse doors using sonar

an visual information in room states,

(2) “Enter room” (aE ): only defined in corridor states

oriented to a door,

(3) “Turn right” (aR): to turn 90◦ to the right,

(4) “Turn Left” (aL ): to turn 90◦ to the left,

(5) “Follow Corridor” (aF ): to continue through the

corridor to the next state, and

(6) “No Operation” (aN O ): used as a directive in the

goal state.

Finally, the observations (O) in our model come from

the two sensorial systems of the robot: sonar and vi-

sion. Markov models provide a natural way to com-

bine multisensorial information, as it will be shown in

Section 3.2. In each state, the robot makes three kinds

of observations:

(1) “Abstract Sonar Observation” (oASO). Each of the

three nominal directions around the robot (left,

front and right) is classified as “free” or “occu-

pied” using sonar information, and an abstract ob-

servation is constructed from the combination of

the percepts in each direction (thus, there are eight

possible abstract sonar observations, as it’s shown

in Fig. 3(a)).
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Figure 2. Topological graph for a virtual environment.

(2) “Landmark Visual Observation” (oLVO). Doors are

considered as natural visual landmarks, because

they exist in all indoor environments and can be

easily segmented from the image using color (pre-

viously trained) and some geometrical restrictions.

This observation is the number of doors (in lateral

walls of the corridor) extracted from the image (see

Fig. 3(b)), and it reduces the perceptual aliasing

of sonar by distinguishing states at the beginning

from states at the end of a corridor. However, in

long corridors, doors far away from the robot can’t

be easily segmented from the image (this is the

case of image 2 of Fig. 3(b)), and this is the reason

because we introduce a third visual observation.

(3) “Depth Visual Observation” (oDVO). As human-

interaction robots have tall bodies with the camera
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Figure 3. Observations of the proposed Markov model.

on the top, it’s possible to detect the vanishing ceil-

ing lines and classify its length into a set of discrete

values (in this case, we use four quantification lev-

els, as it’s shown in Fig. 3(b)). This is a less sensi-

tive to noise observation than using floor vanishing

lines (mainly to occlusions due to people walking

through the corridor) and it provides complemen-

tary information to oLVO.

Figure 3(b) shows two scenes of the same corridor from

different positions and their corresponding oLVO and

oDVO observations. It’s shown that these are obtained

by means of very simple image processing techniques

(color segmentation for oLVO and edge detection for

oDVO), and have the advantage, regarding correlation

techniques used in Gechter et al. (2001) or Regini et al.

(2002), that they are less sensitive to slight pose devi-

ations within the same node.

3.2. Visual Information Utility and Improvements

Visual observations increase the robustness of the lo-

calization system by reducing perceptual aliasing. On

the other hand, visual information also improves state

transition detection, as it’s shown in the following sub-

sections.

3.2.1. Sensor Fusion to Improve Observability. Us-

ing only sonar to perceive the environment makes the

Markov model highly non-observable due to percep-

tual aliasing. Furthermore, the “Abstract Sonar Obser-

vation” is highly dependent on doors state (opened or

closed). The addition of the visual observations pro-

posed in this work augments the observability of states.

For example, corridor states with an opened door on the

left and a wall on the right produces the same abstract

sonar observation (oASO = 1) independently if they are

at the beginning or at the end of the corridor. However,
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the number of doors seen from the current state (oLVO)

allows to distinguish between these states.

POMDPs provide a natural way for using multisen-

sorial fusion in their observation models (p(o | s) prob-

abilities). In this case, o is a vector composed by the

three observations proposed in the former subsection.

Because these are independent observations, the obser-

vation model can be simplified in the following way:

p(o | s) = p(oASO, oLVO, oDVO | s)

= p(oASO | s) · p(oLVO | s) · p(oDVO | s) (2)

3.2.2. Visual Information to Improve State Transi-

tion Detection. To ensure that when the robot is in

a corridor, it only adopts the four allowed directions

without large errors, it’s necessary that, during the exe-

cution of a “Follow Corridor” action, the robot becomes

aligned with the corridor longitudinal axis. So, when

the robot stands up to a new corridor, it aligns itself

with a subtask that uses visual vanishing points. Be-

sides, during corridor following, it uses sonar buffers to

detect the walls and construct a local model of the cor-

ridor, using the method proposed by Konolige (1998).

This method uses an occupancy map to extract the local

model of the corridor (Konolige, 1997) and updates this

model when robot moves using an anchoring process

(Saffiotti, 1994). A fuzzy controller allows the robot

to move along the obtained corridor (Saffiotti et al.,

1993). Finally, an individual “Follow Corridor” action

terminates when the robot reaches a new state of the

corridor. Detecting these transitions only with sonar

readings is very critical when doors are closed.

To solve this problem, we add visual information to

detect door frames as natural landmarks of state transi-

tions (using color segmentation and some geometrical

restrictions). The advantage of this method is that the

image processing step is fast and easy, being only nec-

essary to process two lateral windows of the image as

it’s shown in Fig. 4. Whenever a vertical transition from

wall to door color (or vice versa) is detected in a lateral

window, the distance to travel as far as that new state is

obtained from the following formula, using a pin-hole

model of the camera (see Fig. 4):

d =
l

tg (α)
= K · l (3)

where l is the distance of the robot to the wall in the

same side as the detected door frame (obtained from

sonar readings) and α is the visual angle of the door

Figure 4. State transition detection by means of visual information.

frame. As the detected frame is always in the edge of

the image, the visual angle α only depends on the fo-

cal distance of the camera that is constant for a fixed

zoom (and known from camera specifications). After

covering distance d (measured with relative odometry

readings), the robot reaches the new state. This transi-

tion can be confirmed (fused) with sonar if the door is

opened. Another advantage of this transition detection

approach is that no assumptions are made about doors

or corridor widths.

3.3. Action and Observation Uncertainties

To automatically calculate (compile) the transition and

observation matrixes of the POMDP model, it’s nec-

essary to define some action an observation uncertain-

ties. The POMDP compiler, described in next subsec-

tion, supports two ways of defining these uncertainties.

The first one is to introduce some experimental “hand-

made” uncertainty rules (this method is also used in

Koenig and Simmons (1998) and Zanichelli (1999)).

The empirical rules used in our robot are shown in

Table 1 for action and observation uncertainties. For

example, if a “Follow” action (aF ) is commanded, the

probability of making a state transition (F) is 70%,

while there is a 5% probability of remaining in the same
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Table 1. Rules for constructing the Markov model from empirical

action and observation uncertainties.

Action Uncertainty (F = Follow, L = Left,

R = Right, O = Out, E = Enter, N = No action)

Command Efect of Command (% probabilities)

aF N = 10 F = 70 FF = 10 FFF = 10

aL N = 5 L = 90 LL = 5

aR N = 5 R = 90 RR = 5

aO N = 10 O = 80 OF = 10

aE N = 10 E = 90

Observation Uncertainty

ASO model

Open door probability (for all doors) 50%

Prob. of detecting something being nothing 10%

Prob. of detecting nothing being something 5%

LVO model

Assigned probability to real number of doors 70%

Maximum deviation ±2 doors

DVO model

Assigned probability to real oDVO observation 80%

Maximum deviation ±1

state (N = no action), a 5% probability of making two

successive state transitions (FF), and a 5% probability

of making three state transitions (FFF) (similar rules

are used in the observation model). Experience with

this method has shown it to produce reliable naviga-

tion. The second one consists of learning probabilities

to more closely reflect the actual environment of the

robot. Adopting this last method, we have developed a

learning module (see Fig. 1) that adjusts observations

and probabilities during an initial exploration stage, and

maintains these parameters updated when the robot is

performing another guiding or service tasks (López et

al., 2004). This module, that also makes easier the in-

stallation of the system in a new environment, is out of

the scope of this paper.

3.4. POMDP Compilation

As it’s shown in Fig. 5, the POMDP model is automat-

ically constructed from two sources of information:

• The topology of the environment, represented as a

graph with nodes and connections. This graph fixes

the states (s ∈ S) of the model and establishes the

Figure 5. Structure of the POMDP compiler.

ideal transitions among them by means of logical

connectivity rules.

• The uncertainty model, that characterizes the er-

rors or ambiguities of actions and observations, and

together with the graph, makes possible to gener-

ate the transition and observation matrixes of the

POMDP.

Several recent works (Brants, 1996; Yairi et al., 2003)

try to learn the structure (topology) of POMDP mod-

els from experimental data. These methods need long

training stages to produce reliable results, and have not

been validated in real robotic applications yet. Taking

into account that a reliable graph is crucial for the lo-

calization and planning systems to work properly, and

the topological representation proposed in this work is

very close to human environment perception, we pro-

pose a manual introduction of the graph. To do this, the

SIRAPEM system incorporates an application to help

the user to introduce the graph of the environment (this

step is needed only once when the robot is installed in

a new working domain, because the graph is a static

representation of the environment). After numbering

the nodes of the graph (the only condition to do this

is to assign the lower numbers to room nodes, starting

with 0), the connections in the four directions of each

corridor node must be indicated. Figure 6 shows an

example of the “Graph definition” application (for the

environment of Fig. 2), which also allows to associate

a label to each room. These labels will be identified by

the voice recognition interface and used as user com-

mands to indicate goal rooms.

Once the graph is introduced, the POMDP compiler

automatically assigns a number (ns) to each state of

the graph as a function of the number of the node

to which it belongs (n) and its orientation within the

node (head = {0(right), 1(up), 2(left), 3(down)}) in

the following way (n rooms being the number of room
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Figure 6. Example of graph definition for the environment of Fig. 2.

nodes):

Room states : ns = n

Corridor states : ns = n rooms + (n − n rooms)

× 4 + head

Finally, the compiler generates the initial transition and

observation matrixes using the predefined uncertainty

rules. Besides, during normal working of the navigation

system (performing guiding tasks), the learning mod-

ule uses current actions and observations to maintain

the parameters updated in the face of possible changes

(López et al., 2004).

4. Navigation System Architecture

The problem of acting in partially observable environ-

ments can be decomposed into two components: a state

estimator, which takes as input the last belief state, the

most recent action and the most recent observation,

and returns an updated belief state, and a policy, which

maps belief states into actions. In robotics context, the

first component is robot localization and the last one is

task planning.

Figure 7 shows the global navigation architecture

of the SIRAPEM project, formulated as a POMDP

model. At each process step, the planning module se-

lects a new action as a command for the local navigation

module, that implements the actions of the POMDP as

local navigation behaviors. As a result, the robot mod-

ifies its state (location), and receives a new observation

from its sensorial systems. The last action executed,

besides the new observation perceived, are used by the

localization module to update the belief distribution

Bel(S).

After each state transition, and once updated the be-

lief, the planning module chooses the next action to

execute. Instead of using an optimal POMDP policy

(that involves high computational times), this selection

is simplified by dividing the planning module into two

layers:

• A local policy, that assigns an optimal action to

each individual state (as in the MDP case). This as-

signment depends on the planning context. Three

possible contexts have been considered: (1) guid-

ing (the objective is to reach a goal room selected

by the user to perform a service or guiding task),

(2) localizing (the objective is to reduce location

uncertainty) and (3) exploring (the objective is to

learn or adjust observations and uncertainties of the

Markov model).

• A global policy, that using the current belief and

the local policy, selects the best action by means of

different heuristic strategies proposed by Kaelbling

et al. (1996).

This proposed two-layered planning architecture is

able to combine several contexts of the local policy to

simultaneously integrate different planning objectives,

as will be shown in subsequent sections.
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Figure 7. Global architecture of the navigation system.

Finally, the learning module (López et al., 2004) uses

action and observation data to learn and adjust the ob-

servations and uncertainties of the Markov model.

5. Localization and Uncertainty Evaluation

The localization module updates the belief distribution

after each state transition, using the well known Markov

localization equations (Thrun, 2002). These equations

are applied in two steps:

• Prediction step, that can be calculated just after a

new action ai is commanded:

Belposterior(s
′) = K ·

∑

s∈S

p(s ′ | s, a) · Belprior(s)

∀s ′ ∈ S (4)

where K is a normalization factor to ensure that the

probabilities all sum one.

• Estimation step, that must be calculated after action

execution, once the new observation o (at new state)

is perceived, using the Bayes rule:

Belposterior(s) = K · p(o | s) · Belprior(s) ∀s ∈ S

(5)

In the first execution step, the belief distribution can be

initialized in one of the two following ways: (a) If initial

state of the robot is known, that state is assigned prob-

ability 1 and the rest 0, (b) If initial state is unknown,

a uniform distribution is calculated over all states.

Although the planning system chooses the action

based on the entire belief distribution, in some cases

it’s necessary to evaluate the degree of uncertainty of

that distribution (this is, the locational uncertainty). A

typical measure of discrete distributions uncertainty is

the entropy. The normalized entropy (ranging from 0

to 1) of the belief distribution is:

H (Bel) = −

∑

s∈S Bel(s) · log(Bel(s))

log(ns)
(6)

where ns is the number of states of the Markov model.

The lower the value, the more certain the distribution.

This measure has been used in all previous robotic

applications for characterizing locational uncertainty

(Kaelbling, 1996; Zanichelli, 1999).

However, this measure is not appropriate for detect-

ing situations in which there are a few maximums of

similar value, being the rest of the elements zero, be-

cause it’s detected as a low entropy distribution. In fact,

even being only two maximums, that is a not good re-

sult for the localization module, because they can cor-

respond to far locations in the environment. A more

suitable choice should be to use a least square measure

respect to ideal delta distribution, that better detects the

convergence of the distribution to a unique maximum

(and so, that the robot is globally localized). However,
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we propose another approximate measure that, provid-

ing similar results to least squares, is faster calculated

by using only the two first maximum values of the

distribution (it’s also less sensitive when uncertainty

is high, and more sensitive to secondary maximums

during the tracking stage). This is the normalized di-

vergence factor, calculated in the following way:

D(Bel) = 1 −
ns (dmax + pmax) − 1

2 · ns − 1
(7)

where dmax is the difference between first and second

maximum values of the distribution, and pmax the ab-

solute value of the first maximum. Again, a high value

indicates that the distribution converges to a unique

maximum. In the results section we’ll show that this

new measure provides much better results when plan-

ning in some kind of environments.

6. Planning under Uncertainty

A POMDP model is a MDP model with probabilistic

observations. Finding optimal policies in the MDP case

(that is a discrete space model) is easy and quickly for

even very large models. However, in the POMDP case,

finding optimal control strategies is computationally in-

tractable for all but the simplest environments, because

the beliefs space is continuous and high-dimensional.

There are several recent works that use a hierarchi-

cal representation of the environment, with different

levels of resolution, to reduce the number of states that

take part in the planning algorithms (Theocharous and

Mahadevan, 2002; Pineau and Thrun, 2002). However,

these methods need more complex perception algo-

rithms to distinguish states at different levels of abstrac-

tion, and so they need more prior knowledge about the

environment and more complex learning algorithms.

On the other hand, there are also several recent approx-

imate methods for solving POMDPs, such as those that

use a compressed belief distribution to accelerate algo-

rithms (Roy, 2003) or the point-based value iteration

algorithm (Pineau et al., 2003) in which planning is

performed only on a sampled set of reachable belief

points.

The solution adopted in this work is to divide the

planning problem into two steps: the first one finds an

optimal local policy for the underlying MDP (a* =

π*(s), or to simplify notation, a∗(s)), and the second

one uses a number of simple heuristic strategies to se-

lect a final action (a∗(Bel)) as a function of the local

Figure 8. Planning system architecture, consisting of two layers:

(1) Global POMDP Policy, and (2) Local MDP Policies.

policy and the belief. This structure is shown in Fig. 8

and described in subsequent sections.

6.1. Contexts and Local Policies

The objective of the local policy is to assign an opti-

mal action (a∗(s)) to each individual state s. This as-

signment depends on the planning context. The use

of several contexts allows the robot to simultaneously

achieve several planning objectives. The localization

and guidance contexts try to simulate the optimal pol-

icy of a POMDP, which seamlessly integrates the two

concerns of acting in order to reduce uncertainty and to

achieve a goal. The exploration context is to select ac-

tions for learning the parameters of the Markov model.

In this subsection we show the three contexts sep-

arately. Later, they will be automatically selected or

combined by the Context Selection and Global policy

modules (Fig. 8).

6.1.1. Guidance Context. This local policy is calcu-

lated whenever a new goal room is selected by the user.

Its main objective is to assign to each individual state

s, an optimal action (aG
∗(s)) to guide the robot to the

goal.

One of the most well known algorithms for finding

optimal policies in MDPs is Value Iteration (Bellman,

1957). This algorithm assigns an optimal action to each

state when the reward function r (s, a) is available. In

this application, the information about the utility of

actions for reaching the destination room is contained

in the graph. So, a simple path searching algorithm
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Figure 9. Node directions for “Guidance” (to room 2) and “Local-

ization” contexts for environment of Fig. 2.

can effectively solve the underlying MDP, without any

intermediate reward function.

So, a modification of the A∗ search algorithm

(Winston, 1984) is used to assign a preferred heading

to each node of the topological graph, based on mini-

mizing the expected total number of nodes to traverse

(shorter distance criterion cannot be used because the

graph has not metric information). The modification of

the algorithm consists of inverting the search direction,

because in this application there is not an initial node

(only a destination node). Figure 9 shows the result-

ing node directions for goal room 2 on the graph of

environment of Fig. 2.

Later, an optimal action is assigned to the four states

of each node in the following way: a “follow” (aF )

action is assigned to the state whose orientation is the

same as the preferred heading of the node, while the

remaining states are assigned actions that will turn the

robot towards that heading (aL or aR). Finally, a “no

operation” action (aNO) is assigned to the goal room

state.

Besides optimal actions, when a new goal room is

selected, Q(s, a) values are assigned to each (s, a) pair.

In the MDPs theory, Q-values (Lovejoi, 1991) charac-

terize the utility of executing each action at each state,

and will be used by one of the global heuristic policies

shown in next section. To simplify Q values calcula-

tion, the following criterion has been used: Q(s, a) = 1

if action a is optimal at state s, Q(s, a) = −1 (nega-

tive utility) if actions a is not defined at state s, and

Q(s, a) = −0.5 for the remaining cases (actions that

disaligns the robot from the preferred heading).

6.1.2. Localization Context. This policy is used to

guide the robot to Sensorial Relevant States (SRSs)

that reduce positional uncertainty, even if that requires

moving it away from the goal temporarily. This plan-

ning objective was not considered in previous similar

robots, such as DERVISH (Nourbakhsh et al., 1995)

or Xavier (Koenig and Simmons, 1998), or was im-

plemented by means of fixed sequences of movements

(Cassandra, 1994) that don’t contemplate environment

relevant places to reduce uncertainty.

In an indoor environment, it’s usual to find different

zones that produce not only the same observations, but

also the same sequence of observations as the robot

traverses them by executing the same actions (for ex-

ample, symmetric corridors). SRSs are states that break

a sequence of observations that can be found in another

zone of the graph.

Because a state can be reached from different paths

and so, with different histories of observations, SRSs

are not characteristic states of the graph, but they de-

pend on the starting state of the robot. This means that

each starting state has its own SRS. To simplify the cal-

culation of SRSs, and taking into account that the more

informative states are those aligned with corridors, it

has been supposed that in the localization context the

robot is going to execute sequences of “follow corridor”

actions. So, the moving direction along the corridor to

reach a SRS as soon as possible must be calculated for

each state of each corridor. To do this, the Composed

Observations (COs) of these states are calculated from

the graph and the current observation model ϑ in the

following way:

C O(s) = 100 · oDVO(s) + 10 · oLVO(s) + oASO(s)

with

oDVO(s) = arg max
ODVO

(p(oDVO|s) )

oLVO(s) = arg max
OLVO

(p(oLVO|s) ) (8)

oASO(s) = arg max
OASO

(p(oASO|s) )

Later, the nearest SRS for each node is calculated by

studying the sequence of COs obtained while moving

in both corridor directions. Then, a preferred heading

(among them that align the robot with any connected

corridor) is assigned to each node. This heading points

at the corridor direction that, by a sequence of “Fol-

low Corridor” actions, directs the robot to the nearest

SRS (Fig. 9 shows the node directions obtained for
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environment of Fig. 2). And finally, an optimal action

is assigned to the four states of each corridor node to

align the robot with this preferred heading (as it was

described in the guidance context section). The optimal

action assigned to room states is always “Go out room”

(ao).

So, this policy (a∗
L (s)) is only environment depen-

dent and is automatically calculated from the connec-

tions of the graph and the ideal observations of each

state.

6.1.3. Exploration Context. The objective of this lo-

cal policy is to select actions during the exploration

stage, in order to learn transition and observation prob-

abilities. As in this stage the Markov model is unknown

(the belief can’t be calculated), there is not distinc-

tion between local and global policies, whose common

function is to select actions in a reactive way to explore

the environment. This context is strongly connected

with the learning module (López et al., 2004) and they

are out of the scope of this paper.

6.2. Global Heuristic Policies

The global policy combines the probabilities of each

state to be the current state (belief distribution Bel(S))

with the best action assigned to each state (local policy

a∗(s)) to select the final action to execute, a∗(Bel). Once

selected the local policy context (for example guidance

context, a∗(s) = aG
∗(s)), some heuristic strategies pro-

posed by Kaelbling et al. (1996) can be used to do this

final selection.

The simpler one is the Most Likely State (MLS)

global policy that finds the state with the highest prob-

ability and directly executes its local policy:

a∗
MLS(Bel) = a∗

(

arg max
s

(Bel(s))
)

(9)

The Voting global policy first computes the probabil-

ity mass of each action (V (a)) (probability of action a

being optimal) according to the belief distribution, and

then selects the action that is most likely to be optimal

(the one with highest probability mass):

V (a) =
∑

s |a∗ (s)=a

Bel(s) ∀a ∈ A

a∗
vot(Bel) = arg max

a

(V (a)) (10)

This method is less sensitive to locational uncer-

tainty, because it takes into account all states, not only

the most probable one.

Finally, the QMDP global policy is a more refined

version of the voting policy, in which the votes of each

state are apportioned among all actions according to

their Q-values:

V (a) =
∑

s∈S

Bel(s) · Qa(s) ∀a ∈ A

(11)
a∗

QMDP
(Bel) = arg max

a

(V (a))

This is in contrast to the “winner take all” behavior of

the voting method, taking into account negative effect

of actions.

Although there is some variability between these

methods, for the most part all of them do well when

initial state of the robot is known, and only the track-

ing problem is present. If initial state is unknown, the

performance of the methods highly depends on par-

ticular configuration of starting states. However, MLS

or QMDP global policies may cycle through the same

set of actions without progressing to the goal when

only guidance context is used. Properly combination

of guidance and localization context highly improves

the performance of these methods during global local-

ization stage.

6.3. Automatic Context Selection or Combination

Apart from the exploration context, this section con-

siders the automatic context selection (see Fig. 8) as

a function of the locational uncertainty. When uncer-

tainty is high, localization context is useful to gather

information, while with low uncertainty, guidance con-

text is the appropriate one. In some cases, however,

there is benign high uncertainty in the belief state; that

is, there is confusion among states that requires the

same action. In these cases, it’s not necessary to com-

mute to localization context. So, an appropriate mea-

sure of uncertainty is the normalized divergence fac-

tor of the probability mass distribution, D(V (a)), (see

Eq. (7)).

The thresholding-method for context selection uses

a threshold φ for the divergence factor D. Only when

divergence is over that threshold (high uncertainty),

localization context is used as local policy:

a∗(s) =

{

a∗
G(s) if D < φ

a∗
L (s) si D ≥ φ

(12)

However, the weighting-method combines both con-

texts using divergence as weighting factor. To do this,
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probability mass distributions for guidance and local-

ization contexts (VG(a) and VL (a)) are computed sep-

arately, and the weighted combined to obtain the final

probability mass V (a). As in the voting method, the ac-

tion selected is the one with highest probability mass:

V (a) = (1 − D) · VG(a) + D · VL (s)
(13)

a∗(Bel) = arg max
a

(V (a))

7. Simulation Results

To validate the proposed navigation architecture and

compare the different planning methods and contexts,

some experimental results are shown. Because the ad-

vantages of the localization system and some planning

strategies can only be demonstrated in hard environ-

ments, we include two kinds of experiments. In this

section, we show some results obtained with a simula-

tor of the robot, in order to test the planning methods

in hard virtual environments. The simulation platform

used in these experiments (shown in Fig. 10) is based

on Saphira commercial software (Konolige and Myers,

1998) provided by ActivMedia robotics, that includes

Figure 10. Diagram of test platforms: real robot or simulator.

a very realistic robot simulator that very closely re-

produces real robot movements and ultrasound noisy

measures on a user defined map. A visual 3D simulator

using OpenGL software has been added to incorporate

visual observations. So, simulation results can be reli-

ably extrapolated to extract realistic conclusions about

the system. Besides, in next section we show some

experiments carried out with the real robot of the SIR-

APEM project in one of the corridors of the Electronics

Department (an “easier” environment), in order to val-

idate the navigation system on a real robotic platform.

There are some things that make one world more dif-

ficult to navigate than another. One of them is its degree

of perceptual aliasing, which substantially affects the

agent’s ability for localization and planning. The local-

ization and two-layered planning architecture proposed

in this work improves the robustness of the system in

typical “aliased” environments, by properly combin-

ing two planning contexts: guidance and localization.

As an example to demonstrate this, we use the virtual

aliased environment shown in Fig. 2, in which there are

two identical corridors. Firstly, we show some results

concerning only the localization system. After that, we

also include the planning module in some guidance ex-

periments to compare the different planning strategies.
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7.1. Localization Results

Two are the main contributions of this work to Markov

localization in POMDP navigation systems. The first

one is the addition of visual information to accelerate

the global localization stage from unknown initial po-

sition, and the second one is the usage of a novel mea-

sure to better characterize locational uncertainty. To

demonstrate them, we executed the trajectory shown

in Fig. 11(a), in which the “execution steps” of the

POMDP process are numbered from 0 to 11. The robot

was initially at node 14 (with unknown initial position),

and a number of “Follow corridor” actions were exe-

cuted to reach the end of the corridor. Then it executes

a “Turn Left” action and continues through the new

corridor until reaching room 3 door.

In the first experiments, all doors were opened, en-

suring a good transition detection. This is the best as-

sumption for only sonar operation. Two simulations

were executed in this case: the first one using only

sonar information for transition detection and observa-

tion, and the second one adding visual information. As

the initial belief is uniform, and there is an identical

corridor to that in which the robot is, the belief must

converge to two maximum hypotheses, one for each

corridor. Only when the robot reaches node 20 (that is

an SRS) it’s possible to eliminate this locational un-

certainty, appearing a unique maximum in the distri-

bution and starting the “tracking stage”. Figure 11(b)

shows the real state assigned probability evolution dur-

ing execution steps for the two experiments. Until step

5 there are no information to distinguish corridors, but

it can be seen that with visual information the robot

is better and sooner localized within the corridor. Fig-

ure 11(c) shows entropy and divergence of both exper-

iments. Both measures detect a lower uncertainty with

visual information, but it can be seen that divergence

better characterizes the convergence to a unique max-

imum, and so, the end of the global localization stage.

So, with divergence it’s easier to establish a threshold to

distinguish “global localization” and “tracking” stages.

Figures 11(d) and (e) show the results of two new

simulations in which doors 13, 2 and 4 were closed.

Figure 11(d) shows how using only sonar information

some transitions are lost (the robots skips positions 3,

9 and 10 of Fig. 11(a). This makes much worse the lo-

calization results. However, adding visual information

no transitions are lost, and results are very similar to

that of Fig. 11(b).

After performing some statistics, it can be concluded

that uncertainty effect of “Follow Corridor” action is re-

duced from 60% to 15% with closed doors. The reduc-

tion of convergence time (“global localization stage”)

is very dependent on the environment, but it can be

assured and proved that it’s always quite shorter when

adding visual observations.

So, visual information makes the localization more

robust, reducing perceptual aliasing of states in the

same corridor, and more independent of doors state.

Besides, the proposed divergence uncertainty measure

better characterizes the positional uncertainty that the

typical entropy used in previous works.

7.2. Planning Results

The two layered planning architecture proposed in this

work improves the robustness of the system in “aliased”

environments, by properly combining the two planning

contexts: guidance and localization. To demonstrate

this, we show the results after executing some simu-

lations in the same fictitious environment of Fig. 11(a).

In all the experiments the robot was initially at room

state 0, and the commanded goal room state was 2.

However, the only initial knowledge of the robot about

its position is that it’s a room state (initial belief is a

uniform distribution over room states). So, after the “go

out room” action execution, and thanks to the visual ob-

servations, the robot quickly localizes itself within the

corridor, but due to the environment aliasing, it doesn’t

know in which corridor it is. So, it should use the local-

ization context to reach nodes 20 or 27 of Fig. 2, that

are sensorial relevant nodes to reduce uncertainty.

Table 2 shows some statistical results (average num-

ber of actions to reach the goal, final values of entropy

and divergence and skill percentage on reaching the

Table 2. Comparison of the planning strategies in the virtual envi-

ronment of Fig. 11(a)).

Only Guidance Context

No of Actions Final H Final D Final State 2

MLS 6 0.351 0.754 54.3%

Voting 17 0.151 0.098 63.8%

QMDP 15 0.13 0.095 62.3%

Guidance and Localization Contexts

(always with voting global method)

H (V (a)) threshold 14 0.13 0.05 83.5%

D(V (a)) threshold 13 0.12 0.04 100%

Weighted D(V (a)) 13 0.12 0.04 100%



82 López et al.

Figure 11. Localization examples. (a) Real position of the robot at each execution step, (b) Bel(sreal) with all doors opened, with only sonar

(—) and with sonar + vision ( ), (c) uncertainty measures with all doors opened, (d) the same as (b), but with doors 13, 2, 4 closed, (e) the

same as (c) but with doors 13, 2, 4 closed.
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Table 3. Real guidance example using the SIRAPEM prototype of Fig. 1 navigating in a corridor of the Electronics Department (map and graph

shown in Fig. 12). The robot was initially in room 2 with unknown initial room state, and room 4 was commanded as goal state. Guidance and

localization contexts are combined using thresholding method with divergence of probability mass as uncertainty measure. The table shows, for

each execution step: the real robot state (indicated by means of node number and direction); the first and second most likely states and divergence

of the belief D(Bel); the most voted action in guidance context and the divergence of its probability mass distribution D(V ) (when the last one

is higher than 0.5, the most voted action of localization context is used); the action command selected at each process step and the real effect

(transition) of actions from step to step.

correct room) after repeating each experiment a num-

ber of times. Methods combining guidance and local-

ization contexts are clearly better, because they direct

the robot to node 20 before acting to reach the destina-

tion, eliminating location uncertainty, whereas using

only guidance context has a unpredictable final state

between rooms 2 and 11. On the other hand, using the

divergence factor proposed in this work, instead of en-

tropy, improves the probability of reaching the correct

final state, because it better detects the convergence to

a unique maximum (global localization).

8. Real Robot Results

Finally, Table 3 shows a real guidance example using

the SIRAPEM prototype of Fig. 1 navigating in a cor-

ridor of the Electronics Department (map and graph

shown in Fig. 12). The robot was initially in room 2

with unknown initial room state, and room 4 was com-

manded as goal state. In this example, guidance and

localization contexts are combined using thresholding

method with divergence of probability mass as uncer-

tainty measure. Table 3 shows, for each execution step,

the real robot state (indicated by means of node number

and direction), the first and second most likely states

and divergence of the belief D(Bel). It also shows the

most voted action in guidance context and the diver-

gence of its probability mass distribution D(V). When

the last one is higher than 0.5, the most voted action

of localization context is used. Finally, it shows the ac-

tion command selected at each process step and the real

effect (transition) of actions from step to step.

It can be seen that after going out the room, localiza-

tion context is activated and the robot turns left, in the

opposite direction of the destination, but to the best di-

rection to reduce uncertainty. After this movement, un-

certainty is reduced, and starts the movement to room 4.

The trajectory shown with dotted line in Fig. 12 was

obtained from odometry readings, and shows the real

movement of the robot. As a global conclusion, di-

vergence factor and context combination reduces the

number of steps the robot is “lost”, and so the goal

reaching time.

9. Discussion and Future Work

The proposed navigation system, based on a topolog-

ical representation of the world, allows the robot to
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Figure 12. Topological graph model for a corridor of the Electronics Department, and executed trajectory from room 2 to room 4 (process

evolution shown in Table 3).

robustly navigate in corridor and structured environ-

ments. This is a very practical issue in assistance appli-

cations, in which robots must perform guidance mis-

sions from room to room in environments typically

structured in corridors and rooms, such as hospitals

or nursing homes. Although the topological map con-

sists of very simple and reduced information about the

environment, a set of robust local navigation behav-

iors (the actions of the model) allow the robot to lo-

cally move in corridors, reacting to sensor information

and avoiding collisions, without any previous metric

information.

This topological POMDP-based method presents

several advantages regarding other efficient probabilis-

tic navigation techniques based on metric representa-

tions of the environment (Gutmann et al., 1998), such as

particle filtering (also known as Monte Carlo filtering)

(Fox et al., 1999). In corridor environments, that can be

easily modelled with a topological description, the hard

introduction (or learning) of metric maps is avoided.

Besides, the level of locational resolution needed for

navigation in these environments doesn’t justify using

a high number of states (particles) corresponding to

metric positions of the robot along the corridors. Some

previous experiments with particle filters in the same

corridor environment of the Electronics Department of

the University of Alcalá (López et al., 2002) show that

the number of states can be reduced from thousands

of particles to 71 topological states without worsen-

ing the navigation capabilities of the system. Besides,

planning actions is much easier using a topological dis-

cretization of the environment such as that proposed in

this work.

Another important subject in robot navigation is ro-

bustness in dynamic environments. It is demonstrated

that topological representations are more robust to dy-

namic changes of the environment (people, obstacles,

doors state, etc.) because they are not modelled in the

map. In this case, in which local navigation is also

based on an extracted local model of the corridor, the

system is quite robust to people traversing the corri-

dor. People are another source of uncertainty in ac-

tions and observations, which is successfully treated by

the probabilistic transition and observation models. Re-

garding doors state, the learning module (López et al.,

2004) adapts the probabilities to its real state, making

the system more robust to this dynamic aspect of the

environment.
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In order to improve the navigation capabilities of

the proposed system, we are working on several future

work lines. The first one is to enlarge the action and ob-

servation sets to navigate in more complex or generic

environments. For example, to traverse large halls or

unstructured areas, a “wall-following” or “trajectory-

following” action would be useful. Besides, we are also

working on the incorporation of new observations from

new sensors, such as a compass (to discriminate the

four orientations of the graph) and a wireless signal

strength sensor. Enlarging the model doesn’t affect the

proposed global navigation algorithms. Regarding the

learning system, future work is focused on automat-

ically learning the POMDP structure from real data,

making even easier the installation process.

10. Conclusion

This paper shows a new navigation architecture for act-

ing in uncertain domains, based on a POMDP model

incorporating simple visual information. This new sen-

sor provides better information to state transition and

observation models, making possible a faster global

localization when the initial position of the robot is

unknown and a more robust navigation.

This paper also shows a new planning architec-

ture for acting in uncertain domains. Instead of us-

ing POMDP exact solutions, we propose an alterna-

tive two-level layered architecture that simplifies the

selection of the final action, combining several plan-

ning objectives. As local policies we propose a guid-

ance context, whose objective is to reach the goal, and

a localization context to reduce location uncertainty

when necessary. As global policies, we have adopted

some heuristic strategies proposed in previous works.

We have demonstrated the validity of this architecture

in highly aliased environments, in which the combi-

nation of the two contexts improves the robustness of

the planning system, and in a real environment using

the robot prototype of the SIRAPEM project. We also

introduce a new uncertainty measure that better detects

the convergence to a unique maximum that the typical

entropy.
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She has worked on several projects in relation to computer vision,

robotics and intelligent control.


