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Abstract

Health and well-being are shaped by how lifestyle and the environment interact with biological 

machines. A navigational paradigm can help users reach a specific health goal by using constantly 

captured measurements to estimate how their health is continuously changing and provide 

actionable guidance.

Experiences are valuable for determining a person’s quality of life. If we define quality of 

life as a function of positive experiences and time, then we want to optimize those 

experiences and extend their duration. An illness can have a negative effect, despite counter 

mechanisms such as medications or surgery. The challenge for the next century is to ensure 

long lives and maintained health, thus enabling people to enjoy high-quality experiences.

In the last century, progress in health care resulted in a precipitous decrease in infectious 

diseases. Antibiotics reflected one side of the coin, by treating patients reactively, once an 

infection had already become a major health concern. On the flip side, advances in 

preventing infections through population-level data offered insight into ways to improve 

public hygiene and contain infectious agents, while vaccines biologically prevented 

infections. As humans continue to lead longer lives, chronic diseases have emerged as the 

main health challenge. Modern medicine relies mostly on reactive health systems that take 

care of individuals only after they become sick, using drugs, surgeries, and other “fix it when 

it breaks” episodic intervention methods. Prescribing antibiotics is the hallowed strategy 

medical experts have taken toward treating infectious disease. To tackle chronic disease and 

significantly improve quality of life, it is necessary to move beyond the episodic health 

model.

The World Health Organization defines health as “a state of complete physical, mental and 

social well-being and not merely the absence of disease or infirmity.”1 Health is a dynamic 

state that is constantly changing based on biology, the environment, and lifestyle. The state 

space of health is complex and multidimensional but, for the sake of simplicity, in Figure 1 

we describe a one-dimensional continuum ranging from optimal wellness to death. Everyone 

is somewhere on this continuum at every moment, but quality of life increases if there is a 

leftward shift.

Technology that senses a change in a user’s position on the health continuum can drastically 

improve human health. In prehistoric times, only symptoms (perceptual indications) guided 

people’s actions. Ancient civilizations started to document medical conditions with basic 
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human sensory abilities, such as how people looked, their pulse rhythmicity, coughing 

sounds, or the taste of urine (e.g., diabetes). Symptoms are usually latent signals of 

biological dysfunction. Today, advanced methods detect changes in health, but only in a 

professional health-care setting after a patient visits due to symptoms. Reducing the lag time 

in recognizing health state changes requires transitioning from the current approach to a new 

high-resolution multimodal continuous-sensing paradigm.

Daily decisions that affect health can result from hedonistic tendencies. The difference 

between finances and health is that quantitative health status is essentially invisible to us, 

especially when we are healthy. In financial matters, people can quantitatively see how much 

they are saving or spending at any given moment. They can choose to save for the future or 

spend. If people become aware of their biology, they could see how daily life is affecting 

their health and make informed decisions accordingly. Health decisions are too important to 

be episodic; they must be an intrinsic part of daily life. This is the motivation behind 

proposing the navigation perspective.

DEFINING PERSONAL HEALTH NAVIGATION

Navigation is different from recommendation systems and automatic circuits. This goal-

based guidance system perpetually estimates the current state, computes the best route 

through intermediate states, and guides actions that lead to health goals. For true success, 

this system requires robust continuous sensing, accurate estimation of the current state, 

control systems, actuation mechanisms, understanding of the outside world and context, 

long-term planning, and goal decomposition at various levels of detail. Navigation must also 

manage stochastic, chaotic, and noisy environments effectively. This goal-driven, closed-

loop sense-compute-then-act cycle combines the pioneering elements from cybernetic 

systems (well described in electromechanical systems and biology by Weiner et al.2) and the 

general problem solver by Newell et al.3

The purpose of personal health navigation (PHN) is to help an individual reach and maintain 

his or her desired health state (Figure 2). Systems that provide health navigation are broad, 

and humans may be integral components. Examples include a personal device such as a 

mobile phone and an entire Internet of Things (IoT) ecosystem within a building, a human 

trainer at a gym, or an advanced cancer center. PHN starts with a user-specified health goal. 

From there, the system starts to collect measurements about the person’s health that relate to 

his or her goal to estimate current health states. To reach the desired goal optimally, the 

system breaks the steps from the current state and provides the next step to an actuation 

mechanism. All actions, whether advised by the system or not, are constantly measured to 

provide a new estimation of the patient’s health state. A change in the health state updates 

the next action to be executed. A cycle of these actions moves the user’s health state closer 

to the target health state. Upon reaching the destination, the system continuously ensures 

minimized deviation from that state. The vast unknown nature of health means that more 

diverse multimodal data will be obtained in the future and that this phenomenon requires 

combining these data sources.
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Human sensors

Two sets of perception influence our understanding of mental and physical health. Internal 

sensors capture feelings of perceived pain, energy, proprioception, and mood, to name a few. 

External sensors capture information about the outside world through sight, hearing, touch 

(including sensory pain, temperature, texture, and so on), taste, and smell. Humans use both 

sets to understand health states. Sensors measure a physical attribute to understand the 

physical world. Unfortunately, the ways our natural biological sensors unify, store, quantify, 

and use these data are not easily compatible with modern computing. Tedious methods that 

do not capture data continuously are used to share these two sets of sensory attributes well 

enough to optimize long-term health. Augmenting the external senses with tools such as 

imaging and microphones (for example, stethoscopes in the case of doctors) helps to feed 

data to computers, but the next data capture level is to include artificial sensors that go 

beyond our human senses.

Artificial sensors

Throughout history, quantifying health at a higher resolution has always changed what it 

means to be considered healthy. The stethoscope, blood pressure cuff, and microscope all 

modified the definition. Continuous sensors, digital inter-actions, and biological 

measurements produce vast amounts of data. Smartphones collect steps, smart watches 

record heartbeats, and location tracking can obtain local pollution levels, while social media, 

shopping, and search history offer insights into personal interests and relationships.

Transitioning further into the information age, four key information sources are identified: 

perceptual, physical, biologic, and digital. Perceptual quantification takes human sensory 

information and provides continuous streams of data about emotions, sensory inputs, and 

brain activity. Physical sensors track the external environment to understand what a person’s 

surroundings and behaviors are like. Biological sensors report on internal changes. Modern 

biological sensing mechanisms include “omic” data (genomic, microbiomic, and 

metabolomics), wearables to track physiology, the IoT and ambient devices, biomarkers, 

advanced imaging, and electrical signals. Digital sensors include interactions with all 

computers, phones, wearables, and other computing devices. This is an incomplete set of 

sensing mechanisms; we will continue to see an explosion of sensing technology in the 21st 

century.

Sensor integration

To track the health continuum, measurements must be synchronized into a life-log database 

like Personicle.4 Data streams are combined with event streams for semantic retrieval and 

understanding a person’s daily life and environment.5,6 Processing, analysis, compression, 

and safe yet useful storage with different semantics may also be very challenging. As 

modern sensors constantly stay connected to networks, they will have a continuous pulse on 

a rich variety of information about each person.

The cost of all sensing mechanisms is not equal, so data stream continuity and availability 

will vary. For example, a wearable heart-rate monitor is an inexpensive and continuous way 

to measure heart activity but will be less insightful than cardiac perfusion testing with a 
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computerized tomography scanner to evaluate heart attack risk. The expensive sensor may 

be used to initialize or calibrate a health state, and the less expensive sensors, which are 

more continuous, would be available to estimate the current state from the most recently 

calibrated state.

Estimate

Measurements are useful for estimating current health status by using learning in 

conjunction with reasoning (especially referencing domain knowledge) techniques. State 

estimations must take the entire evolving situation of an individual and his or her social 

connections into account, not just a static measurement, to understand state trajectories, 

resources, and problems. This estimation could indicate its proximity to biological 

dysfunction or its capacity for a desired goal. Two primary challenges arise in health 

estimation.

Personal health state space.—Each person has a unique and finite possibility of 

biological states. Classic examples such as height, eye color, or fingerprints have a very 

small set of states after reaching adulthood. However, many aspects of biology have a large 

range of possible states, which change based on daily life. Consider how exercise changes 

the mitochondrial content of cells, how nutrition alters our metabolic processes, how 

medications modulate our blood pressure, and how ultraviolet light damages DNA. The 

changes in these states are what determines the movement on the health continuum. 

Mapping the personal health state space (PHSS) in totality is a complex, multidimensional 

challenge.

A pinnacle of health estimation research would be to aim to describe the PHSS in terms of a 

purely biological function, independent of pathology as the primary motivator. Layers on top 

of this coordinate system would contain all relevant health domain knowledge (Figure 3), 

similar to physical maps that use latitude, longitude, and altitude to describe the globe 

independently of any knowledge layers. Information layers such as roads, oceans, country 

borders, and satellite imagery allow for navigation within the space, depending on the 

context (driving requires roads and traffic layers, while flight requires air class and airport 

layers). Thus, geographic information systems have evolved to address these computational 

issues. Similarly, formal PHSS models and systems will emerge over time with the 

assimilation of knowledge that is associated with observability and controllability 

conditions.2 A semantic translation to the relevant PHSS will also depend on the user’s goals 

and system capabilities. For example, mapping the coordinates of a “healthy pregnancy” or 

“fast marathon run” in the PHSS requires matching relevant sections and coordinates that are 

of interest.

Health state location.—There is constant flux within an individual’s PHSS. To be 

successful, navigation must be able to assign an accurate location within the PHSS for any 

control decision, just as GPS provides physical world navigation. Understanding this 

location in real time, from multimodal data sources, will provide a highly relevant health 

estimation for a variety of applications. For example, monitoring a cardiovascular health 

state is useful to both endurance athletes and heart disease patients.7 Estimation techniques 
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have been of great interest for designing many applications, but health applications will 

require increasingly deep biological knowledge layers to define and estimate health states.

Personal model

To predict the future, provide guidance, and understand the preferences and particularities of 

an individual, researchers must build personal models.8 These models, which establish the 

premise that each individual is a unique system, are needed to best estimate the user’s health 

state and how various inputs uniquely move them in the state space. Models are then 

accessed to provide precise guidance. The personal model can build knowledge and predict 

many aspects of an individual’s life, such as how a person reacts to different stimuli under 

specific conditions or physiological change from an intervention.

To model a person, a combination of long- and short-term information must interact. Long-

term models of an individual can come from the genome or the history of event patterns and 

behavior. Biological or high-resolution continuous sensors can capture short-term models. 

These models are not static; they continuously change with an individual’s age, life events, 

and other life parameters, which makes model-building a dynamic and causal understanding 

process.9 Models must consider, at least, the following.

Physiologic function.—Dynamic health attributes include biological health, such as 

organ function and capacity (cardiorespiratory capacity, bone strength, and metabolism). 

Models may have various time and size levels in terms of detail, depending on the 

application. Short-term models can already predict how electrical activity in the heart may 

produce an arrhythmia,10 while a long-term model may predict the impact of long-term 

lifestyle habits on developing atherosclerosis. Cellular or gross organ-level processes can be 

modeled separately or in combination. These functions constantly change based on daily 

factors that include sleep, nutrition, medication, or stress.

Mental condition.—Extrapolating and modeling mental health will be a complex 

challenge that requires advanced sensing mechanisms such as affective computing. Mental 

health components could include various time resolutions of interest, such as overall mental 

stability or minute-by-minute mood analysis. Evaluating risks for erroneous modeling prior 

to field deployment will be essential for the users’ safety.

Behavior.—Understanding user preferences, influences, and motivations will be essential 

to close the loop when humans are involved as actuators. The system uses this information to 

tailor guidance in a way that makes living a healthy lifestyle pleasurable and convenient, 

enhancing the quality of life. To be effective, irrational behavior, social tendencies, and 

situations in which temptation overrides true long-term goals must be included in the model.
11 In addition, risky behaviors may warrant help to prevent harmful events such as drunk 

driving.

Risk.—Researchers can model risk assessment for reversible and irreversible physiologic 

dysfunction by using basic biological models. An example of disease risk would be the 

chance that an individual would develop metabolic syndrome, a condition that medical 

professionals could possibly reverse with an early-stage intervention. An example of a 
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damage risk would be the likelihood of this syndrome turning into type 1 diabetes, resulting 

in permanent pancreatic damage. Risk modeling will also include behavior and mental 

condition models to understand the propensity for self-harm, accidents, or harm to others, as 

mentioned previously. To provide the greatest value, resources are prioritized and invested 

based on evaluating the likelihood and consequence of these combined risks.

Guide

After passively monitoring, estimating, and modeling an individual, the next step in 

navigation would be to input a goal and receive guidance on the next step needed to reach 

that goal. In the case of health, a user selects a desired semantic state, and then the system 

begins to navigate by decomposing the goal to intermediate states, routing to the next state, 

and deciding the best execution strategy for actuation.

Goal decomposition.—To reach the next intermediate state, goal decomposition will 

require long-term planning of the user’s goal state within PHN and translating that goal state 

into short-term goals for guidance. At first, the system will need to translate the semantic 

goal to the PHSS. Because the PHSS is complex, a given macro health goal may need to be 

broken into several intermediate states and subgoals that the system can focus on reasonably. 

There may be a set of short-term goals at any given moment, each with its own set of 

intermediate states and subgoals. At the lowest atomic level for an application, PHN lists 

fulfillment tasks in priority order so that users can execute them in the real world to attain a 

subgoal or the next intermediate state.

Using the example goal of a “healthy pregnancy,” experts would divide it into six parts: 

preconception, first trimester, second trimester, third trimester, delivery, and postpartum. 

Each of these intermediate steps will have various intermediate states and subgoals that are 

required for optimization. Focusing on preconception as an example, the mother must have 

adequate nutrition and fertile ovulation. Each subgoal will be defined by a smaller state 

space. In the case of nutrition, models will list macro (carbohydrates, protein, fat) and micro 

(vitamins, minerals) nutrients. These components may then be the chosen atomic-level 

intermediate states for applying nutrition.

Routing.—Making a route on a map requires not only knowing the start and end points but 

also all the layers of roads and traffic. In the case of PHN, each set of intermediate states and 

subgoals will have its own layer of information, which is relevant for mapping, along with 

costs and constraints to transition among intermediate states. Interactions in PHN will be 

extremely complex due to its large dimensionality. Contradictions between various user 

goals must be handled also, perhaps through prioritization or weighting. Means–ends 

analysis or other problem-solving techniques, along with appropriate routing algorithms, 

will reveal the best intermediate states for the user to reach the goal.

In the case of food, it is necessary to map available food options, nutrition, and locations, 

along with how each choice can fulfill the tasks demanded. Consider models for a breakfast, 

lunch, snack, and dinner in the daily subgoal of a nutritional state. The total components 

must be coordinated to reach the subgoal appropriately. For example, if breakfast does not 

provide enough iron, then it must be compensated for in other meals. Researchers must 
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further consider the logistics of adding a dish into the equation. Hence, solving routing for 

various PHN components remains an open opportunity.

Execution strategy.—Context-aware recommendations will be critical for understanding 

how to provide navigational guidance.12 In daily life, transitory situations present constant 

opportunities to execute the next step in fulfilling a subgoal and thus to help reach the next 

intermediate state. For a particular user, identifying these contexts through continuous 

sensing is the best execution strategy.

Referring to the nutritional case, the system will need to decide the best meal choice to move 

the user’s health state closer to his or her goal state based on situational constraints. This 

decision will require knowledge of all available meals, as well as their locations, hours, 

nutrition facts, and ingredients along with the personal sensor data modeling the physiologic 

needs.

Act

Computing optimal guidance is not enough. To have a meaningful impact, guidance must be 

situationally actionable and implemented in the real world. A spectrum of actuation ranging 

from fully automated systems to human-fulfilled actions is given for the system to be 

effective in the physical world.

Machine driven.—Many machines automate tasks such as laundry or aircraft control, 

which are instances of completely automated control mechanisms that can make an action in 

the real world control a task. For type 1 diabetes, continuous glucose monitoring paired with 

insulin pumps can control blood sugar far better than humans can. In the future, actuators of 

all types will be pervasive for health-related actions in everyday life. Modulating the 

environment is a prime example. Imagine homes with automated biological circadian 

rhythm control via connected lights, digital screen color variation, thermostats that mimic 

natural temperature fluctuations, and motorized curtains with smart white noise. In these 

instances, the executed actions are completely automated, and no human intervention or 

uncertainty is involved, so these cases can be considered deterministic actuators in PHN.

Human driven.—Humans are not always good at understanding complex instructions or 

remembering them at the right time and in the right situations. They also are easily 

influenced and distracted, which makes them nondeterministic actuators. Even when the 

user fully intends to reach a health goal, adhering to healthy routines can be difficult.

The primary challenging task is to understand how to influence people at the right time and 

with the best medium to produce a desired action. For each individual, actions must be 

persuasive in the given context, practically feasible, and encourage participation. Richard 

Thaler won the 2017 Nobel Prize for understanding the psychological underpinnings and 

control of the decisionmaking process in humans.11 Specifically, the following three high-

impact contributions interweave directly with health navigation.
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1. Limited rationality: Simplified decision-making focuses on the narrow impact of 

each individual decision rather than on its overall effect. Computing these 

complex effects can offload these tasks from the user.

2. Lack of self-control: A planner– doer model describes the internal tension 

between long-term planning and short-term doing. Succumbing to short-term 

temptation is an important reason that plans to make healthier lifestyle choices 

often fail. By quantifying the health cost or benefit in any situation, this tension 

can be reduced when users can make more informed decisions.

3. Nudging: By using subtle cues, users are pushed to make a certain decision 

without force, thus avoiding the pitfalls of self-control and limited rationality. 

Systems that employ these tactics can unobtrusively steer choices, leading to the 

goal state.

As PHN is able to better model the behavior of an individual, the probability of executing a 

given action can be increased using the considerations listed. These improvements require 

close collaboration with psychologists and social scientists. To solicit trust and further 

participation, the system explains why it suggests the nudge or action to users, and it offers 

alternate options to embolden the feeling of choice. Another avenue for human actuation 

will be to reduce the decision burden by eliminating the tediousness involved in being 

healthy. Even professional athletes do not measure every gram or determine every ingredient 

in their food due to the information and calculation burden. Translated into simple, step-by-

step, context-aware guidance, users can better fulfill PHN actuation steps. PHN can start to 

apply control to the health state, either with fulfillment by a machine or with user 

participation, to move the health state toward the goal and close the loop.

THE ROAD AHEAD: SECURITY, PRIVACY, AND ETHICAL CHALLENGES

Research efforts have focused on developing various components of PHN (Figure 4). In this 

section, we outline some key challenges for research and implementation.

PHN systems must stay focused on assisting users. Ethical standards assign individuals 

freedom of choice in health matters. Users must also control and consent to share their data 

after understanding how that information will be used, especially in relation to their own 

future and relationships with family, employers, and the government. Ethical protections 

should be put in place against self-incrimination and discrimination. Conversely, users who 

are willing to anonymously share data for scientific progress should be able to do so easily. 

Given the sensitive and identifying nature of some data streams such as location, genetics, 

and behaviors, sharing data and insights will require unique approaches to uphold these 

ethical requirements.

Policy must follow these requirements to retain user trust. Accountability for data creation, 

usage, and rights for various stakeholders need to be further explored. In addition, PHN 

developers will be directly affecting the health of users, putting them in a parallel position 

with responsibilities similar to a physician or medical device. Transparency in how and why 

the system provides navigation will require research into AI explainability.9 Data bias, 

application range, and error potential must be understood before being implemented with 
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users. Enforcement mechanisms to ensure trust should use emerging methods such as 

distributed ledger systems, biometric authentication, advanced encryption, and protection 

against data reverse inference.

Future systems can leverage modern computing power with rich multimodal data to 

understand movements on the health state space continuously and to contextually guide 

users toward wellness. This nexus of biomedical knowledge, sensor technology, computing 

power, mobile networks, and artificial intelligence will fuel major growth in PHN systems.14 

The European Union and the United States approved the first PHN mobile application for 

contraception in 2018.15 This fluid framework can advance the promise of predictive, 

personalized, and precise health care in the future.
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FIGURE 1. 
Once people know their health state is changing, they pay attention and take action. Hence, 

people take medication for pain (perceptual sensing) or high blood pressure (not easily 

perceived and requires modern sensor measurements). Understanding health states increases 

with the advent of sensors that can understand users’ biology better than the individuals can 

feel it. Furthermore, the continuous-sensing approach escapes the traditional classification 

view of health and shifts to a continuous and quantitative view.
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FIGURE 2. 
At a high level, PHN employs a cybernetic problem-solving approach to continuously move 

a user’s health state toward a desired goal.
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FIGURE 3. 
The knowledge layers in PHN require mapping the semantic information from health and 

biology to the PHSS, which allows the translation of semantics, understanding of the health 

state, and routing for navigation.
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FIGURE 4. 
The PHN architecture reflects all the major computing elements described in this article 

working together to continuously provide navigation. Many modules have been the subject 

of active research in the past decades.4, 6–10, 12, 13
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