Discrete Comput Geom 18:125-134 (1997)

Geometry

© 1997 Springer-Verlag New York Inc.

A Near-Linear Algorithm for the Planar 2-Center Problem *

M. Sharir

School of Mathematical Sciences, Tel Aviv University,

Tel Aviv 69978, Israel

sharir@math.tau.ac.il

and

Courant Institute of Mathematical Sciences, New York University,
New York, NY 10012, USA

Abstract. We present ad(n log® n)-time algorithm for computing the 2-center of a set
Sof n points in the plane (that is, a pair of congruent disks of smallest radius whose union
coversS), improving the previou® (n? log n)-time algorithm of [10].

The 2-Center Problem

Let Sbe a set oh points in the plane. The-2enterproblem forSis to coverS by (the
union of) two congruent closed disks whose radius is as small as possible. This is a special
case of the genergl-center problem, where we wish to cov&by p congruent disks
whose radius is as small as possible. Wpasipart of the input, the problem is known to
be NP-complete [15], so the complexity of algorithms for solvingpheenter problem,
for any fixedp, is expected to increase exponentially withA recent improved resultin
this direction, given in [9], is an®/P -algorithm for thep-center problem. At the other
extreme end, the 1-center problem, also known asitim&lest enclosing digiroblem,
can be solved i©(n) time [14]. The 2-center problem is the next problem down the list,
and is of some practical interest, e.g., in the context of efficient transportation [4]. This
problem has been studied in several recent papers [1], [5], [10], [11], and the currently
best algorithm for its solution runs in tim@(n?logn) [10].

In this paper we present a new algorithm for solving the 2-center problem. The

* Work on this paper has been supported by NSF Grants CCR-91-22103 and CCR-93-11127, by a Max-
Planck Research Award, and by grants from the U.S.—Israeli Binational Science Foundation, the Israel Science
Fund administered by the Israeli Academy of Sciences, and the G.I.F., the German-Israeli Foundation for
Scientific Research and Development.

126 M. Sharir

Fig. 1. C; andC, must pass through points lying on the boundargarfiv(D; U D).

algorithm runs inO(nlog® n) time, thus providing the first subquadratic solution, and
improving substantially the previous solutions. Our solution uses a mixture of techniques,
including parametric searching, searching in monotone matrices, dynamic maintenance
of planar configurations, and techniques similar to those used to handle “fat” objects
(see [17]).

As in the previous solutions, a major component of the algorithm is a procedure for
solving the fixed-size problem: Given a radiysve want to determine wheth&can
be covered by two closed disks of radiuswWe then combine this procedure with the
parametric searching technique of [13], to obtain the complete algorithm (see below for
details). We refer to this problem as the 2DC (2-disk cover) problem. The best previous
solution of the 2DC problem runs i@ (n?) time [6] (see also [7]). Our strategy is to
assume that such a pair of disks exist, call tHemD,, and to conduct a search for their
centers. Let; denote the center dD;, and letC; denote the circle boundind;, for
i =1, 2. We may assume, with no loss of generality, tleat,| is as small as possible.
In this case it is clear that, for= 1, 2, the circleC; passes through at least one point
of Sthat lies on the portion of; that appears on the boundary of the convex hull of
D; U Dy; see Fig. 1.

Dynamic Maintenance of the Intersection of Congruent Disks

Before describing the main algorithm, we first describe in detail a procedure, which the
algorithm will use repeatedly, for solving the following problem. We want to maintain
dynamically a seP of points in the plane, under insertions and deletions of points. After
each update, we wish to determine whether the interse&tigp) = ﬂpep B/(p) is
nonempty, whereB,(p) is the closed disk of radius centered ap. This condition is
equivalent to the condition th&t can be covered by a disk of radiusSuch a procedure
is also used in the preceding algorithms of [6], [7]. We give here a slightly inferior
implementation of this procedure. This is done because it is easier to describe, and, more
importantly, it is easier to parallelize, which is required by the parametric searching
technique.

To keep track oK (P) asP is being updated, we maintain separately the intersections
K*(P) = Npep B (P) andK~(P) = (,.p B7 (p), whereB (p) (resp.B; (p)) is
the region consisting of all points that lie in or above (resp. in or belBwp). The
boundaries of these regions are (weakiy)nonotone, one of them is a convex curve
and the other is concave, so it is fairly easy to determine, by a binary search through

A Near-Linear Algorithm for the Planar 2-Center Problem 127

the vertices of both regions, whether their intersection is nonempty; see below for more
details.

Consider the problem of maintaining™ (P); the maintenance ok ~(P) is fully
symmetric. Lety (p) denote the boundary @, (p). Note that the sefy (p) | p € P}
is a collection of “weak pseudolines” in the plane, meaning that anygaiy, y (p’) of
curves intersect in at most one point. Moreoye(ip) andy (p’) intersect if and only if
their x-projections overlap (that is, the difference betweernxtteordinates op and p’
is <2r), and theny (p) appears to the left of (p’) on a(B;*(p) N B/F(p")) if and only
if p lies to the right ofp’.

All the setsP for which we want to maintaii *(P) will be subsets of the given s&t
This allows us to use the following variant of the dynamic data structure of Overmars and
van Leeuwen [16]. We sort the points by theirx-coordinates, and store them in this
order at the leaves of a minimum-height binary tfe€cach node of T maintains the
intersectiork ™ (P,), whereP, is the subset of the current detwhose points are stored
at the leaves of the subtree Bfrooted atv. Each leaf ofT stores a flag that indicates
whether the poinp of S associated with it belongs to the current Bet(Actually, to
conform with the structure of internal nodes, we storexttrange ofB;" (p) at the leaf,
if p belongs to the current s&, and store the fulk-axis otherwise.) Ib is an internal
node, with a left childw, and a right childw,, then:

(a) v stores thex-range ofK *(P,), which is simply the intersection of theranges
of K¥(P,,) andK*(P,,).

(b) If thex-range ofK *(P,) is nonempty, then the pseudoline property of the curves
y(p), and the fact that the points &are stored ifT in increasingx-order, are
easily seen to imply tha&tK ™ (P,,) andaK *(P,,) intersect in exactly one point
g, and we also storg atv (with pointers to the pair of curves that intersectjat

We construct, search, and update this structure as in [16]. We first describe the searching
procedure. We are given a query pairand wish to determine whetheties in K+ (P).
To do so, we examine the roobf T. If the x-range ofK *(P,) is empty, we report that
z lies outsideK *(P,). Similarly, if the x-coordinate ofz falls outside thex-range of
K*(P,), we also report that lies outsideK +(P,). Otherwise, le] be the point stored
atv. If x(q) < x(2), then we continue the search recursively at the left child.df
x(qQ) > x(z), we continue the search at the right childwfand if x(q) = x(z), we
simply test whether lies above or belovg, to obtain the answer to the query. (Note
that, once we have decided thafalls in the x-range stored at the root, there is no
need to repeat this test at other nodes along the search path, because the answer will
always be positive.) When we reach a leaffgfwe test explicitly whethez lies in the
corresponding seB;"(p), and thereby obtain the answer to the query. The cost of the
query is thusO(logn).

Consider next the updating @f, when a pointp is inserted into or deleted fror.
We find the pathr in T leading top, and update the data stored at the nodes ,of
proceeding along in a bottom-up fashion, and leaving all other noded afitact. We
update thex-range stored at the leaf @ as appropriate. To update an internal node
with a left childw, and a right childw,, we first compute the intersection of theanges
of K*(P,,) andK*(P,,), and store it ab. If it is empty, no further updating at is
needed. Otherwise, we next compute the unique intersectiongodrfit K+ (P,,) and

128 M. Sharir

dK*(Py,,). This is done in a manner similar to the technique of [16]. That isgJgt

J., be the intersection points storedwat wy, respectively. We take an agg¢ adjacent

to g,, and an arg; adjacent tay,,, and apply a case analysis to decide which subtree

of w, or of w; can be discarded in the further searching. We refer the reader to [16] for
additional details concerning the analogous decision step that they use, and conclude
that the updating at can be done irO(logn) time, so the total cost of an update is
O(log?n).

Finally, the initial construction of , for the initial value ofP (and with knowledge of
the full setS), can be done in a similar manner: We sort the pointSlo§ x-coordinate,
and construct a minimum-height binary trEéeover them (with the points stored at the
leaves). We then traverdein a bottom-up fashion, computing the data to be stored at
each node of T from the data already stored at the childrerwpxactly as above.
SinceT hasO(n) nodes, its construction tak€s(n logn) time.

We maintain a symmetric tree structure for the Ket(P), in which searches and
updates are performed in a symmetric fashion. After each update, we can determine, in a
final step, whetheK *(P) andK ~ (P) intersect, by conducting a binary search through
the “breakpoints” ob K *(P) anddK ~(P). This search also take3(log? n) time, as is
easy to check.

Solving the 2DC Problem: the Case Where the Centers Are Well-Separated

Suppose first thafic;c;| > r. Let§ > 0 be some sufficiently small constant angle,
say T. We rotate the coordinate axes py, for j = 0,1, ..., [27/5]. In one of these
orientationsg; andc, will be “almost cohorizontal” (meaning that the orientatiorcaf,
has absolute values), with ¢, lying to the left ofc,. In this case we have(cy) —x(c;) >
r coss > 0.99.

Assume further thgt; c,| > 3r, say. Then a vertical line separatibg andD-, exists.
To detect whether this case arises, we sort the poin&kwf their x-coordinates, and
scan them from left to right. Lef denote the set of points to the left of the currently
scanned point], includingq, and letS denote the complementary set. We maintain
the setsS and S dynamically, repeatedly moving each scanned point f&no S ,
and checking, after each update, whetKglS) and K (Sg) are nonempty. If both are
nonempty, we have found two disks of radiusvhose union coverS. If the currently
assumed configuration does exist and we are at the correct orientation, then, in exactly
one of these steps, both intersections must be honempty, so the above procedure will
detect the existence of a 2DC of this kind. Using the dynamic procedure described above,
the cost of handling this case @(n log? n).

Remark. This step can also be implemented using a simpler approach, which performs
a binary search over the sorted sequence of poing; @f locate the line separatir§)

from S. Each binary search step computes the smallest enclosing circles of the current
S and&k (in linear time, using the algorithm of [14]). If the radii of both circles are

then we have found a solution to the 2DC problem. If both=arethis subcase cannot
arise. If the radius of the circle enclosigg (resp. ofS) is >r and the other ixr, the

binary search has to continue to the left (resp. to the right). This procedure takes only

A Near-Linear Algorithm for the Planar 2-Center Problem 129

Fig. 2. The case < |cicp| < 3r

O(nlogn) time, but this will be subsumed in the cost of the subsequent steps of the
algorithm.

Next assume that < |ci¢;| < 3r. Let vy andv, denote the points of intersection
of C; and C,, with vy lying to the left ofv,. See Fig. 2. IfD; and D, are disjoint,
we definev; to be the leftmost point oD, and definev, to be the rightmost point of
D,; if vy lies to the right ofv,, we can proceed as in the previous case, becByse
and D, are then separated by a vertical line; so we still assumevthiggs to the left
of v,. Since we assume that the orientatiorcgd, is at mosts in absolute value and
thatx(cy) — x(c;) > 0.99, it is easily seen that(v;) — X(c;) > 0.4r. Note that the
left semicircle ofC; must pass through at least one pajrdf S (or else we could have
broughtD; and D, closer together, by movin®; to the right). LetA be any vertical
line separating; from vy, and letS denote the subset of points $1ying to the left of
A. ThenS containgy and is fully contained irD;. Note that the difference between the
largest and smallegtcoordinates of points dbis at most 5, so we can draw a constant
number of vertical lineg., say with horizontal separation3 between adjacent lines,
so that at least one of them will separateandv;. Assume that is the correct line.
We then have the s& available, and we compute the regikiS.) = ﬂpea B/(p), in
O(nlogn) time. The above arguments imply tratmust lie on the (right) boundary of
K(S). For eachp € Sk = S\S , we intersect B; (p) with 9K (). As is well known
(see, e.g., [7]), each such intersection consists of at most two points. We obtain all these
points, and sort them, including the verticekofS.), alongdK (S.), into a listI". This
can easily be done i@ (nlogn) time.

We now iterate over each poinin I, place the centar, of D; atv, or on the subarc
of dK (S) betweerw and the next point i, and update the s&(c;) of points of S
not coveredy D;. We note that when; moves from a point ii” to an adjacent subarc,
or from a subarc to an adjacent point, either a single point is addgddg, or a single
point is removed from that set, or the set remains unchanged. At eachcptiiatt we
visit, we test whetheB'(c;) can be covered by a disk of radiusand stop as soon as
this happens, for we have obtained an affirmative solution to the 2DC problem (with
radiusr). Otherwise, we continue until is exhausted, and conclude thatannot be

130 M. Sharir

the desired line. If this procedure fails for all of tlg1) linesx, and for all theO(1/4)
orientations, we conclude that there is no solution to the 2DC problem (with radius
r) with the currently assumed configuration. Using the dynamic procedure described
earlier, the cost of handling this casedgn log? n).

Solving the 2DC Problem: the Case Where the Centers Are
Close to Each Other

Finally, assume thatic,| < r. In this case the area @, N D, is at leasr?./3/2 ~
0.86a 2, whereas the entir§ can be covered by, say, an axis-parallel squRuE size
3r, which we can easily compute i@(n) time. It follows that we can constru€(1)
points withinR, so that at least one of them will lie b, N D, (and fairly close to both
c1 andcy). Letz be such a point. We sort the points fn angular order about, and
partition the sorted list into two sublist®™, Q~, by the horizontal line passing through
z. Assume thaf is sorted in the clockwise direction abauand thatQ~ is sorted in
the counterclockwise direction. See Fig. 3 for an illustration.

Lemmal. Prefixes $ of QT and $ of Q- exist such that SUS < D; and
S\(§'U§) c D

Proof. Note thatA = D; U D, is star-shaped with respectzolLet p*, o~ denote the

rays emanating from and passing through the two points of intersectio€pfndC,,
wherep™ passes through the top intersection point.§ebe the prefix ofQ* consisting

of points that lie counterclockwise jo" (with respect ta), and letS™ be the prefix of

Q" consisting of points that lie clockwise o . It is easily seen thay" andS satisfy

the desired properties. See Fig. 3; itis interesting to note that we only need here the fact
that the pointzlies in D; N D,. O

We now apply a technique that resembles standard searching in monotone matrices.
Let M be the matrix whose rows correspond to pointsQn (in clockwise angular
order), and whose columns correspond to point9in(in counterclockwise order). For
a e Q" b e Q, we defineMyy, as follows. Leto™ be a ray emanating frorm and

Fig. 3. The case whergicy| <.

A Near-Linear Algorithm for the Planar 2-Center Problem 131

passing betweea and the next point 0", and leto~ be a ray emanating fromand
passing betweeh and the next point o). Let §" be the prefix ofQ* consisting
of points that lie counterclockwise {@*, and letS be the prefix ofQ~ consisting of
points that lie clockwise tp~. Let§ = §" U § and letS = S\S.. Then

“YY” if both § andS; can be covered by disks of radius

“YN” if S can be covered by a disk of radiudut S; cannot,
“NY” if Sk can be covered by a disk of radiubut § cannot,
“NN” if neither § nor & can be covered by a disk of radius

Mab =

(Note that the number of rows plus the number of columnklag n.) Our goal is thus
to determine whetheWl has an entry “YY.” We denote b ™ (resp.M®) the matrix
containing the left (resp. right) characters of the entrieslofThe matriceg®, M®
have the following monotonicity properties, whose proof is obvious:

(@) If MY =“N,"then M{, =“N"forany a’ > a,b’ > b.
() If M =N, then M) =“N"forany a’ <a, b’ <h.

Moreover, if" is any sequence of entries bf, so that each element bfis adjacent to

the preceding one in some row or column\df then the values of all entries Ihcan be
computed in timed(nlogn + |T'| log? n). This is immediate from the dynamic scheme
for maintaining intersections of disks, and from the observation that each of thg sets
Sk is updated by the insertion or deletion of a single point as we move from one entry in
I" to an adjacent entry.

We first compute all entries in the middle columnlf As just noted, this can be
done inO(nlog? n) time. If an entry “YY” has been detected, then we are done. Suppose
we have found an entiyl;, = “NN.” Then properties (a) and (b) imply that the top-left
submatrlx{Ma/b/}a/<a and the bottom-right submatr[x\/la/b«}a/>a of M can be discarded

/ >b

from further anaIyS|s because they cannot contain a“YY" entry. We thus recurse with the
remaining bottom-left and the top-right submatriced/flf no “NN” entry is detected,

then either all entries in the middle column are “YN,” or all are “NY,” or there is a single
transition from a “YN” entry to a following “NY” entry. In the first case we can discard

the left submatrix oM, and in the second case we can discard the right submatkiix of

In the third case we can discard, as above, the top-left and the bottom-right submatrices
of M. (The difference from the previous case is thaMf, = “YN” and Ma11p =

“NY,” then now we discard Mgy } arza and{Mgyp}«=a+1.) INn €ach case we thus recurse

on subproblems whose total S|ze |s half the S|zebof the original matrix, so the procedure
will terminate after logarithmically many steps. The terminal stage is when the current
submatrix has only a single column. We then scan this column, as above; if a“YY” entry
has been found, we have an affirmative solution to the 2DC problem. Otherwise, if no
“YY” entry is found in any subproblem, for all possible orientations, we conclude that
the currently assumed configuration cannot arise, which implies a negative solution to
the 2DC problem, because by now we have exhausted all possible cases.

Concerning the efficiency of this procedure, we note that the total width and height of
all submatrices in any fixed recursive level is at nmosts is easily checked. In fact, these
submatrices have pairwise-disjoint row ranges and pairwise-disjoint column ranges, and

132 M. Sharir

Fig. 4. The submatrices oM arising in a fixed recursive level of the algorithm, and the sequéntieat
connects their middle columns.

they lie within M in a bottom-left to top-right order; see Fig. 4. It follows that we can
trace the middle columns of all submatrices in a fixed recursive level efficiently. For this,
we construct a monotone sequentef entries ofM, consisting of the concatenation
of the middle columns of the submatrices, interspersed with “horizontal moves” (along
rows of M) that connect between these columns; see Fig. 4. The total lengtliscdt
mostn, so we can trace all its entries in a total®fn log? n) time. Hence the total cost
of the above procedure B(nlog®n).

We thus conclude:

Theorem 2. The 2DC problem for a set of n points in the plane and for any fixed
radius r, can be solved in @ log®n) time

Solving the 2-Center Problem

As already mentioned, we next apply the parametric searching paradigm of Megiddo
[13]. To do so, we need to design an efficient parallel algorithm (in Valiant’'s comparisons
model) for the 2DC problem, with the intention of simulating its execution at the unknown
optimal radius of the 2-center solution. (We assume familiarity of the reader with the
parametric searching paradigm. More details can be found, e.g., in [1].)

Most of the steps of the preceding 2DC algorithm are fairly routine to parallelize. The
main difficulty is in parallelizing the dynamic maintenance of the intersection of disks,
used in the various steps of the algorithm. This maintenance appears to be inherently
sequential, but the data structures that we have used enable us to parallelize it efficiently.
In doing so, we exploit the fact that the sequence of updates, in each application of this
dynamic scheme in the algorithm, is known in advance. The parallel implementation
proceeds as follows.

We first solve the following subproblem. Suppose we have the above tree structures
for some subseP of S, and we have two other subsefst, A~, where we assume
that At N A~ = @. We want to compute, in a single step, the tree structures for the set
PUAT™\ A-, where we can usé*|+| A~ | processors for this task. We explain how to do
it for the tre€T that represent *(P); the handling of the other tree is fully symmetric.

We search for all leaves @f storing the points oAt U A~. We next process the nodes
encountered along all the search paths, level by level, in a bottom-up fashion. At each

A Near-Linear Algorithm for the Planar 2-Center Problem 133

nodeu we recompute the data storeduas described for the sequential procedure. The
total number of nodes at which we have to recompute the ddté&ig + |A~|) logn,

and each recomputation tak€glogn), so we can perform this task with*| + |A™|
processors, itD(log? n) parallel steps.

We now apply the following procedure, which resembles the standard parallel prefix-
sum algorithm. Lef" be the sequence of updates to be performed on some initial set
P. We construct a minimum-height binary trgewhose leaves store the elementd of
in order, and compute, for each nodef Y, the setsAf, A, so thatAt and A are
disjoint, and, after all the updates Bf stored at the leaves of the subtreeYofooted
atv, we haveP,ew = Poig U AT\ A, wherePyq is the value ofP before this sequence
of updates, andP,e is its value after these updates. These sets are easy to construct in
parallel, traversingy in a bottom-up fashion, and computing the sets at a nodem
the sets at its children. This can be done waitiI'|) processors irD(log? n) parallel
steps.

Once the set&\ and A, are computed for all nodesof Y, we perform a top-down
traversal ofY. When we visit a node in this traversal, we already have available the
value Pcf,”d) of P before starting the sequence of updates stored at the subtree rooted at

Letw;, wy be the left and the right child af, respectively. We then have();’ = P
andPly’ = P4/ U At \A; . As noted above, obtainirig (P{”) from K (P5y) can be
done in parallel with A; | + | A, | processors i (log? n) time.

There is however a new technical problem: Since we do not want to maintain multiple
copies of the tree structures that store the various intersedioR3, and since several
updates are performed on these trees simultaneously at each parallel step of the algorithm,
we need to organize these tree structures so that all these updates can be performed
without interfering with each other. This is done using the following time-stamping
scheme. Each node of any of the two tree3 used above stores a sequeagef data
items (each consisting of an appropriateange and an intersection point), sorted by
the preorder of the nodes ¥fthat have modifiedv. When a new update step accesses
w, it performs a binary search through, with the preorder index of the current node
of Y, to find the item ob,, that is relevant to the currently performed updaten tieeds
to be updated, the new value is inserted imtoat the appropriate place.

Atthe end of this top-down traversal, we have computed the valkg Bf after each
update operation ifr. By the above analysis, this can be done VilXiI"|) processors
in O(log* n) parallel steps (where one additional logarithmic factor is due to the cost of
the time-stamping scheme, and one is due to the heig¥ij.of

There are several other steps of the algorithm that also require parallelization, such
as sorting the points @ in various orders, constructing the s&t$S) and their inter-
sections with a collection of disks, and the initial construction of the tree structures of
the dynamic scheme. All these steps are relatively easy to parallelize, and the cost of
their parallel versions is dominated by the cost of the parallel procedure just decribed.
We leave it to the reader to check the easy details.

We now plug all this into the parametric searching machinery. We note that the parallel
implementation of the 2DC algorithm consists@flog® n) parallel steps (the last step of
the algorithm invokes the above dynamic scheéditog n) times), and that each parallel
step make® (logn) calls to the sequential 2DC algorithm. Hence we obtain:

134 M. Sharir

Theorem 3. The2-center of asetofn pointsinthe plane can be computediml@?® n)
time

Remark. We have not made a serious attempt to improve the performance of the above
parametric searching procedure, because our main interest was in obtaining a near-linear
solution of the 2-center problem. For example, it might be possible to adapt the more
efficient technique for off-line dynamic maintenance of convex hulls, as described in [8].

It might also be possible to apply Cole’s improved parametric searching technique [3],
or to bypass parametric searching altogether by using either randomization (such as in
[12]), or other geometric techniques (such as in [2] and [11]). We leave this as an open
problem for further research. Some initial ideas toward this goal were suggested to us by
Pankaj Agarwal and Matthew Katz, and we are grateful to them for sharing these ideas
with us.

References

1. P. Agarwal and M. Sharir, Planar geometric location problektggrithmicall (1994), 185-195.
. H. Bronnimann and B. Chazelle, Optimal slope selection via cuttings, Manuscript, 1994.
3. R. Cole, Slowing down sorting networks to obtain faster sorting algoritirdgsoc Comput Mech 34
(1987), 200-208.
4. Z. Drezner, The planar two-center and two-median probl@nasisportation Scil8(1984), 351-361.
5. A. Efrat, A Simple Algorithm for Maintaining the Center of a Planar Point Set, M.Sc. Dissertation, The
Technion, Haifa, 1993.
6. J. Hershberger, A faster algorithm for the two-center decision proltgarm. ProcessLett 47 (1993),
23-29.
7. J. Hershberger and S. Suri, Finding tailored partitidnalgorithms12 (1991), 431-463.
8. J. Hershberger and S. Suri, Off-line maintenance of planar configurafimes,2nd ACM-SIAM Symp
on Discrete Algorithms1991, pp. 32—41.
9. R. Z. Hwang, R. C. T. Lee, and R. C. Chang, The slab dividing approach to solve the euélideater
problem,Algorithmica9 (1993), 1-22.
10. J. Jaromczyk and M. Kowaluk, An efficient algorithm for the euclidean two-center proBlem,10th
ACM Sympon Computational Geometr§994, pp. 303-311.
11. M. Katz and M. Sharir, An expander-based approach to geometric optimiZataan9th ACM Sympon
Computational Geometry 993, pp. 198-207.
12. J. Matogék, Randomized optimal algorithm for slope selectioform. ProcessLett 39(1991), 183-187.
13. N.Megiddo, Applying parallel computation algorithms in the design of serial algorithA&ssocComput
Mach 30(1983), 852—-865.
14. N. Megiddo, Linear-time algorithms for linear programmingrfhand related problem§IAM J Comput
12(1983), 759-776.
15. N. Megiddo and K. Supowit, On the complexity of some common geometric location prol3éahs,J
Comput 13(1984), 1182-1196.
16. M. Overmars and J. van Leeuwen, Maintenance of configurations in the jl@uenput System Sck3
(1981), 166—204.
17. F.van der Stappen, Motion Planning Amidst Fat Obstacles, Ph.D. Dissertation, Utrecht University, 1994.

N

Received Mag, 1995,and in revised form Jul@, 1995.

