
Discrete Comput Geom 18:125–134 (1997) Discrete & Computational

Geometry
© 1997 Springer-Verlag New York Inc.

A Near-Linear Algorithm for the Planar 2-Center Problem ∗

M. Sharir

School of Mathematical Sciences, Tel Aviv University,
Tel Aviv 69978, Israel
sharir@math.tau.ac.il
and
Courant Institute of Mathematical Sciences, New York University,
New York, NY 10012, USA

Abstract. We present anO(n log9 n)-time algorithm for computing the 2-center of a set
Sof n points in the plane (that is, a pair of congruent disks of smallest radius whose union
coversS), improving the previousO(n2 logn)-time algorithm of [10].

The 2-Center Problem

Let Sbe a set ofn points in the plane. The 2-centerproblem forS is to coverSby (the
union of) two congruent closed disks whose radius is as small as possible. This is a special
case of the generalp-center problem, where we wish to coverS by p congruent disks
whose radius is as small as possible. Whenp is part of the input, the problem is known to
be NP-complete [15], so the complexity of algorithms for solving thep-center problem,
for any fixedp, is expected to increase exponentially withp. A recent improved result in
this direction, given in [9], is annO(

√
p)-algorithm for thep-center problem. At the other

extreme end, the 1-center problem, also known as thesmallest enclosing diskproblem,
can be solved inO(n) time [14]. The 2-center problem is the next problem down the list,
and is of some practical interest, e.g., in the context of efficient transportation [4]. This
problem has been studied in several recent papers [1], [5], [10], [11], and the currently
best algorithm for its solution runs in timeO(n2 logn) [10].

In this paper we present a new algorithm for solving the 2-center problem. The

∗ Work on this paper has been supported by NSF Grants CCR-91-22103 and CCR-93-11127, by a Max-
Planck Research Award, and by grants from the U.S.–Israeli Binational Science Foundation, the Israel Science
Fund administered by the Israeli Academy of Sciences, and the G.I.F., the German–Israeli Foundation for
Scientific Research and Development.

126 M. Sharir

Fig. 1. C1 andC2 must pass through points lying on the boundary ofconv(D1 ∪ D2).

algorithm runs inO(n log9 n) time, thus providing the first subquadratic solution, and
improving substantially the previous solutions. Our solution uses a mixture of techniques,
including parametric searching, searching in monotone matrices, dynamic maintenance
of planar configurations, and techniques similar to those used to handle “fat” objects
(see [17]).

As in the previous solutions, a major component of the algorithm is a procedure for
solving the fixed-size problem: Given a radiusr , we want to determine whetherS can
be covered by two closed disks of radiusr . We then combine this procedure with the
parametric searching technique of [13], to obtain the complete algorithm (see below for
details). We refer to this problem as the 2DC (2-disk cover) problem. The best previous
solution of the 2DC problem runs inO(n2) time [6] (see also [7]). Our strategy is to
assume that such a pair of disks exist, call themD1, D2, and to conduct a search for their
centers. Letci denote the center ofDi , and letCi denote the circle boundingDi , for
i = 1, 2. We may assume, with no loss of generality, that|c1c2| is as small as possible.
In this case it is clear that, fori = 1, 2, the circleCi passes through at least one point
of S that lies on the portion ofCi that appears on the boundary of the convex hull of
D1 ∪ D2; see Fig. 1.

Dynamic Maintenance of the Intersection of Congruent Disks

Before describing the main algorithm, we first describe in detail a procedure, which the
algorithm will use repeatedly, for solving the following problem. We want to maintain
dynamically a setP of points in the plane, under insertions and deletions of points. After
each update, we wish to determine whether the intersectionK (P) = ⋂

p∈P Br(p) is
nonempty, whereBr(p) is the closed disk of radiusr centered atp. This condition is
equivalent to the condition thatP can be covered by a disk of radiusr . Such a procedure
is also used in the preceding algorithms of [6], [7]. We give here a slightly inferior
implementation of this procedure. This is done because it is easier to describe, and, more
importantly, it is easier to parallelize, which is required by the parametric searching
technique.

To keep track ofK (P) asP is being updated, we maintain separately the intersections
K+(P) = ⋂

p∈P B+r (p) and K−(P) = ⋂
p∈P B−r (p), whereB+r (p) (resp.B−r (p)) is

the region consisting of all points that lie in or above (resp. in or below)Br(p). The
boundaries of these regions are (weakly)x-monotone, one of them is a convex curve
and the other is concave, so it is fairly easy to determine, by a binary search through

A Near-Linear Algorithm for the Planar 2-Center Problem 127

the vertices of both regions, whether their intersection is nonempty; see below for more
details.

Consider the problem of maintainingK+(P); the maintenance ofK−(P) is fully
symmetric. Letγ (p) denote the boundary ofB+r (p). Note that the set{γ (p) | p ∈ P}
is a collection of “weak pseudolines” in the plane, meaning that any pairγ (p), γ (p′) of
curves intersect in at most one point. Moreover,γ (p) andγ (p′) intersect if and only if
theirx-projections overlap (that is, the difference between thex-coordinates ofp andp′

is≤2r), and thenγ (p) appears to the left ofγ (p′) on ∂(B+r (p) ∩ B+r (p
′)) if and only

if p lies to the right ofp′.
All the setsP for which we want to maintainK+(P)will be subsets of the given setS.

This allows us to use the following variant of the dynamic data structure of Overmars and
van Leeuwen [16]. We sort the points ofSby theirx-coordinates, and store them in this
order at the leaves of a minimum-height binary treeT . Each nodev of T maintains the
intersectionK+(Pv), wherePv is the subset of the current setP whose points are stored
at the leaves of the subtree ofT rooted atv. Each leaf ofT stores a flag that indicates
whether the pointp of S associated with it belongs to the current setP. (Actually, to
conform with the structure of internal nodes, we store thex-range ofB+r (p) at the leaf,
if p belongs to the current setP, and store the fullx-axis otherwise.) Ifv is an internal
node, with a left childwl and a right childwr, then:

(a) v stores thex-range ofK+(Pv), which is simply the intersection of thex-ranges
of K+(Pwl) andK+(Pwr).

(b) If thex-range ofK+(Pv) is nonempty, then the pseudoline property of the curves
γ (p), and the fact that the points ofS are stored inT in increasingx-order, are
easily seen to imply that∂K+(Pwl) and∂K+(Pwr) intersect in exactly one point
q, and we also storeq atv (with pointers to the pair of curves that intersect atq).

We construct, search, and update this structure as in [16]. We first describe the searching
procedure. We are given a query pointz and wish to determine whetherz lies in K+(P).
To do so, we examine the rootv of T . If the x-range ofK+(Pv) is empty, we report that
z lies outsideK+(Pv). Similarly, if the x-coordinate ofz falls outside thex-range of
K+(Pv), we also report thatz lies outsideK+(Pv). Otherwise, letq be the point stored
at v. If x(q) < x(z), then we continue the search recursively at the left child ofv. If
x(q) > x(z), we continue the search at the right child ofv, and if x(q) = x(z), we
simply test whetherz lies above or belowq, to obtain the answer to the query. (Note
that, once we have decided thatz falls in the x-range stored at the root, there is no
need to repeat this test at other nodes along the search path, because the answer will
always be positive.) When we reach a leaf ofT , we test explicitly whetherz lies in the
corresponding setB+r (p), and thereby obtain the answer to the query. The cost of the
query is thusO(logn).

Consider next the updating ofT , when a pointp is inserted into or deleted fromP.
We find the pathπ in T leading top, and update the data stored at the nodes ofπ ,
proceeding alongπ in a bottom-up fashion, and leaving all other nodes ofT intact. We
update thex-range stored at the leaf ofp, as appropriate. To update an internal nodev,
with a left childwl and a right childwr, we first compute the intersection of thex-ranges
of K+(Pwl) and K+(Pwr), and store it atv. If it is empty, no further updating atv is
needed. Otherwise, we next compute the unique intersection pointqv of ∂K+(Pwl) and

128 M. Sharir

∂K+(Pwr). This is done in a manner similar to the technique of [16]. That is, letqwl ,
qwr be the intersection points stored atwl , wr, respectively. We take an arcγl adjacent
to qwl and an arcγr adjacent toqwr , and apply a case analysis to decide which subtree
of wr or ofwl can be discarded in the further searching. We refer the reader to [16] for
additional details concerning the analogous decision step that they use, and conclude
that the updating atv can be done inO(logn) time, so the total cost of an update is
O(log2 n).

Finally, the initial construction ofT , for the initial value ofP (and with knowledge of
the full setS), can be done in a similar manner: We sort the points ofSby x-coordinate,
and construct a minimum-height binary treeT over them (with the points stored at the
leaves). We then traverseT in a bottom-up fashion, computing the data to be stored at
each nodev of T from the data already stored at the children ofv, exactly as above.
SinceT hasO(n) nodes, its construction takesO(n logn) time.

We maintain a symmetric tree structure for the setK−(P), in which searches and
updates are performed in a symmetric fashion. After each update, we can determine, in a
final step, whetherK+(P) andK−(P) intersect, by conducting a binary search through
the “breakpoints” of∂K+(P) and∂K−(P). This search also takesO(log2 n) time, as is
easy to check.

Solving the 2DC Problem: the Case Where the Centers Are Well-Separated

Suppose first that|c1c2| > r . Let δ > 0 be some sufficiently small constant angle,
say 1◦. We rotate the coordinate axes byj δ, for j = 0, 1, . . . , b2π/δc. In one of these
orientations,c1 andc2 will be “almost cohorizontal” (meaning that the orientation ofc1c2

has absolute value<δ), with c1 lying to the left ofc2. In this case we havex(c2)−x(c1) >

r cosδ > 0.99r .
Assume further that|c1c2| > 3r , say. Then a vertical line separatingD1 andD2 exists.

To detect whether this case arises, we sort the points ofS by their x-coordinates, and
scan them from left to right. LetSL denote the set of points to the left of the currently
scanned pointq, includingq, and letSR denote the complementary set. We maintain
the setsSL andSR dynamically, repeatedly moving each scanned point fromSR to SL,
and checking, after each update, whetherK (SL) andK (SR) are nonempty. If both are
nonempty, we have found two disks of radiusr whose union coversS. If the currently
assumed configuration does exist and we are at the correct orientation, then, in exactly
one of these steps, both intersections must be nonempty, so the above procedure will
detect the existence of a 2DC of this kind. Using the dynamic procedure described above,
the cost of handling this case isO(n log2 n).

Remark. This step can also be implemented using a simpler approach, which performs
a binary search over the sorted sequence of points ofS, to locate the line separatingSL

from SR. Each binary search step computes the smallest enclosing circles of the current
SL andSR (in linear time, using the algorithm of [14]). If the radii of both circles are≤r ,
then we have found a solution to the 2DC problem. If both are>r , this subcase cannot
arise. If the radius of the circle enclosingSL (resp. ofSR) is>r and the other is≤r , the
binary search has to continue to the left (resp. to the right). This procedure takes only

A Near-Linear Algorithm for the Planar 2-Center Problem 129

Fig. 2. The caser < |c1c2| ≤ 3r

O(n logn) time, but this will be subsumed in the cost of the subsequent steps of the
algorithm.

Next assume thatr < |c1c2| ≤ 3r . Let v1 andv2 denote the points of intersection
of C1 andC2, with v1 lying to the left ofv2. See Fig. 2. IfD1 and D2 are disjoint,
we definev1 to be the leftmost point ofD2 and definev2 to be the rightmost point of
D1; if v1 lies to the right ofv2, we can proceed as in the previous case, becauseD1

and D2 are then separated by a vertical line; so we still assume thatv1 lies to the left
of v2. Since we assume that the orientation ofc1c2 is at mostδ in absolute value and
that x(c2) − x(c1) > 0.99r , it is easily seen thatx(v1) − x(c1) > 0.4r . Note that the
left semicircle ofC1 must pass through at least one pointq of S (or else we could have
broughtD1 and D2 closer together, by movingD1 to the right). Letλ be any vertical
line separatingc1 from v1, and letSL denote the subset of points ofS lying to the left of
λ. ThenSL containsq and is fully contained inD1. Note that the difference between the
largest and smallestx-coordinates of points ofS is at most 5r , so we can draw a constant
number of vertical linesλ, say with horizontal separation 0.3r between adjacent lines,
so that at least one of them will separatec1 andv1. Assume thatλ is the correct line.
We then have the setSL available, and we compute the regionK (SL) =

⋂
p∈SL

Br(p), in
O(n logn) time. The above arguments imply thatc1 must lie on the (right) boundary of
K (SL). For eachp ∈ SR = S\SL, we intersect∂Br (p) with ∂K (SL). As is well known
(see, e.g., [7]), each such intersection consists of at most two points. We obtain all these
points, and sort them, including the vertices ofK (SL), along∂K (SL), into a list0. This
can easily be done inO(n logn) time.

We now iterate over each pointv in 0, place the centerc1 of D1 atv, or on the subarc
of ∂K (SL) betweenv and the next point in0, and update the setS′(c1) of points ofS
not coveredby D1. We note that whenc1 moves from a point in0 to an adjacent subarc,
or from a subarc to an adjacent point, either a single point is added toS′(c1), or a single
point is removed from that set, or the set remains unchanged. At each pointc1 that we
visit, we test whetherS′(c1) can be covered by a disk of radiusr , and stop as soon as
this happens, for we have obtained an affirmative solution to the 2DC problem (with
radiusr). Otherwise, we continue until0 is exhausted, and conclude thatλ cannot be

130 M. Sharir

the desired line. If this procedure fails for all of theO(1) linesλ, and for all theO(1/δ)
orientations, we conclude that there is no solution to the 2DC problem (with radius
r) with the currently assumed configuration. Using the dynamic procedure described
earlier, the cost of handling this case isO(n log2 n).

Solving the 2DC Problem: the Case Where the Centers Are
Close to Each Other

Finally, assume that|c1c2| < r . In this case the area ofD1 ∩ D2 is at leastr 2
√

3/2 ≈
0.866r 2, whereas the entireS can be covered by, say, an axis-parallel squareR of size
3r , which we can easily compute inO(n) time. It follows that we can constructO(1)
points withinR, so that at least one of them will lie inD1 ∩ D2 (and fairly close to both
c1 andc2). Let z be such a point. We sort the points ofS in angular order aboutz, and
partition the sorted list into two sublists,Q+, Q−, by the horizontal line passing through
z. Assume thatQ+ is sorted in the clockwise direction aboutz and thatQ− is sorted in
the counterclockwise direction. See Fig. 3 for an illustration.

Lemma 1. Prefixes S+L of Q+ and S−L of Q− exist such that S+L ∪ S−L ⊆ D1 and
S\(S+L ∪ S−L) ⊆ D2.

Proof. Note thatA = D1 ∪ D2 is star-shaped with respect toz. Letρ+, ρ− denote the
rays emanating fromz and passing through the two points of intersection ofC1 andC2,
whereρ+ passes through the top intersection point. LetS+L be the prefix ofQ+ consisting
of points that lie counterclockwise toρ+ (with respect toz), and letS−L be the prefix of
Q− consisting of points that lie clockwise toρ−. It is easily seen thatS+L andS−L satisfy
the desired properties. See Fig. 3; it is interesting to note that we only need here the fact
that the pointz lies in D1 ∩ D2.

We now apply a technique that resembles standard searching in monotone matrices.
Let M be the matrix whose rows correspond to points inQ+ (in clockwise angular
order), and whose columns correspond to points inQ− (in counterclockwise order). For
a ∈ Q+, b ∈ Q−, we defineMab as follows. Letρ+ be a ray emanating fromz and

Fig. 3. The case where|c1c2| < r .

A Near-Linear Algorithm for the Planar 2-Center Problem 131

passing betweena and the next point ofQ+, and letρ− be a ray emanating fromz and
passing betweenb and the next point ofQ−. Let S+L be the prefix ofQ+ consisting
of points that lie counterclockwise toρ+, and letS−L be the prefix ofQ− consisting of
points that lie clockwise toρ−. Let SL = S+L ∪ S−L and letSR = S\SL. Then

Mab =


“YY” if both SL andSR can be covered by disks of radiusr ,
“YN” if SL can be covered by a disk of radiusr but SR cannot,
“NY” if SR can be covered by a disk of radiusr but SL cannot,
“NN” if neither SL nor SR can be covered by a disk of radiusr .

(Note that the number of rows plus the number of columns ofM is n.) Our goal is thus
to determine whetherM has an entry “YY.” We denote byM (L) (resp.M (R)) the matrix
containing the left (resp. right) characters of the entries ofM . The matricesM (L), M (R)

have the following monotonicity properties, whose proof is obvious:

(a) If M (L)
ab = “N,” then M (L)

a′b′ = “N” for any a′ ≥ a, b′ ≥ b.
(b) If M (R)

ab = “N,” then M (R)
a′b′ = “N” for any a′ ≤ a, b′ ≤ b.

Moreover, if0 is any sequence of entries ofM , so that each element of0 is adjacent to
the preceding one in some row or column ofM , then the values of all entries in0 can be
computed in timeO(n logn+ |0| log2 n). This is immediate from the dynamic scheme
for maintaining intersections of disks, and from the observation that each of the setsSL,
SR is updated by the insertion or deletion of a single point as we move from one entry in
0 to an adjacent entry.

We first compute all entries in the middle column ofM . As just noted, this can be
done inO(n log2 n) time. If an entry “YY” has been detected, then we are done. Suppose
we have found an entryMab = “NN.” Then properties (a) and (b) imply that the top-left
submatrix{Ma′b′ } a′≤a

b′≤b
and the bottom-right submatrix{Ma′b′ } a′≥a

b′≥b
of M can be discarded

from further analysis, because they cannot contain a “YY” entry. We thus recurse with the
remaining bottom-left and the top-right submatrices ofM . If no “NN” entry is detected,
then either all entries in the middle column are “YN,” or all are “NY,” or there is a single
transition from a “YN” entry to a following “NY” entry. In the first case we can discard
the left submatrix ofM , and in the second case we can discard the right submatrix ofM .
In the third case we can discard, as above, the top-left and the bottom-right submatrices
of M . (The difference from the previous case is that ifMab = “YN” and Ma+1,b =
“NY,” then now we discard{Ma′b′ } a′≤a

b′≤b
and{Ma′b′ } a′≥a+1

b′≥b
.) In each case we thus recurse

on subproblems whose total size is half the size of the original matrix, so the procedure
will terminate after logarithmically many steps. The terminal stage is when the current
submatrix has only a single column. We then scan this column, as above; if a “YY” entry
has been found, we have an affirmative solution to the 2DC problem. Otherwise, if no
“YY” entry is found in any subproblem, for all possible orientations, we conclude that
the currently assumed configuration cannot arise, which implies a negative solution to
the 2DC problem, because by now we have exhausted all possible cases.

Concerning the efficiency of this procedure, we note that the total width and height of
all submatrices in any fixed recursive level is at mostn, as is easily checked. In fact, these
submatrices have pairwise-disjoint row ranges and pairwise-disjoint column ranges, and

132 M. Sharir

Fig. 4. The submatrices ofM arising in a fixed recursive level of the algorithm, and the sequence0 that
connects their middle columns.

they lie within M in a bottom-left to top-right order; see Fig. 4. It follows that we can
trace the middle columns of all submatrices in a fixed recursive level efficiently. For this,
we construct a monotone sequence0 of entries ofM , consisting of the concatenation
of the middle columns of the submatrices, interspersed with “horizontal moves” (along
rows of M) that connect between these columns; see Fig. 4. The total length of0 is at
mostn, so we can trace all its entries in a total ofO(n log2 n) time. Hence the total cost
of the above procedure isO(n log3 n).

We thus conclude:

Theorem 2. The2DC problem, for a set of n points in the plane and for any fixed
radius r, can be solved in O(n log3 n) time.

Solving the 2-Center Problem

As already mentioned, we next apply the parametric searching paradigm of Megiddo
[13]. To do so, we need to design an efficient parallel algorithm (in Valiant’s comparisons
model) for the 2DC problem, with the intention of simulating its execution at the unknown
optimal radius of the 2-center solution. (We assume familiarity of the reader with the
parametric searching paradigm. More details can be found, e.g., in [1].)

Most of the steps of the preceding 2DC algorithm are fairly routine to parallelize. The
main difficulty is in parallelizing the dynamic maintenance of the intersection of disks,
used in the various steps of the algorithm. This maintenance appears to be inherently
sequential, but the data structures that we have used enable us to parallelize it efficiently.
In doing so, we exploit the fact that the sequence of updates, in each application of this
dynamic scheme in the algorithm, is known in advance. The parallel implementation
proceeds as follows.

We first solve the following subproblem. Suppose we have the above tree structures
for some subsetP of S, and we have two other subsets,A+, A−, where we assume
that A+ ∩ A− = ∅. We want to compute, in a single step, the tree structures for the set
P∪A+\A−, where we can use|A+|+|A−| processors for this task. We explain how to do
it for the treeT that representsK+(P); the handling of the other tree is fully symmetric.
We search for all leaves ofT storing the points ofA+ ∪ A−. We next process the nodes
encountered along all the search paths, level by level, in a bottom-up fashion. At each

A Near-Linear Algorithm for the Planar 2-Center Problem 133

nodeu we recompute the data stored atu as described for the sequential procedure. The
total number of nodes at which we have to recompute the data is(|A+| + |A−|) logn,
and each recomputation takesO(logn), so we can perform this task with|A+| + |A−|
processors, inO(log2 n) parallel steps.

We now apply the following procedure, which resembles the standard parallel prefix-
sum algorithm. Let0 be the sequence of updates to be performed on some initial set
P. We construct a minimum-height binary treeY whose leaves store the elements of0

in order, and compute, for each nodev of Y, the setsA+v , A−v , so thatA+v and A−v are
disjoint, and, after all the updates ofP stored at the leaves of the subtree ofY rooted
at v, we havePnew= Pold ∪ A+v \A−v , wherePold is the value ofP before this sequence
of updates, andPnew is its value after these updates. These sets are easy to construct in
parallel, traversingY in a bottom-up fashion, and computing the sets at a nodev from
the sets at its children. This can be done withO(|0|) processors inO(log2 n) parallel
steps.

Once the setsA+v andA−v are computed for all nodesv of Y, we perform a top-down
traversal ofY. When we visit a nodev in this traversal, we already have available the
valueP(v)

old of P before starting the sequence of updates stored at the subtree rooted atv.
Letwl , wr be the left and the right child ofv, respectively. We then haveP(wl)

old = P(v)
old

andP(wr)
old = P(v)

old ∪ A+wl
\A−wl

. As noted above, obtainingK (P(wr)
old) from K (P(v)

old) can be
done in parallel with|A+wl

| + |A−wl
| processors inO(log2 n) time.

There is however a new technical problem: Since we do not want to maintain multiple
copies of the tree structures that store the various intersectionsK (P), and since several
updates are performed on these trees simultaneously at each parallel step of the algorithm,
we need to organize these tree structures so that all these updates can be performed
without interfering with each other. This is done using the following time-stamping
scheme. Each nodew of any of the two treesT used above stores a sequenceσw of data
items (each consisting of an appropriatex-range and an intersection point), sorted by
the preorder of the nodes ofY that have modifiedw. When a new update step accesses
w, it performs a binary search throughσw, with the preorder index of the current node
of Y, to find the item ofσw that is relevant to the currently performed update. Ifw needs
to be updated, the new value is inserted intoσw at the appropriate place.

At the end of this top-down traversal, we have computed the value ofK (P) after each
update operation in0. By the above analysis, this can be done withO(|0|) processors
in O(log4 n) parallel steps (where one additional logarithmic factor is due to the cost of
the time-stamping scheme, and one is due to the height ofY).

There are several other steps of the algorithm that also require parallelization, such
as sorting the points ofS in various orders, constructing the setsK (SL) and their inter-
sections with a collection of disks, and the initial construction of the tree structures of
the dynamic scheme. All these steps are relatively easy to parallelize, and the cost of
their parallel versions is dominated by the cost of the parallel procedure just decribed.
We leave it to the reader to check the easy details.

We now plug all this into the parametric searching machinery. We note that the parallel
implementation of the 2DC algorithm consists ofO(log5 n) parallel steps (the last step of
the algorithm invokes the above dynamic schemeO(logn) times), and that each parallel
step makesO(logn) calls to the sequential 2DC algorithm. Hence we obtain:

134 M. Sharir

Theorem 3. The2-center of a set of n points in the plane can be computed in O(n log9 n)
time.

Remark. We have not made a serious attempt to improve the performance of the above
parametric searching procedure, because our main interest was in obtaining a near-linear
solution of the 2-center problem. For example, it might be possible to adapt the more
efficient technique for off-line dynamic maintenance of convex hulls, as described in [8].
It might also be possible to apply Cole’s improved parametric searching technique [3],
or to bypass parametric searching altogether by using either randomization (such as in
[12]), or other geometric techniques (such as in [2] and [11]). We leave this as an open
problem for further research. Some initial ideas toward this goal were suggested to us by
Pankaj Agarwal and Matthew Katz, and we are grateful to them for sharing these ideas
with us.

References

1. P. Agarwal and M. Sharir, Planar geometric location problems,Algorithmica11 (1994), 185–195.
2. H. Brönnimann and B. Chazelle, Optimal slope selection via cuttings, Manuscript, 1994.
3. R. Cole, Slowing down sorting networks to obtain faster sorting algorithms,J. Assoc. Comput. Mech. 34

(1987), 200–208.
4. Z. Drezner, The planar two-center and two-median problems,Transportation Sci. 18 (1984), 351–361.
5. A. Efrat, A Simple Algorithm for Maintaining the Center of a Planar Point Set, M.Sc. Dissertation, The

Technion, Haifa, 1993.
6. J. Hershberger, A faster algorithm for the two-center decision problem,Inform. Process. Lett. 47 (1993),

23–29.
7. J. Hershberger and S. Suri, Finding tailored partitions,J. Algorithms12 (1991), 431–463.
8. J. Hershberger and S. Suri, Off-line maintenance of planar configurations,Proc. 2nd ACM–SIAM Symp.

on Discrete Algorithms, 1991, pp. 32–41.
9. R. Z. Hwang, R. C. T. Lee, and R. C. Chang, The slab dividing approach to solve the euclideanP-center

problem,Algorithmica9 (1993), 1–22.
10. J. Jaromczyk and M. Kowaluk, An efficient algorithm for the euclidean two-center problem,Proc. 10th

ACM Symp. on Computational Geometry, 1994, pp. 303–311.
11. M. Katz and M. Sharir, An expander-based approach to geometric optimization,Proc. 9th ACM Symp. on

Computational Geometry, 1993, pp. 198–207.
12. J. Matouˇsek, Randomized optimal algorithm for slope selection,Inform.Process.Lett.39(1991), 183–187.
13. N. Megiddo, Applying parallel computation algorithms in the design of serial algorithms,J.Assoc.Comput.

Mach. 30 (1983), 852–865.
14. N. Megiddo, Linear-time algorithms for linear programming inR3 and related problems,SIAM J. Comput.

12 (1983), 759–776.
15. N. Megiddo and K. Supowit, On the complexity of some common geometric location problems,SIAM J.

Comput. 13 (1984), 1182–1196.
16. M. Overmars and J. van Leeuwen, Maintenance of configurations in the plane,J. Comput. System Sci. 23

(1981), 166–204.
17. F. van der Stappen, Motion Planning Amidst Fat Obstacles, Ph.D. Dissertation, Utrecht University, 1994.

Received May2, 1995,and in revised form July8, 1995.

