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Abstract. Let P be a set of n points in the plane and let e be a segment of fixed length. 

The segment-center problem is to find a placement of e (allowing translation and rotation) 

which minimizes the maximum euclidean distance from e to the points of P. We present an 

algorithm that solves the problem in time O(nl+~), for any e > 0, improving the previous 

solution of Agarwal et al. [3] by nearly a factor of O (n). 

1. Introduction 

The problem considered in this paper is: "Given a set S of n points in the plane and a 

segment e, find a center placement of e (allowing translations and rotations) at which 

the maximum (euclidean) distance from e to the points of S is minimized (see Fig. 1); 

the distance between e and a point  p is the minimum euclidean distance minq ~e I Pql." 

The problem was posed by lmai  et al. [17] a few years ago. It generalizes the well- 

known notions of  the point center (which is the center of the smallest disk containing 

S) [22] and of the line center [18]. Finding the point center and the line center of  a set 

S is easy, and can be done in time O(n) and O(n logn) ,  respectively. The segment- 

center problem appears to be more difficult. An initial and rather inefficient solution to 

the problem was given by Imai et al. [17]; it runs in time O(n 4 log n). A considerably 

improved solution was later given by Agarwal et al. [3]; their solution uses the parametric 

* Work on this paper by the second author has been supported by NSF Grants CCR-91-22103 and CCR- 
93-11127, and by grants from the U.S.-Israeli Binational Science Foundation, the G.I.F., the German-Israeli 
Foundation for Scientific Research and Development, and the Fund for Basic Research administered by the 
Israeli Academy of Sciences. 
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Fig. 1. The segment-center problem. 

searching technique of Megiddo [22], and requires O(n2ot(n) log 3 n) time, where or(n) 

is the inverse Ackermann function. 

In this paper we further improve the solution, reducing the running time to O (nl+~), 

for any e > 0, where the constant of proportionality depends on e. Our solution is also 

based on the parametric searching technique, and we assume familiarity of the reader 

with that technique (details can be found, e.g., in the paper [3] just cited). The parametric 

searching paradigm suggests that we first solve the "fixed-size" problem: Given S and 

e as above and a real parameter d > 0, determine whether there exists a placement of e 

at which all points of S lie within distance d from e. Without loss of generality, assume 

that the length of e is 1. To solve this problem, we define H(e, d) = e ~ Bd to be an 

expansion of e by distance d (here Bd is the closed disk of radius d about the origin, and 

e (~ Ba denotes the Minkowski sum of e, at some standard placement, and Bd). H (e, d) 

has the shape of a hippodrome--a rectangle of dimensions 1 x 2d with two semicircles of 

radius d attached to its sides. Next, instead of moving e about, we fix e (and H(e, d)) and 

move S rigidly. It is easily seen that the problem reduces to that of determining whether 

P - conv(S) can be placed (by translations and rotations) inside H(e, d); see Fig. 2. 

The problem has thus been reduced to apolygon-containment problem, such as those 

studied in [7], [19], and [25], with the difference that the environment H(e, d) in which 

P has to be placed is not polygonal, although its shape is very simple. Nevertheless, 

techniques similar to those used in [19] and [25] can be developed. That is, it can easily 

be shown that there exists a free placement of P inside H (e, d) iff there exists a critical 

free placement, at which P c_ H(e, d) and three vertices of P touch OH(e, d) (see [3] 

for details). Thus our goal is to determine whether there exists a critical free placement of 

Fig. 2. The transformed segment-center problem. 
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P. We accomplish this using a somewhat indirect method, which exploits an additional 

geometric structure of the problem. 

We derive sequential and parallel versions of the algorithm. The sequential algorithm 

runs in time O(n~+~), for any e > 0, and the parallel algorithm runs (in Valiant's 

comparison model [27]) in O(log 2 n) time and uses O(n 1+~) processors. 

The improvement that we achieve is a consequence of an .improved combinatorial 

bound on the number of critical placements of the polygon P in H(e, d). Specifically, 

we show that the number of such placements is only O (n log n). This improved bound 

is obtained by applying a more careful geometric analysis of the structure of such place- 

ments, which exploits, among other things, a combinatorial bound of Capoyleas and 

Pach [6] concerning diagonals in a convex polygon, and the results of Bienstock and 

Gytri  [5] and of FOredi [16] concerning 0-1 matrices with a certain forbidden submatrix 

configuration. 

After establishing these improved combinatorial bounds in Section 2, we present in 

Section 3 an efficient algorithm for determining whether P can be placed inside H (e, d), 

with the performance bounds reported above. The design and analysis of the algorithm 

exploit the near-linear number of the critical placements. The resulting sequential algo- 

rithm is relatively easy to parallelize (in Valiant's model). We briefly describe the parallel 

version in Section 4, and then plug all this into the parametric searching machinery to 
obtain our main result: 

Theorem 1.1, Given a set S of n points in the plane, and a line segment e, we can 

compute a center placement for e, which minimizes the maximum distance from e to the 

points of S, in time O(nl+e),for any e > O. 

We remark that our technique can also be used to solve the following related problem: 

Given a set D of n congruent disks, find the shortest segment e that meets all the disks 

of/9. The algorithm given below can be adapted to solve this problem in time O (nl+e). 

See [4] for some related results. 

2. Combinatorial Bounds 

Before tackling the analysis of critical placements within a hippodrome, we first study 

the following simpler problem. 

2.1. Critical Contacts with a Semicircle 

Let P be a convex polygon whose vertices are Pl . . . . .  Pn, appearing in this order in 

clockwise direction along 0 P. Let F be a semicircle of some fixed radius d. We assume 

that P lies in general position with respect to d, meaning that no circle of radius d passes 

through three distinct vertices of P. We define an ordered pair (Pi, P j) of vertices of P 

to be conjugate if F can be placed so that it passes through Pi and pj, so that pj lies 

clockwise from Pi along P, and so that F avoids the interior of P. Our goal is to obtain 

a sharp upper bound on the number of conjugate pairs among the vertices of P. 
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Fig. 3. The configuration in the proof of Lemma 2.1. 

For any two points x, y in the plane, we define their arc-distance ~ (x, y) to be the 

length of the (smaller) circular arc of radius d that connects x to y. That is, 

Ixy] 
tr (x, y) = 2d arcsin -~---, 

where [xyl is the euclidean distance between x and y; if [xy] > 2d, we put tr(x, y) = 
-V~. 

Lemma  2.1. Let a, b, c be three vertices of P appearing clockwise along O P in this 

order, and assume that (a, c) is a conjugate pair. Let F1 be a copy of F which passes 

through b, avoids a and the interior of P, and suppose that the ray emerging from a 

toward c first intersects F 1 from inside its disk D1. Then the length of the counterclockwise 

portion F~ of 1,1 delimited by b is smaller than tr(a, b). 

Proof. Refer to Fig. 3. Let 1,0 be a copy of F that passes through a and c and avoids the 

interior of P, and let Do be the disk of F0. We claim that F0 and Fl intersect at most once. 

Indeed, if they intersected twice, then, as is easily seen, the disk D1 would have to be 

disjoint from the interior of P, so the ray from a to c could not hit FI from inside the disk 

D1, contrary to assumption. Moreover, F0 and F1 have to intersect once, because b e Fi 

lies strictly inside Do (because of the general position assumption), whereas the point c' 

of intersection between F1 and the ray from a to c lies outside Do (or on its boundary). 

In particular, this argument implies that the portion F~ must be fully contained in the 

interior of the disk Do. 

Moreover, the counterclockwise endpoint x of P~ and a must lie on the same side of 

the line f passing through b and perpendicular to ac. This follows from the observation 

that the segment of f between b and its intersection with ac is contained in P, and thus 

also in the interior of Dr, which easily implies that 1"1 must continue counterclockwise 

from b into the appropriate side of f. Let D~ be the portion of Do delimited by ac and 

by s and containing x. Using elementary geometric arguments, it is easily verified that 

Ibxl < labl. Since tr(x, y) is a strictly increasing function of Ixyl, we obtain 

Ir'7l = tr(b, x) < or(a, b), 

as asserted. [] 
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Fig. 4. The configuration in the proof of Lemma 2.3. 
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Corol lary  2.2. Let a, b, c be three vertices of P appearing clockwise along O P in this 

order, and assume that (a, c) and (b, c) are both conjugate pairs. Let F1 be a copy o f f  

that passes through b and c and avoids a and the interior of P. Then the length of the 

portion ofF1 between its counterclockwise endpoint and b is smaller than tr ( a, b ). 

Proof. The conditions of  the previous lemma obviously hold in this case. [] 

L e m m a  2.3. Let a, b, c be three vertices of P appearing clockwise along O P in this 

order, and assume that (a, c) is a conjugate pair. Then 

cr (a, b) + cr (b, c) < cr (a, c). 

Proof. Refer to Fig. 4. Let F0 be a copy of F that passes through a and c and avoids the 

interior of P,  and let Do be the disk of F0. Draw the perpendicular line ~ to ac through 

b and extend it until it meets F0 at a point b' (b itself clearly lies inside Do). It is easily 

checked that labl < lab'l and Ibcl < Ib'cl. Since a ( x ,  y) is an increasing function of 

Ixyl, we also have cr (a, b) < a ( a ,  b') anda (b ,  c) < a(b', c). Sincetr(a,  b')+cr(b', c) = 

tr (a, c), the lemma follows. [] 

We can now prove the main result of  this section: 

Theorem 2.4. Given a convex n-gon P and a fixed radius d in general position, the 

maximum number of conjugate pairs of vertices of P, with respect to a semicircle of 

radius d, is 0 (n log n). 

Proof. Call a conjugate pair (a, b) short if cr(a, b) < (zr/3)d, and long otherwise. 

Cla im I. The number of short conjugate pairs is 0 (n). 

Proof. (We are grateful to J~nos Pach for a helpful discussion that has led to this 

proof.) We show that there do not exist three short conjugate pairs (a, u), (b, v), and 
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Fig. 5. 

I/ 

Three short pairwise interleaving conjugate pairs. 

(c, w) so that a, b, c, u, v, w appear in this clockwise order along 0 P. By a recent result 

of Capoyleas and Pach [6], if C is a set of diagonals of a convex polygon with n vertices, 

such that no three distinct diagonals in C are pairwise intersecting, then the size of C is 

at most 6n. This result thus implies that the number of short conjugate pairs is at most 

6n. Suppose to the contrary that there exist three short conjugate pairs as above. Let F0 

denote a copy of F that passes through b and v and avoids the interior of P; let x and y 

denote respectively the counterclockwise and clockwise endpoints of F0; see Fig. 5. 

Applying Lemma 2.1 to each of the pairs (a, u) and (c, w) (where in the second 

application we interchange the role of clockwise and counterclockwise directions), we 

conclude that or(x, b) < tr(a, b) and cr(v, y) < a(v,  w). Hence, 

:rd = tr(x, b) + or(b, v) + tr(v, y) < tr(a, b) + or(b, v) + tr(v, w). 

Applying Lemma 2.3 to each of the pairs (a, u) and (c, w), we conclude that 

a(a,b)  < cr(a,u) and tr(v, w) < or(c, w). 

Hence, since all these pairs are short, 

n__ d ~r d n--d ~rd < cr(a, u) + cr(b, v) + cr(c, w) < + =Trd,  
3 3 + 3  

a contradiction which establishes the claim. [] 

We next analyze the number of long conjugate pairs. For this we partition 0 P into a 

constant number of connected portions, so that the turning angle along each portion is 

less that zr/3. More precisely, each portion starts and ends at the midpoints of two edges 

of P, so that the angle between the outward normals of these two edges is less than rr/3. 

If P has a vertex v whose interior angle is < 2zr/3, we also break OP at v (there can be 

only a constant number of such vertices v). 
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Claim H. If(a, b) is a long conjugate pair, the angle between the outward normals of 

the edge preceding a (i.e., incident to a and lying counterclockwise to it) and the edge 

succeeding b (incident to b and lying clockwise to it) is greater than re~3. 

Proof Let F0 be a copy of F that passes through a and b and avoids the interior of P. 

The angle in the claim is larger than the angle between the two outward normals to F0 

at a and at b, which, by definition and assumption, is greater than zr/3. [] 

Thus each long conjugate pair involves two vertices that belong to different portions 

of 0 P. There is only a constant number of pairs of such portions, and we now show that 

for each such pair there exist at most O (n log n) conjugate pairs "connecting" between 

these two portions. 

Let P1, P2 be the convex hulls of these respective portions, with P1 regarded as lying 

counterclockwise to 1~ We analyze the number of conjugate pairs (a, b) of vertices, 

where a is a vertex of/'1 and b is a vertex of 1~ 

Enumerate the vertices of 1~ in clockwise order as Pl . . . . .  Pnl, and enumerate the 

vertices of 1~ in clockwise order as ql . . . . .  qn2- Define an nl • n2 0-1 matrix A such 

that Aij = 1 iff the pair (Pi, qj) are conjugate in P. We show that A does not contain 

the submatrix 

(! 
involving any pair of rows and any triple of columns, in this order, where, denotes either 

0 or 1. Hence, by the analysis of Ftiredi [16] and of Bienstock and Gyrri [5], the number 

of ones in A is O(n logn). This, combined with the analysis given above, imply the 

assertion of the theorem. 

Suppose to the contrary that A does contain such a submatrix, so there are two 

vertices a, b of P1 and three vertices u, v, w of P2, so that their clockwise order along 

OP isa,  b, u, v, w, and the pairs (a, u), (a, w), (b, v), (b, w) are all conjugate in P; see 

Fig. 6. 

Let F0 be a copy of F that passes through b and v and avoids the interior of P. Let 

the counterclockwise and clockwise endpoints of F0 be x and y, respectively, and let 

/" "~ 1~ 

/ "V 

Y 

Fig. 6. The configuration arising in the forbidden submatrix analysis. 
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Ii = i ( x ,  b), 12 = i ( b ,  v), 13 = if(v, y). We first claim that 

ll < i (a ,b) ,  

13 < i (V,  W). 

The second inequality follows directly from Corollary 2.2 (interchanging the role of 

clockwise and counterclockwise directions), since (b, w) and (b, v) are both conjugate 

pairs. The first inequality follows by applying Lemma 2.1 to the triple (a, b, u) of vertices 

of P. For this we only need to show that the ray from a to u intersects F0 from the interior 

side of its disk Do. This however is obvious, because, by convexity, the segment au and 

by intersect, so the ray from a to u enters (through by) the portion of Do bounded by 

the chord bv and by the middle arc F2 of F0, so it must exit this region by intersecting 

F2 from inside Do, as required. Hence ll = i (x, b) < i (a, b). 

We thus have 

l l  -~- 12 -]- 13 < i ( a ,  b) + i ( b ,  v) -t- i ( v ,  w). 

Moreover, by I_emma 2.3, 

and 

i ( b ,  v) + i ( v ,  w) < a(b, w) 

i ( a ,  b) + i ( b ,  w) < i (a, w), 

since (b, w) and (a, w) are both conjugate pairs. Thus 

IF01 = ll + 12 q- 13 < i ( a ,  w) < IF01. 

This contradiction shows that the matrix A does not contain a submatrix of the form (1), 

and thus completes the proof of the theorem. [] 

Remarks. (1) A close inspection of the preceding analysis shows that we can replace 

F0 by any fixed arc smaller than a semicircle, and still get the bound O(n log n) on the 

number of conjugate pairs of vertices of a convex n-gon, with respect to such a smaller 

ale.  

(2) If the vertices of P are not in general position, the number of conjugate pairs could 

be as large as | This is the case, e.g., if all vertices lies on a circle of radius d. 

2.2. Critical Placements Within a Hippodrome 

We now return to the original problem of bounding the number of critical placements 

of P in H(e, d). Let Pi, Pj, Pk be the three vertices of P touching OH(e, d) at a given 

critical placement. Clearly, one of the following cases must arise: 

(i) Two of these vertices, say Pi and pj, lie on one semicircle of OH(e, d). 

(ii) Two of these vertices, say Pi and pj, lie on straight edges of OH(e, d). 

(iii) One vertex lies on a straight edge and one vertex lies on each semicircle of 

OH(e, d). 
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In case (i) the two vertices Pi and pj form a conjugate pair, by definition. Thus there are 

only O (n log n) such pairs. Moreover, we claim that each conjugate pair can participate 

in at most four critical placements of P. Indeed, suppose, with no loss of generailty, that 
Pi and pj lie on the left semicircle of H (e, d). Note that the locus of all placements of e 

at which both Pi and pj lie on that semicircle is obtained by fixing the left endpoint a of 

e and by rotating e around that point through some angular interval I0. Suppose that we 

keep e fixed and instead rotate the set P rigidly about a. Then each vertex Pe �9 P traces a 

circular arc which either is fully contained in the fixed hippodrome H (e, d) or intersects 

its boundary in at most two points, as is easily verified. Thus each vertex pe defines an 

angular interval le at which it lies inside H (e, d) during this rotation, and the intersection 

of I0 with all these intervals, which is itself an angular interval, represents all placements 

of e, with its endpoint a held at a fixed point, at which the corresponding hippodrome 

contains P and the vertices Pi and pj lie on the left semicircle of the hippodrome, and it is 

clear that only the two endpoints of this angular interval can represent critical placements 

of P of the type we seek here. Hence the number of critical placements of type (i) is 

O (n log n). 

Critical placements of type (ii) are even easier to analyze. Suppose first that Pi and pj 

lie on the same straight edge of 8 H (e, d). Then it is clear that Pi Pj must be an edge of P, 

so there are at most n such pairs. Moreover, each such pair induces at most four critical 

placements of P of the type considered here; these are obtained by translating P as far 

as possible to the left and to the right, while maintaining the double contact of Pi and pj 

with the straight edge of H(e, d), until a third point of P reaches OH(e, d). A similar 

argument applies if Pi and pj lie on different straight edges of OH(e, d), observing that 

the number of such pairs is also O(n), as follows easily from the standard "rotating 

calipers" argument for a convex polygon. Two additional placements are obtained when 

Pi and pj lie on the right semicircle. Hence the number of critical placements of type 

(ii) is only O(n). 

Finally, consider critical placements of e of type (iii). Assume, with no loss of gener- 

ality, that at such a placement Z, Pi lies on the bottom straight edge of H(e, d), pj lies 

on the left semicircle, and Pk lies on the fight semicircle. Define 

H+(e, d) = ~.+(e) @ Bd, H-(e, d) = )~-(e) @ Bd, 

where J~+(e) (resp. ~,-(e)) is the ray that contains e and whose endpoint is the left 

(resp. fight) endpoint of e. Note that, at placement Z, Pi and pj lie on 8H+(e, d) and 

all other points of P lie in the interior of that region (otherwise Z would also be a 

critical placement of one of the first two types). We now slide P continuously from Z, 

maintaining the contacts of Pi with the bottom edge and of pj with the left semicircle of 
H + (e, d), and moving pj counterclockwise, until either pj reaches the counterclockwise 

endpoint of the semicircle, or a third point Pe reaches 8H+(e, d). In the former case 

PiPj is an edge of P, so there are at most n such pairs. In the latter case, we have reached 

a critical placement of P inside H+(e, d), which of course must be of either type (i) 

or type (ii) (with respect to H+(e, d)). Similar arguments to those used in the analysis 

of type (i) placements imply that the number of such critical placements is O(n log n). 

A fully symmetric argument shows that the number of pairs (Pi, Pk) participating in 

critical placements of type (iii) (with Pk lying on the right semicircle of the hippodrome) 
is also O (n log n). 
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Fig. 7. The definition of j~(0). 

Now fix a vertex Pi of P, constrain pi to lie on, say the bottom edge of the hippodrome, 

and consider the set Q+ (resp. Q~) of all vertices pj (resp. Pk) of P that participate 

with Pi in a critical placement of type (iii) and lie on the left (resp. right) semicircle of 

H(e, d) at such a placement, as defined above. The preceding analysis implies that 

~-'~(IQ+I + IQi-I) = O(nlogn). 
i 

For each p j e  Q+ define a function 3~ (0), as follows. For each orientation 0 of e, at 

which e is parallel to a line supporting P at Pi, consider a placement of H (e, d) at which 

e is at orientation 0, Pi is on the bottom edge, and pj touches the left semicircle of 

H(e, d) (see Fig. 7). We define 3~(0) to be the distance from Pi to the left endpoint of 

the bottom edge of H(e, d). If no such placement exists we put j~ (0) = - ~ .  For each 

Pk e Q~- we define a function gk(O) in a fully symmetric manner, still measuring the 

distance from Pi to the left endpoint of the bottom edge of H(e, d), but requiting Pk to 

lie on the right semicircle of H(e, d); again we put gk(O) = +oo if no corresponding 

placement of e exists. 

The following is an easy consequence of the definition of these functions: Suppose 

that Z = (t, 0) is a free placement of P inside H(e, d) at which Pi lies on the bottom 

edge of the hippodrome, where 0 is the orientation of e and t is the distance from Pi to 

the left endpoint of the bottom edge. Then we must have 

max fj(O) < t < min gk(O). 
pirQ + pk~Q? 

Moreover, a triple (Pi, P j, Pk) of vertices of P induces a critical placement of type (iii) of 

the form considered above if and only if the parameters (t, 0) of that placement represent 

a point of intersection between the two envelopes 

t~ i(O) : max  f j (O) ,  
pj~O? 

�9 i(O) = rain gk(O). 
pkea? 

Using standard arguments, it is easily seen that the number of such intersection points 

is proportional to the number of vertices of the envelopes q~i, q'i. However, any such 

vertex is easily seen to represent a critical placement of P in either H + (e, d) or H -  (e, d), 
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and we have already argued that the number of such placements is O (n log n) (over all 

possible choices of Pi). We thus conclude that the number of critical placements of type 

(iii), and thus also the overall number of critical placements of P, is O (n log n): 

Theorem 2.5. Under the general position assumption, the number of critical free 

placements of a convex n-gon inside a given hippodrome is O(n log n). 

Remark. With some care, Theorem 2.5 also holds without the general position as- 

sumption. For this we need to count only critical placements in which the vertices of the 

polygon that lie on OH(e, d) are not all contained in a single semicircle. 

3. Computing all Critical Placements 

In this section we exploit the improved combinatorial bounds on the number of critical 

placements to design an efficient algorithm for computing all these placements. (Note 

however that in our application it suffices to determine only whether there exists at least 

one such critical placement.) Let S, P, e, and d be as above. Our goal is to find all 

placements Z of e at which the hippodrome H(e(Z), d) contains P and three vertices 

of P lie on its boundary; here e(Z) is the set of points occupied by e at placement Z. 

Before plunging into our analysis, here is a brief explanation of the structures that 

the algorithm attempts to construct. The space FI of all placements Z of e is three- 

dimensional. For each vertex Pi of P, we Can draw in 1-I the surface Ei which is the 

locus of all placements Z at which Pi lies on 8H(e(Z), d). The surface ~]i partitions Fl 

into the regions E +, E/-, of all placements Z where Pi lies, respectively, in the interior 

or in the exterior of H(e(Z), d). Our goal is to compute FI ~ = ["]i~=1 E + (or, rather, to 

determine whether this intersection is nonempty). This intersection is the union of certain 

cells in the three-dimensional arrangement of the surfaces El. The problem is difficult 

to solve efficiently in this abstract setting, so we attack it in a more careful manner. We 

first show that, with an appropriate parametrization, FI ~ can be represented as the region 

lying between the lower envelope of one collection of (partial) bivariate functions and 

the upper envelope of another such collection. Each of the envelopes has only near- 

linear complexity, and can be constructed in near-linear time by a standard, e-net-based, 

technique. The efficient construction of the region FI ~ itself is more complicated, and 

requires the use of additional machinery, as described below. 

In more detail, the algorithm proceeds as follows. For each vertex Pi of P we define 

two partially defined bivariate functions, Fi and Gi. Both functions are defined in the 

dual plane, where each point (~1, ~2) is the dual of the line )~(~l, ~2): Y = ~lX + ~2. 

For each point (~1, ~2) and each real number t, let P+t (resp. P t )  denote the right half 

(resp. left half) of ~-(~1, ~2), delimited at the point (t, ~lt + ~2). We define Fi(~l, ~2) 

(resp. G i (~1, ~2)) to be the value of t at which the boundary of the "half-hippodrome" 

H(/9 +, d) = 19t + ~) B d (resp. H(pi-, d) = Pt ~ Bd) passes through Pi; see Fig. 8. If 
Pi lies at distance d from X(~I, ~2), then the functions Fi, Gi are not well defined; the 

locus of (~1, ~2) where this occurs is the boundary of the common domain of Fi and of 

Gi. If no such t exists (that is, Pi lies at distance >d from the line ~-(~1, ~2)), we put 

Fi(~I, ~2) : --O~, Gi(~I, ~2) : q-oo. 
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�9 "y = ~ix + ~ 

Fig. 8. The rightward-directed semihippodrome H(p +, d). 

We parametrize each placement Z of e by the triple (~1, ~2, t), where (~1, ~2) is the 

point dual to the line containing e(Z), and where t is the x-coordinate of  the right 

endpoint b of e at placement Z. Note that the x-coordinate t '  of  the left endpoint of e at 

this placement satisfies t' = t - 1/ ~1 + ~ ~. (This parametrization excludes placements 

Z for which e(Z) is vertical; these placements can be handled by a different, much 

simpler, procedure, whose description is omitted here.) 

It is now immediate from the definitions of the functions Fi, Gi that Z = (~1, ~2, t) 

is a valid placement of  e (i.e., a placement at which H (e (Z), d) fully contains P)  if and 

only if 

1 

max Gi (~1, ~2) < t < min Fi (~1, ~2) + - -  (2) 
- - 

l ~i ~n l <i <_n _[_ ~ ? 

We denote by V the set of all valid placements of e. Note that a placement Z E V is 

critical if and only if Z is a vertex of V, that is, Z lies on the boundary of V and either (a) 

at least three inequalities in (2) (or exactly three, if we assume general position) become 

equalities, or (b) for some j = 1, 2, or 3, j points of P lie at distance d from ~-(~1, ~2), 

and 3 - j other points of P induce an equality in (2). Thus our goal is to compute all 

the vertices of V. 
There are some technical difficulties in computing the region V directly, so we 

use the following roundabout way. We first compute the lower envelope F(~l ,  ~2) = 

mini Fi (~1, ~2), using a standard e-net approach, similar to those described in [23] and 

[24]. That is, we fix some sufficiently large but constant integer parameter r, and con- 

struct a (1/ r ) -net  N c S, of size O(r log r), for a range space (S, 7"4), defined in terms 

of a set 7"4 of ranges that will be specified shortly. We construct the lower envelope 

F(U)(~l, ~2) = min{Fi(~l, ~2) I Pi ~- N}, 

using any brute-force technique. The projection of F (N) onto the ~l~2-plane is a pla- 

nar map M whose combinatorial complexity, by Theorem 2.4, is only O (r log 2 r). We 
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construct the vertical decomposition of M, by drawing a ~2 vertical segment from each 

vertex of M, and from each point with ~2 vertical tangency on any edge of M, and extend 

each such segment until it hits another edge of M; see, e.g., [24] for more details. For 

each of the O (r log 2 r) resulting "pseudotrapezoidal" cells c, we define 

c* = {(~l, ~2, t) I (~1, ~2) E c and t < F~N)(~I, ~2)}. (3) 

Since F (m is attained over c by a single function Fi, for some Pi E N, the region c* has 

constant description complexity, and is defined by a constant number of points of N. The 

set ~ of ranges, with respect to which N has to be a (1/r)-net, is defined to consist of all 

subsets P(c*) of points of P, where c* is a spatial region of the form defined in (3), and 

P(c*) is the set of all points Pi of P such that the graphs of their associated functions F,- 

cross c*. (We omit here more precise details concerning the structure of the regions c*, 

which can be easily worked out from the definition in (3).) It is easily checked that the 

resulting range space has finite VC-dimension, which implies the existence of (1/r)-nets 

of size O (r log r), and, using the technique of [20], such nets can be constructed in O (n) 

time (for constant r). 

Note that, by construction, none of the cells c*, defined above for F ~N~, is crossed 

by the graph of any function Fi, for Pi E N. It thus follows that Ie(c*)l _< n/r for all 

cells c of M. The sets P (c*) can be constructed in O (n) time by a brute-force technique, 

since there is a constant number of regions c* and each of them has constant complexity. 

Hence we can compute recursively the lower envelope F over each cell c of M separately, 

and then "glue" together the resulting portions of F. It follows that the maximum time 

complexity T(n), required by this procedure for an input set of n points, satisfies the 

recurrence 

T(n)< c r l o g 2 r T ( n ) + o ( n ) ,  

where c is some absolute constant, and the constant of proportionality in the term O (n) 
depends on r. The solution of this recurrence is easily seen to be O(nl+~), for any e > 0, 

where the constant of proportionality depends on e (and increases to ~ as e tends to 0). 

Using a completely symmetric procedure, we can also compute the upper envelope 

G(~I, ~2) = maxi Gi(~l, ~2), in time O(nl+e), for any e > 0. We also modify F(~I, ~2) 

by adding to it the term 1/~/1 + ~2, in accordance with (2). 

Remark. We could have applied the same t-net approach to the explicit calculation of 

the region V. However, as seen from the preceding analysis, the efficiency of the resulting 
algorithm depends on the number of subcells of constant description complexity in an 

appropriate decomposition of the region V ~N), defined in complete analogy to V but only 

in terms of the functions Fi, Gi corresponding to the points Pi in the net N. So far we 

have failed to obtain such a decomposition with only a near-linear number of cells. One 

possibility is to apply to V Cs} the standard three-dimensional vertical decomposition (as 

in [8]). The number of its subcells is easily seen to be proportional to the number of 

quadruples (a, b, c, d) of vertices of P, for which there exists a hippodrome H(e', d), 
where e' is some segment of length > 1, such that P ___ H (e', d), a and b lie on one 

semicircle of that hippodrome, and c and d lie on the other semicircle. A near-linear bound 
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on the number of such quadruples would lead to an efficient algorithm for computing V 

directly, in which case the remainder of the analysis in this section becomes unnecessary. 

See also [1] for an analysis of the complexity of regions like V in a more general setting, 

where only a near-quadratic bound is obtained. 

Next we need to "interact" the two envelopes in order to find the vertices of V. We 

first observe that vertices of V that are also vertices of either F or G are easy to find: 

After computing the full envelopes F, G, we process their ~l~2-projections for efficient 

point location (e.g., as in [12]), and locate the ~l~2-projections of the vertices of F in 

the map of G, and vice versa. This allows us to test, in additional O(1) time per vertex 

(using (2)), whether that vertex lies in the "correct" side of the other envelope, and is 

thus a vertex of V. The cost of this step is easily seen to be O (n log 2 n). 

It is more difficult to compute the vertices of V at which the envelopes F and G meet. 

Let Z be the placement of e corresponding to such a vertex, and let Pi, P j, pl, be the 

three vertices of P lying on 3H(e(Z), d). Then, as is easily seen, Z must be of one of 

the following types: 

(a) At least one of the points pi, Pj, Pk lies on a straight edge of OH(e(Z), d). 

(b) Two of these points lie on one semicircle bounding H(e(Z), d) and the third 

point lies on the other semicircle. 

Consider case (a) first. If two (or three) of the points Pi, Pj, Pk lie on straight edges 

of OH(e(Z), d), then, as is easily seen, Z appears as a vertex of at least one of the 

envelopes F, G (lying over the boundaries of the domains of two of the functions), so 

the point-location technique described above will have already identified such place- 

ments. Otherwise, it must be the case that one point, say Pi, lies on a straight edge s of 

OH(e(Z), d), another point pj lies on the right semicircle of H(e(Z), d) and the third 

point Pk lies on the left semicircle. It is easily verified that the pair (Pi, P j) defines an edge 

of the envelope F (it is the locus of points (~1, ~2, t) at which Pi lies at distance d from 

X (~1, ~2) and pj lies on the left semicircle of H (pt +, d); the ~1 ~2-projection of that edge 

is a portion of the boundary of the domain of Fi), and the pair (Pi, Pk) defines a similar 

edge of the envelope G (projecting onto a similar boundary portion). Let E(pi) denote 

the set of all points p E P such that the pair (Pi, P) defines an edge of either F or G, 

representing placements Z at which Pi lies on a straight edge of OH(e(Z), d). Note that 

Y~i [E(pi)[ = O(n logn), and that all the sets E(pi) can be constructed in O(n logn) 

time, by simply scanning all relevant edges of the envelopes F and G. Now let ~/(pi) 

denote the curve in the ~l~2-plane, representing the locus of all lines ~-(~l, ~2) that are 

tangent to the circle of radius d about Pi ( the cu rve  y (Pi) contains the boundary arc of 

the domain of Fi over which Z lies). Define F'  (resp. G') to be the envelope F (resp. G) 

restricted over  ~/(Pi). Note that the complexity of F'  and of G' is O(IE(pi)l), since the 

vertices of these envelopes correspond to conjugate pairs at which Pi participates while 

touching s, and each such pair appears at most once. 

It is easily checked that the placements Z that we seek appear as points of inter- 

section between the graphs of F'  and of G'. Since these functions are univariate, these 

intersections can all be found in time proportional to the total complexity of F '  and of 

G', namely, in O(IE(pi)l) time. Thus all placements Z in the present subcase can be 

computed in time O(n log 2 n). (The analysis given here is very similar to that given at 

the end of Section 2.2 for critical placements of type (iii).) 
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Next consider case (b). Suppose, with no loss of generality, that Pi and pj lie on 

the left semicircle of H(e(Z) ,  d) and that Pk lies on the right semicircle. Note that the 

pair (Pi, Pj) defines an edge 3 of F, so that moving along 3 corresponds to rotating 

e about its left endpoint a. We now argue in a manner similar to the analysis of type 

(i) critical placements given in Section 2.2. Suppose that we keep e fixed and instead 

rotate the set P rigidly about a. Then each point Pi E P traces a circular arc which 

either is fully contained in the fixed hippodrome H (e, d) or intersects its boundary in at 

most two points. Thus each point Pi defines an angular interval Ii at which it lies inside 

H (e, d) during this rotation, and the intersection of these intervals, which is itself an 

angular interval, represents all placements Z of e, with its endpoint a held at a fixed point, 

at which H(e(Z) ,  d) contains P; the two endpoints of this angular interval represent 

vertices of V of the type we seek here. Note that this argument implies that there are at 

most two vertices of this type along the arc 3. 

Since we already have all these edges ~ of F at our disposal, our strategy is to process 

the vertices of P into some data structure that we will later query with each of the 

curves 3 to find the vertices of the type we seek that lie along 3. For this we use another 

parametrization of the space 17 of placements of e, representing each placement by the 

triple (x, y, 0), where (x, y) is the position of the left endpoint a of e and - r r / 2  < 0 < 

rr/2 is its orientation. For each point Pi E P we define the following two partial bivariate 

functions: 

�9 ~oi(x, y ) = t h e  smallest of the two orientations 0 at which Pi lies on 

OH(e((x, y, 0)), d); 

�9 al, i(x, y) = the largest of these two orientations; 

if no such orientations exist at (x, y), then either Pi lies inside the hippodrome for all 

possible 0, or Pi always lies outside that hippodrome. In the former case we define 

~oi (x, y) = -zr /2 ,  0i (x, y) = rr/2, and in the latter case we define ~0 i (X, y) : rr/2, 

~t i (x, y) = -zr /2 .  

Note that, i f a  is held fixed at the point (x, y), the angular interval/,, defined above is 

~0i (x, y) < 0 < Oi (x, y). This suggests the following approach. We compute the upper 

envelope ~(x ,  y) = max i ~oi(x, y) and the lower envelope kO(x, y) = mini ~Oi(x, y). 

Note that a vertex of qJ (x, y) represents a critical placement of P in a "half-hippodrome" 

defined as the region H* = e* ~ Ba, where e* = {(x, y) [ 0 < x < I, y > 0}, so that 

three vertices of P lie on the union of the bottom edge and the right quarter-circle of H*; 

see Fig. 9 for an illustration. A symmetric property holds for the vertices of q~ (x, y). 

Now at any such critical placement, either two vertices of P lie on the bottom edge, 

or two vertices lie on the right quarter-circle of H*. In the former case, arguing as above, 

we conclude that there are at most n such placements. In the latter case, we can apply the 

analysis of Section 2, replacing the semicircle F0 used there by a quarter-circle of the 

same radius. As observed at the end of Section 2.1, the analysis given there continues 

to apply to such smaller arcs, and thus the number of placements under consideration is 

O (n log n). 

Thus the complexity of the envelopes ~,  qJ is O(n log n), so we can apply the same 

procedure, described earlier in this section, to compute these envelopes in time O (n l+e), 

for any e > 0. We project the envelopes onto the ~l~2-plane, and process these pro- 

jections for efficient point location. Now each edge 3 of F of the type discussed above 
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Fig. 9. The half-hippodrome used in the construction of ko. 

defines a point (x~, ya), which is the common location of the left endpoint of e for all 

placements in 8. We thus locate (x~, Ys) in the projections of qb and ~ ,  and consequently 

obtain ~(xs, yt) and gd(x~, y~). If ~(x~, y~) < W(x~, yt), then (x~, yt, ~(x~, yt)) and 

(x~, y~, qJ (x~, y~)) are the two vertices of V along 8. If qb (x~, y~) > �9 (x~, y~), then there 

are no vertices of V along ~ (and ~ is fully disjoint from OV). We repeat this process 

for all edges 8 of F, and then apply a symmetric calculation to the edges of G, using a 

parametfization that depends on the location of the right endpoint, rather than the left 

endpoint, of e. The total cost of all these point locations is O (n log 2 n), which is domi- 

nated by the cost of constructing the envelopes ~,  �9 and their symmetric counterparts. 

We thus conclude: 

Theorem 3.1. 

(a) All critical placements of  a convex n-gon in a given hippodrome can be computed 

in time O(nl+~),for any e > O, where the constant of  proportionality depends 

on s. 

(b) Consequently, given a set S of  n points in the plane, a segment e, and a distance 

d > O, it can be determined, in time 0 (nl+~),for any s > O, whether there exists 

a placement ofe  at which its maximum distance from any point o f  S is < d. 

4. Computing the Segment Center 

We now apply the parametric searching paradigm to the algorithm given in Section 3, 

to compute the desired center location of e. For this we first need to design a parallel 

version of this algorithm, in  Valiant's comparison model [27]. See, e.g., [3] for more 

details concerning parametric searching. 

Fortunately, the preceding algorithm is very easy to parallelize. Consider, for example, 

the construction of the lower envelope F(~I, ~2). This proceeds in O (log n) stages, where 

in each stage we further reduce the problem size by a factor of r, but increase the number 

of subproblems by a factor of O (r log 2 r). However, all these subproblems can be solved 

in parallel. At each stage we need to compute a (1/r)-net for an appropriate set of points. 

This is done using the parallel version of the technique of [20], as presented in [9]. This 

version takes O (log n) parallel steps, using a linear number of processors. We thus obtain 
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a parallel procedure that runs in O (log 2 n) parallel stages and uses O (n l+e) processors, 

for any e > 0, as is easily checked. 

The next stage is to process such an envelope for fast point location. Rather than 
applying known (but complicated) parallel point-location schemes (such as that in [26]), 

we observe that the output of the O(logn) stages of the construction of F yields a 

data structure that already supports point locations: given a query point Z, locate it (in 

constant time) in the vertical decomposition of the projection of the "sample envelope" 

F (N~, and continue the search at the recursive substructure computed for the cell that 

contains Z. Thus point location can be done in O(log n) time, at no extra preprocessing 

cost, and we perform all these point locations in parallel. 

Similar techniques can be applied to all other stages of the algorithm. We leave it 

to the reader to verify that this results in a parallel version of the algorithm that takes 

O (log 2 n) time and uses O (n1+e) processors. 

Plugging this parallel algorithm into the parametric searching paradigm, we readily 

obtain the desired algorithm for computing the segment center of the given set S, whose 

running time is as asserted in Theorem 1.1. 

5. Conclusion and Open Problems 

In this paper we have drastically reduced the complexity of computing the segment center 

of a given set of n points in the plane, from near-quadratic to near-linear in n. The highlight 

of our analysis is a near-linear bound on the number of critical placements of a convex 

polygon inside a hippodrome, combined with several nontrivial computational tricks. 

There is evidence that better running time might be obtained; however, the predicted 

improvement does not seem to justify the effort. 

There are still some interesting open problems to consider. The main one is whether 

our bound on the number of conjugate pairs of vertices of a convex n-gon is tight, and, if 

not, to tighten it further. Another open problem is to improve further the running time of 

the algorithm. For instance, can the problem be solved more efficiently without the use 

of parametric searching? Can the running time be improved to O (n polylog(n)) time? 

Other natural extensions of the problem include: 

�9 Given a set S of n points in the plane, a segment e, and a parameter k < n, find 

the smallest value of d for which there exists a copy e' of e and a subset S' __c S of 

cardinality k, such that S' c_ H(e', d). This problem is a natural extension of the 

well-studied problem of computing the smallest disk enclosing k points of S; see 

[11], [14], [15], and [21]. A recent attack on this problem is given in [2] (see also 

[13]). 

�9 The segment-center problem is actually a special case of the more general problem 

of computing the one-directional Hausdorff distance, under euclidean motion, 

between two sets of objects, which can be stated as follows (see [10]): 

Given two sets, $1, $2, of objects in the plane, find the smallest value ofd  such 

that the objects of S1 can be translated and rotated (rigidly) into a placement 

where every object of $2 is within distance d from some object of S1. 

Hence an obvious open problem is whether our technique can also be applied to 

solve problems of this kind efficiently. 
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