## A Near-Optimal Distributed Fully Dynamic Algorithm for Maintaining Sparse Spanners

Michael Elkin

**Ben-Gurion University** 

### The Message-Passing Model

- n processors reside in vertices of an unweighted undirected graph G=(V,E). Each processor has a unique id.
- Interconnected via links of E.
- Short messages  $(O(\log n) \text{ bits})$ .
- Unlimited computational power.
  Local computation requires zero time.

+

# The Message-Passing Model (Cont.)

Synchronous setting (for this talk).

- Communication in *discrete* rounds.
- Messages sent in the beginning of a round R, arrive before the round R+1 starts.

Running Time = #rounds.

Message Complexity = # messages.

### **Dynamic Model**

Edges and vertices may appear or crash at will.

Motivation for the dynamic model: real-life networks, modern ad-hoc, sensor, wireless networks.

Require *simple* algorithms!

- Endpoints of a crashing edge are notified by a link-level protocol.
- Message is lost only if its edge crashes.

+

## **Quiescence Complexity; Spanners**

+

5

+

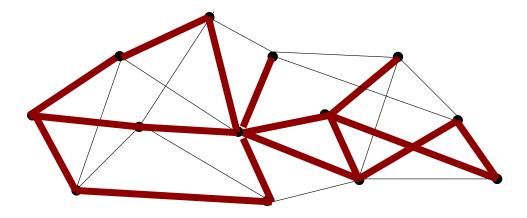
+

Topology updates cease occurring at time  $\alpha$ .  $\beta$  is the time when all vertices stop processing updates. At this point the algorithm maintains a correct structure.

Quiescence time =  $\max\{\beta - \alpha\}$ . Quiescence message = # messages sent within  $[\alpha, \beta]$ .

G' = (V, H) is a t-spanner of G = (V, E),  $H \subseteq E$ , if  $\forall u, w \in V$ ,

$$dist_{G'}(u, w) \leq t \cdot dist_{G}(u, w)$$
.



### **Applications of Spanners**

Underlying construct for many distributed algorithms.

- Synchronization.
  [Peleg, Ullman, 89],
  [Awerbuch, Peleg, 90]
- Routing. [Hassin, Peleg, 99]
- Approximate Distances and Shortest Paths Computation. [Awerbuch, Berger, Cowen, Peleg, 93], [Elkin, 01]
- Broadcast.
  [Awerbuch, Goldreich, Peleg, Vainish, 89],
  [Awerbuch, Baratz, Peleg, 92]

+

+

### **Distributed Spanners**

State-of-the-art distributed static algorithm.

[Baswana, Sen, 03], [Baswana, Kavitha, Mehlhorn, Pettie, 05]

For t = 1, 2, ..., and n-vertex G, constructs (2t - 1)-spanner with expected  $O(t \cdot n^{1+1/t})$  edges.

Time: O(t).

Message:  $O(|E| \cdot t)$ .

Space:  $O(deg(v) \cdot \log n)$ .

Near-optimal tradeoff.

+

+

### **Dynamic State-of-the-Art**

[Baswana,Sen] composed with the simulation technique of [Awerbuch,Patt-Shamir,Peleg,Saks,92]: (2t-1)-spanner of expected size  $O(t \cdot n^{1+1/t})$ , Quiescence time:  $O(t \cdot \log^3 n)$ . Quiescence message:  $O(t \cdot |E| \cdot \log^3 n)$ . Space:  $O(deg(v) \cdot \log^4 n)$ .

Drawbacks of APSPS simulation technique:

Extremely *complex* (a reset procedure, neighborhood covers, a bootstrap technique, a local rollback).

Heavy local computations - unsuitable for *simple* devices.

+

### + +

#### **Our Result**

(2t-1)-spanner of expected size  $O(t \cdot n^{1+1/t})$ .

Quiescence time: 3t instead of  $O(t \cdot \log^3 n)$ .

Note:  $t \leq \log n$ .

Quiescence message: worst-case  $O(|E| \cdot t)$ , expected O(|E|).

Space:  $O(deg(v) \cdot \log n)$ .

Expected local processing per edge: O(1).

Lower bound: 2t/3.

t-1 under Erdos girth conjecture.

Better performance in purely incremental and purely decremental settings.

In both algorithms: non-adaptive adversary, oblivious to coin tosses.

## **Memoryless Dynamic Algorithm**

**Standard approach:** maintain *history* of communication, undo operations based on the history.

Very expensive in terms of *local computation*. *Unfeasible* in wireless, sensor, ad-hoc networks.

Our approach: No history stored!

Look for a "replacement" for crashing edges.

Undo operations, but the list-to-undo is deduced from the current state of affairs.

Reminiscent of *online* algorithms.

+

## The Incremental Variant: Initialization

For this talk: only incremental algorithm.

Set a parameter  $p \approx n^{-1/t}$ .

Each v picks a radius r(v) from the truncated geometric distribution

$$IP(r = k) = p^k \cdot (1 - p)$$
, for  $k \in [0, ..., t - 2]$ , and  $IP(r = t - 1) = p^{t-1}$ .

Memoryless distribution

$$IP(r \ge k + 1 \mid r \ge k) = p$$
 for  $k \in [0, 1, ..., t - 2]$ .

[Linial, Saks, 92], [Bartal, 96]

+

+

### + +

#### Labels

Each v has a unique id I(v), and a label P(v).

Initially,  $P(v) \leftarrow I(v) \ (P(v) \leftarrow (I(v), 0)).$ 

$$P = (B(P), L(P)), \text{ or } P = n \cdot L(P) + B(P).$$

Implicitly, the algorithm maintains a tree cover.

B(P) - the id of a tree  $\tau$  to which the vertex v labeled by P currently belongs.

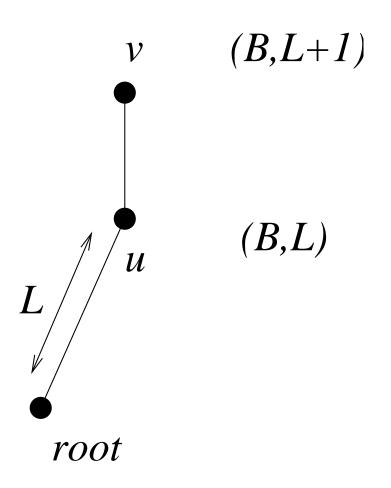
L(P) - the distance between v and the root of  $\tau$ .

The vertex  $w = w_P$  s.t. I(w) = B(P) is the *base* vertex of P.  $w_P$  is the root of the tree B(P).

 $r(w_P)$  - maximum distance to which  $B(P) = I(w_P)$  is allowed to propagate. The tree B(P) cannot be deeper than  $r(w_P)$ .

 $\Rightarrow$  For each label P,  $L(P) \leq r(w_P)$ .

A label P is selected if  $L(P) < r(w_P)$ . In this case v may be an internal vertex of the tree B(P). Vertices *adopt* labels from their neighbors. When v adopts a label from u it becomes its child in the tree B(P), P=P(u). When a label P is adopted, L(P) is incremented, but B(P) stays unchanged.



### **Data Structures**

Every v maintains an edge set Sp(v).

Initially,  $Sp(v) = \emptyset$ .

+

Sp(v) grows monotonely.

$$Sp(v) = T(v) \cup X(v).$$

T(v) - the *tree edges* of v.

X(v) - the *cross edges* of v.

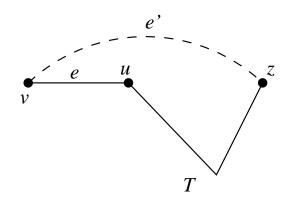
An implicit construction of a  $tree\ cover$ . Edges of the tree cover are stored in T(v)'s.

The spanner also has edges connecting different trees. Those are edges of X(v)'s.

## Data Structures (Cont.)

For each vertex v, the algorithm maintains a table M(v). Initially,  $M(v) = \emptyset$ .

M(v) is the set of trees to which v is already connected in the spanner.



$$e'=(v,z)$$
 in  $X(v)==>B(P(z)$  in  $M(v)$   
 $B(P(z))=B(P(u))$ 



e can be dropped!

+

### + +

### The Algorithm

For 2t rounds from the beginning or after detecting a new edge do

```
Go over all received messages and do while \exists message P(u) with P(u) \succ P(v) if u is selected B(P(v)) \leftarrow B(P(u)); L(P(v)) \leftarrow L(P(u)) + 1; Sp(v) \leftarrow Sp(v) \cup \{e\} \text{ // add } e \text{ to } T(v) else if B(P(u)) \not\in M(v) M(v) \leftarrow M(v) \cup \{B(P(u))\}; Sp(v) \leftarrow Sp(v) \cup \{e\} \text{ // add } e \text{ to } X(v) end-if end-while Send to all neighbors the message P(v).
```

## The Algorithm: Discussion

### Very simple:

- 1. One type of messages.
- 2. The same behavior on each round.
- 3. A handful of local variables.
- 4. A basic data structure.

### **Summary**

- Optimal solution for the dynamic distributed spanner problem.
- Memoryless paradigm for devising dynamic distributed algorithms.
- Lower bound of  $\Omega(t)$ .
- Applications for streaming and dynamic centralized models.

**Open Questions** 

- Applications for the dynamic spanners.
  Synchronization (?), Routing (?),
  Online load balancing (?).
- Applications for the memoryless paradigm.
- Achieve spanner size of  $O(n^{1+1/t})$  instead of  $O(t \cdot n^{1+1/t})$ .
- Derandomize.
  Less challenging devise algorithm
  for an adaptive adversary.

+