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The Message-Passing Model

n Processors reside in vertices
of an unweighted undirected
graph G = (V, E).

Each processor has a unique id.

Interconnected via links of E.

Short messages (O(logn) bits).

Unlimited computational power.
Local computation requires zero time.



The Message-Passing Model
(Cont.)

Synchronous setting (for this talk).

e Communication in discrete rounds.

e Messages sent in the beginning of a round
R, arrive before the round R + 1 starts.

Running Time = #rounds.

Message Complexity = # messages.



Dynamic Model

Edges and vertices may
appear or crash at will.

Motivation for the dynamic model:
real-life networks,
modern ad-hoc, sensor, wireless networks.

Require simple algorithms!

e Endpoints of a crashing edge are notified
by a link-level protocol.

e Message is lost only if its edge crashes.



+ +

Quiescence Complexity; Spanners

Topology updates cease occuring at time «.
B is the time when all vertices stop
processing updates. At this point

the algorithm maintains a correct structure.

Quiescence time = max{g — a}.
Quiescence message — ## messages sent
within [a, 8].

G'=(V,H)isat-spannerofG=(V,E), H C E,
ifV uweV,

dist r(u, w) < t-distg(u,w) .




Applications of Spanners

Underlying construct for many
distributed algorithms.

e Synchronization.
[Peleg,Ullman,89],
[Awerbuch,Peleg,90]

e Routing.
[Hassin, Peleg,99]

e Approximate Distances and
Shortest Paths Computation.
[Awerbuch,Berger,Cowen,Peleg,93],
[Elkin,01]

e Broadcast.
[Awerbuch,Goldreich,Peleg,Vainish,89],
[Awerbuch,Baratz,Peleg,92]



Distributed Spanners

State-of-the-art distributed static algorithm.

[Baswana,Sen,03],
[Baswana,Kavitha,Mehlhorn,Pettie,05]

Fort=1,2,..., and n-vertex G,
constructs (2t — 1)-spanner with
expected O(t - nlt1/t) edges.

Time: O(t).
Message: O(|E|-t).
Space: O(deg(v) -logn).

Near-optimal tradeoff.



Dynamic State-of-the-Art

[Baswana,Sen] composed with

the simulation technique of
[Awerbuch,Patt-Shamir,Peleg,Saks,92]:

(2t — 1)-spanner of expected size O(t - n11T1/),
Quiescence time: O(¢-log3n).

Quiescence message: O(t- |E|-log3n).
Space: O(deg(v) -1og% n).

Drawbacks of APSPS simulation technique:

Extremely complex (a reset procedure,
neighborhood covers, a bootstrap technique,
a local rollback).

Heavy local computations - unsuitable
for simple devices.



Our Result

(2t — 1)-spanner of expected size O(t - n11T1/t).

Quiescence time: 3t instead of O(t - Iog3n).
Note: t < logn.

Quiescence message: worst-case O(|E| - t),
expected O(|E|).

Space: O(deg(v) -logn).

Expected local processing per edge: O(1).

Lower bound: 2t/3.
t — 1 under Erdos girth conjecture.

Better performance in purely incremental
and purely decremental settings.

In both algorithms: non-adaptive adversary,
oblivious to coin tosses.
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Memoryless Dynamic Algorithm

Standard approach: maintain history
of communication, undo operations
based on the history.

Very expensive in terms of /ocal computation.
Unfeasible in wireless, sensor, ad-hoc networks.

Our approach: No history stored!
Look for a “replacement” for crashing edges.

Undo operations, but the list-to-undo is
deduced from the current state of affairs.

Reminiscent of online algorithms.
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T he Incremental Variant:
Initialization

For this talk: only incremental algorithm.
Set a parameter p ~ n—1/t.

Each v picks a radius r(v) from
the truncated geometric distribution

IP(r=k)=9pF-(1=p), forkeo0,...,t—2],
and IP(r=¢t—1) = pt— 1.

Memoryless distribution

P(r>k+1|r>k)=p
for ke [0,1,...,t—2].

[Linial,Saks,92],[Bartal,96]



Labels

Each v has a unique id I(v),
and a label P(v).

Initially, P(v) «— I(v) (P(v) «— (I(v),0)).
P=(B(P),L(P)), or P=n-L(P)+ B(P).
Implicitly, the algorithm maintains a tree cover.

B(P) - the id of a tree 7 to which
the vertex v labeled by P currently belongs.

L(P) - the distance between v and
the root of .

The vertex w = wp s.t. I(w) = B(P) is
the base vertex of P.
wp is the root of the tree B(P).
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r(wp) - maximum distance to which
B(P) = I(wp) is allowed to propagate.
The tree B(P) cannot be deeper than r(wp).

=  For each label P, L(P) <r(wp).
A label P is selected if L(P) < r(wp).

In this case v may be
an internal vertex of the tree B(P).



Vertices adopt labels from their neighbors.
When v adopts a label from w it becomes its
child in the tree B(P), P = P(u).

When a label P is adopted, L(P) is
incremented, but B(P) stays unchanged.

v  (BL+1)
®
,  (BL)

oot



Data Structures

Every v maintains an edge set Sp(v).
Initially, Sp(v) = 0.

Sp(v) grows monotonely.

Sp(v) = T(v) U X(v).

T(v) - the tree edges of w.

X (v) - the cross edges of v.

An implicit construction of a tree cover.
Edges of the tree cover are stored in T'(v)'s.

The spanner also has edges connecting
different trees. Those are edges of X (v)'s.



Data Structures (Cont.)

For each vertex v, the algorithm
maintains a table M (v).
Initially, M(v) = 0.

M(v) is the set of trees to which
v IS already connected in the spanner.

€= (v,2) in X(v) ==> B(P(2) in M(V)
B(P(2)) = B(P(u))

U
e can be dropped!



The Algorithim

For 2t rounds from the beginning or
after detecting a new edge do

Go over all received messages and do
while 3 message P(u) with P(u) = P(v)
if u is selected
B(P(v)) « B(P(u));
L(P(v)) « L(P(u)) + 1;
Sp(v) «— Sp(v)u{e} // add e to T(v)
else if B(P(u)) € M(v)
M(v) «— M(v) U{B(P(u))};
Sp(v) «— Sp(v) u{e} // add e to X (v)
end-if
end-while
Send to all neighbors the message P(v).



The Algorithm: Discussion

Very simple:

1. One type of messages.

2. The same behavior on each round.

3. A handful of local variables.

4. A basic data structure.



Summary

Optimal solution for the dynamic
distributed spanner problem.

Memoryless paradigm for devising
dynamic distributed algorithms.

Lower bound of Q(t).

Applications for streaming and
dynamic centralized models.
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Open Questions

Applications for the dynamic spanners.
Synchronization (?), Routing (?),
Online load balancing (7).

Applications for the memoryless paradigm.

Achieve spanner size of O(nlt1/t)
instead of O(t - n1T1/t).

Derandomize.
Less challenging - devise algorithm
for an adaptive adversary.
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