A Near-Optimal Distributed

Fully Dynamic Algorithm for
Maintaining Sparse Spanners

Michael EIKIn

Ben-Gurion University

The Message-Passing Model

n Processors reside in vertices
of an unweighted undirected
graph G = (V, E).

Each processor has a unique id.

Interconnected via links of E.

Short messages (O(logn) bits).

Unlimited computational power.
Local computation requires zero time.

The Message-Passing Model
(Cont.)

Synchronous setting (for this talk).

e Communication in discrete rounds.

e Messages sent in the beginning of a round
R, arrive before the round R + 1 starts.

Running Time = #rounds.

Message Complexity = # messages.

Dynamic Model

Edges and vertices may
appear or crash at will.

Motivation for the dynamic model:
real-life networks,
modern ad-hoc, sensor, wireless networks.

Require simple algorithms!

e Endpoints of a crashing edge are notified
by a link-level protocol.

e Message is lost only if its edge crashes.

+ +

Quiescence Complexity; Spanners

Topology updates cease occuring at time «.
B is the time when all vertices stop
processing updates. At this point

the algorithm maintains a correct structure.

Quiescence time = max{g — a}.
Quiescence message — ## messages sent
within [a, 8].

G'=(V,H)isat-spannerofG=(V,E), H C E,
ifV uweV,

dist r(u, w) < t-distg(u,w) .

Applications of Spanners

Underlying construct for many
distributed algorithms.

e Synchronization.
[Peleg,Ullman,89],
[Awerbuch,Peleg,90]

e Routing.
[Hassin, Peleg,99]

e Approximate Distances and
Shortest Paths Computation.
[Awerbuch,Berger,Cowen,Peleg,93],
[Elkin,01]

e Broadcast.
[Awerbuch,Goldreich,Peleg,Vainish,89],
[Awerbuch,Baratz,Peleg,92]

Distributed Spanners

State-of-the-art distributed static algorithm.

[Baswana,Sen,03],
[Baswana,Kavitha,Mehlhorn,Pettie,05]

Fort=1,2,..., and n-vertex G,
constructs (2t — 1)-spanner with
expected O(t - nlt1/t) edges.

Time: O(t).
Message: O(|E|-t).
Space: O(deg(v) -logn).

Near-optimal tradeoff.

Dynamic State-of-the-Art

[Baswana,Sen] composed with

the simulation technique of
[Awerbuch,Patt-Shamir,Peleg,Saks,92]:

(2t — 1)-spanner of expected size O(t - n11T1/),
Quiescence time: O(¢-log3n).

Quiescence message: O(t- |E|-log3n).
Space: O(deg(v) -1og% n).

Drawbacks of APSPS simulation technique:

Extremely complex (a reset procedure,
neighborhood covers, a bootstrap technique,
a local rollback).

Heavy local computations - unsuitable
for simple devices.

Our Result

(2t — 1)-spanner of expected size O(t - n11T1/t).

Quiescence time: 3t instead of O(t - Iog3n).
Note: t < logn.

Quiescence message: worst-case O(|E| - t),
expected O(|E|).

Space: O(deg(v) -logn).

Expected local processing per edge: O(1).

Lower bound: 2t/3.
t — 1 under Erdos girth conjecture.

Better performance in purely incremental
and purely decremental settings.

In both algorithms: non-adaptive adversary,
oblivious to coin tosses.

+ 9

Memoryless Dynamic Algorithm

Standard approach: maintain history
of communication, undo operations
based on the history.

Very expensive in terms of /ocal computation.
Unfeasible in wireless, sensor, ad-hoc networks.

Our approach: No history stored!
Look for a “replacement” for crashing edges.

Undo operations, but the list-to-undo is
deduced from the current state of affairs.

Reminiscent of online algorithms.

+ 10

T he Incremental Variant:
Initialization

For this talk: only incremental algorithm.
Set a parameter p ~ n—1/t.

Each v picks a radius r(v) from
the truncated geometric distribution

IP(r=k)=9pF-(1=p), forkeo0,...,t—2],
and IP(r=¢t—1) = pt— 1.

Memoryless distribution

P(r>k+1|r>k)=p
for ke [0,1,...,t—2].

[Linial,Saks,92],[Bartal,96]

Labels

Each v has a unique id I(v),
and a label P(v).

Initially, P(v) «— I(v) (P(v) «— (I(v),0)).
P=(B(P),L(P)), or P=n-L(P)+ B(P).
Implicitly, the algorithm maintains a tree cover.

B(P) - the id of a tree 7 to which
the vertex v labeled by P currently belongs.

L(P) - the distance between v and
the root of .

The vertex w = wp s.t. I(w) = B(P) is
the base vertex of P.
wp is the root of the tree B(P).

+ 12

r(wp) - maximum distance to which
B(P) = I(wp) is allowed to propagate.
The tree B(P) cannot be deeper than r(wp).

= For each label P, L(P) <r(wp).
A label P is selected if L(P) < r(wp).

In this case v may be
an internal vertex of the tree B(P).

Vertices adopt labels from their neighbors.
When v adopts a label from w it becomes its
child in the tree B(P), P = P(u).

When a label P is adopted, L(P) is
incremented, but B(P) stays unchanged.

v (BL+1)
®
, (BL)

oot

Data Structures

Every v maintains an edge set Sp(v).
Initially, Sp(v) = 0.

Sp(v) grows monotonely.

Sp(v) = T(v) U X(v).

T(v) - the tree edges of w.

X (v) - the cross edges of v.

An implicit construction of a tree cover.
Edges of the tree cover are stored in T'(v)'s.

The spanner also has edges connecting
different trees. Those are edges of X (v)'s.

Data Structures (Cont.)

For each vertex v, the algorithm
maintains a table M (v).
Initially, M(v) = 0.

M(v) is the set of trees to which
v IS already connected in the spanner.

€= (v,2) in X(v) ==> B(P(2) in M(V)
B(P(2)) = B(P(u))

U
e can be dropped!

The Algorithim

For 2t rounds from the beginning or
after detecting a new edge do

Go over all received messages and do
while 3 message P(u) with P(u) = P(v)
if u is selected
B(P(v)) « B(P(u));
L(P(v)) « L(P(u)) + 1;
Sp(v) «— Sp(v)u{e} // add e to T(v)
else if B(P(u)) € M(v)
M(v) «— M(v) U{B(P(u))};
Sp(v) «— Sp(v) u{e} // add e to X (v)
end-if
end-while
Send to all neighbors the message P(v).

The Algorithm: Discussion

Very simple:

1. One type of messages.

2. The same behavior on each round.

3. A handful of local variables.

4. A basic data structure.

Summary

Optimal solution for the dynamic
distributed spanner problem.

Memoryless paradigm for devising
dynamic distributed algorithms.

Lower bound of Q(t).

Applications for streaming and
dynamic centralized models.

17

Open Questions

Applications for the dynamic spanners.
Synchronization (?), Routing (?),
Online load balancing (7).

Applications for the memoryless paradigm.

Achieve spanner size of O(nlt1/t)
instead of O(t - n1T1/t).

Derandomize.
Less challenging - devise algorithm
for an adaptive adversary.

18

