
A Near-optimal Solution for the Heterogeneous Multi-processor Single-level
Voltage Setup Problem

Tai-Yi Huang, Yu-Che Tsai and Edward T.-H. Chu

National Tsing Hua University
Dept. of Computer Science
Hsinchu, Taiwan 300, R.O.C

{tyhuang, yctsai, edward}@eos.cs.nthu.edu.tw

Abstract

A heterogeneous multi-processor (HeMP) system con-
sists of several heterogeneous processors, each of which is
specially designed to deliver the best energy-saving perfor-
mance for a particular category of applications. A low-
power real-time scheduling algorithm is required to sched-
ule tasks on such a system to minimize its energy consump-
tion and complete all tasks by their deadline. The prob-
lem of determining the optimal speed for each processor to
minimize the total energy consumption is called the voltage
setup problem. This paper provides a near-optimal solu-
tion for the HeMP single-level voltage setup problem. To
our best knowledge, we are the first work that addresses
this problem. Initially, each task is assigned to a proces-
sor in a local-optimal manner. We next propose a couple of
solutions to reduce energy by migrating tasks between pro-
cessors. Finally, we determine each processor’s speed by
its final workload and the deadline. We conducted a series
of simulations to evaluate our algorithms. The results show
that the local-optimal partition leads to a considerably bet-
ter energy-saving schedule than a commonly-used homoge-
neous multi-processor scheduling algorithm. Furthermore,
at all measurable configurations, our energy consumption is
at most 3% more than the optimal value obtained by an ex-
haustive iteration of all possible task-to-processor assign-
ments. In summary, our work is shown to provide a near-
optimal solution at its polynomial-time complexity.

1. Introduction

A heterogeneous multi-processor (HeMP) system places
on a single system a set of heterogenous processors. Each

1-4244-0910-1/07/$20.00 c°2007 IEEE.

processor may have its own instruction set architecture
(ISA) specially designed to provide the best energy-saving
performance for a particular category of applications. The
HeMP architecture is commonly adopted by a low-power
embedded system on which several categories of applica-
tions are hosted. Examples are embedded devices hosting
multimedia applications [14] or applications that demand
audio signal processing [12]. Many of these low-power
HeMP systems are also real-time systems [15] in each task
must complete its execution by its deadline to avoid any
critical failure. For this reason, the problem of minimizing
the energy consumption without missing any deadline has
become an important issue in constructing low-power real-
time HeMP systems.
Several low-power real-time scheduling algorithms [16,

7] have been proposed to address this problem. The work
of [16] schedules a set of independent periodic tasks on a
HeMP system in which each processor has a finite num-
ber of speeds, each of which is driven by a corresponding
voltage. A similar problem is solved by [7] for a system
where each processor has a fixed speed (voltage). Both al-
gorithms assume that their processor speeds are known as a
priori. Accordingly, their schedules may not be optimal in
minimizing energy consumption. On the other hand, several
other algorithms [3, 8, 13] have been designed to determine
the number of levels and the optimal speed for each level to
achieve the minimum energy consumption. It is called the
voltage setup problem [8]. The single-level voltage setup
problem is solved by [3] to deal with a system where a pro-
cessor has one speed. The multi-level voltage setup prob-
lem is addressed by [8] and [13] to deal with the case where
a processor has multiple speeds. However, all these work
[3, 8, 13] focus on a one-processor system and cannot be
applied to solve the multi-processor voltage setup problem.
In this paper, we provide a near-optimal solution for the

HeMP voltage setup problem. To our best knowledge, our

work is the first one that addresses this problem. The dis-
cussed workload consists of n frame-based real-time tasks
to be scheduled on m heterogeneous processors. All tasks
are independent and non-preemptible. We focus our discus-
sion on the single-level problem where each processor has
only one speed. This problem can be formulated as a non-
linear generalized assignment problem (GAP) that is proven
to be NP-hard. In other words, an optimal solution requires
exponential time complexity.

We provide a couple of polynomial-time solutions to de-
termine each processor’s speed such that the total energy
consumption is minimized. Initially, each task is assigned
to a processor in a local-optimal manner. We next propose a
greedy-based method to migrate tasks out of an overloaded
processor in order to reduce energy. This method selects
only one task during each migration. We further improve its
performance by selecting a group of tasks on the same pro-
cessor in each migration. A dynamic-programming method
is proposed to avoid redundant computations. Finally, we
determine each processor’s speed by its final workload and
the deadline. The greedy-based method has O(nm logn)
time complexity. The dynamic-programming method has
O(nmX) time complexity, whereX bounds the load of the
most-loaded processor after the initial partition.

We conducted a series of simulations to evaluate our
algorithms. Our simulations model a set of off-the-shelf
embedded processors including ARM processors and TI
DSP processors. For comparison, we also implemented
a commonly-used homogeneous multi-processor (HoMP)
low-power algorithm called list scheduling [11, 5]. With-
out any energy-reduction method, the list scheduling al-
gorithm delivers the worst performance. The combination
of list scheduling and our dynamic-programming energy-
reduction method, however, still consumes considerably
more energy than the combination of the local-optimal task
partition and the dynamic-programming method. This re-
sult shows the importance of initial task assignments and
the effectiveness of our local-optimal partition. Each ex-
perimental result is compared to the optimal value obtained
by an exhaustive iteration of all possible task-to-processor
assignments. At all measurable configurations, our energy
consumption is at most 3% more than the optimal value.
These results well demonstrate that our work provides a
near-optimal solution for the HeMP single-level voltage
setup problem.

The rest of this paper is structured as follows. Section 2
describes the systemmodel and the local-optimal task parti-
tion. Section 3 presents the greedy-based energy-reduction
algorithm. The DP-based energy-reduction algorithm is de-
scribed in Section 4. Section 5 presents our performance
analysis. Finally, Section 6 concludes this paper and dis-
cusses future work.

1.1 Related Work

A number of real-time scheduling algorithms have been
proposed for a HoMP system [2, 1, 4]. The Proportionate-
fair (Pfair) algorithm, proposed by Baruah et al. [2], pro-
vides an optimal real-time schedule for periodic tasks. This
algorithm, however, considers no energy consumption and
cannot be used in a low-power system. Anderson et al. [1]
proposed a method for finding the optimal number of pro-
cessors on which a given set of periodic tasks incurs the
minimum energy consumption. Chen et al. [4] optimally
bounds the energy consumption for a set of frame-based
tasks, each of which has different power characteristics. All
these algorithms focused their discussion on HoMP sys-
tems. Without considering that a task may have different
execution times on heterogeneous processors, these algo-
rithms cannot be directly applied on HeMP systems.
Yu et al. [16] proposed a low-power real-time algorithm

to schedule a set of independent periodic tasks on HeMP
systems in which each processor is capable of dynamic volt-
age scaling (DVS). In other words, tasks running on the
same processor may be executed at different speeds. This
problem is formulated as a linear GAP and a linear re-
laxation heuristic solution is provided. Assuming that the
available processor speeds are known as a priori, this al-
gorithm provides a schedule that minimizes energy under
this constraint. Hsu et al. [7] addressed this problem for a
HeMP system in which each processor has a fixed speed.
This problem is formulated as an integer linear program-
ming problem and a polynomial-time approximation solu-
tion is provided. Again, this algorithm assumes that each
processor speed is given as a constraint. As a result, their
real-time schedule may not be optimal in reducing energy
without such a constraint.
The voltage setup problem is first formulated in [8] to

determine the number of levels and at which values should
voltages be implemented to deliver the optimal energy-
saving performance for a specific application. Aydin et
al. [3] proved that the optimal voltage for a one-processor
single-level problem is equal to its utilization when the
maximum speed is normalized to one. Hua et al. [8] pro-
posed an analytical solution for a one-processor two-level
problem and Seo et al. [13] proposed an optimal solution
for a one-processor multi-level problem. To the best of
our knowledge, our work is the first one that addresses the
multi-processor voltage setup problem. Because of the pop-
ularity in HeMP embedded systems nowadays, our study
started with the HeMP single-level problem.

2 System Model

Our work adopts a commonly-used multi-processor
model consisting ofm processors sharing a common mem-

ory [6]. We assume a HeMP system in which each pro-
cessor may have its own ISA. The discussed workload is a
set of frame-based real-time tasks [10, 6]. Our goal is to
determine a speed for each processor such that the total en-
ergy consumption required to complete all tasks before their
deadline is minimized.

2.1 Energy Model and Task Model

Each processor assumes a commonly-used energy model
where a processor speed is almost linearly related to its
supply voltage and the power consumption of a processor
increases cubically with its processor speed [9, 6]. Let
C1, C2, . . . , Cm denote these m processors. We use Pj to
denote the power consumption of Cj at the speed of Sj.
Thus,

Pj = kj × S3j , (1)

where kj is an adjusted switched capacitance of Cj .
We adopt a frame-based real-time task model in which

a frame of length D is executed repeatedly. We use T to
denote a set of n real-time tasks, τ1, τ2, . . . , τn, to execute
within each frame. Each task τi is released at the begin-
ning of a frame and must complete its execution by end of
this frame. All tasks are independent and non-preemptible.
Because of its periodicity, we only consider the problem of
scheduling T in a single frame.
Each task τi may be complied against more than one ISA

and can be executed on a set of heterogenous processors.
The workload of a task in our model is denoted by its cy-
cle count, instead of its execution time. Let xi,j denote the
number of clock cycles to execute τi on processor Cj . If
τi cannot be executed on Cj , xi,j is set to infinite. Let Tj
denote the set of tasks scheduled to be executed on Cj , and
Xj denote the sum of cycle counts of these tasks. That is,

Xj = {
X

xi,j | τi ∈ Tj }. (2)

Once Tj is determined, because all tasks must complete
their execution by D, we calculate the processor speed Sj
of Cj by Sj = Xj

D . The power consumption Pj of Cj is
therefore obtained by

Pj = kj × (
Xj

D
)3.

Finally, let Ej denote the energy consumption of Cj in one
frame. We have

Ej = Pj ×D = kj × (Xj

D)
3 ×D

=
kj×X3

j

D2 .
(3)

2.2 Problem Formulation

Following Eq (3), we define Fi,j as an index of energy
consumption to execute τi on each processor Cj , j = 1 to
m,

Fi,j = kj × x3i,j .

The smaller Fi,j is, the less energy consumption τi in-
curs on Cj . In addition, for each task τi we define αi =
(αi,1, αi,2, . . . , αi,m) as a list of all processor numbers,
sorted by Fi,j in ascending order. In other words,

Fi,αi,j ≤ Fi,αi,j+1 , for j = 1 tom− 1.

We use car(αi) to denote the first entry of αi and cadr(αi)
to denote the second entry of αi. We call car(αi) as the
most-favored processor of τi on which τi incurs the least
energy consumption and cadr(αi) as its secondly-favored
processor.
We use Fj to denote an index of the total energy con-

sumption on the processor Cj ,

Fj = kj ×X3
j ,

where Xj is the sum of cycle counts of all tasks scheduled
onCj , defined in Eq. (2). We use E to define the total energy
consumption of all processors. By Eq. (3), we have

E = (
mX
i=1

Fi)/D
2.

Our problem can be therefore formulated as a non-linear
GAP problem that minimizes E . Finally, we define γ as a
list of all processor numbers, sorted by Fj in descending
order. That is, γ = (γ1, γ2, . . . , γm),

Fγj ≥ Fγj+1 , for j = 1 tom− 1.

2.3 kX3-based Task Partition

We initially partition all n tasks onto m processors in
a local-optimal manner. Algorithm 1 summarizes this pro-
cess of task partition. This algorithm, called kX3-Partition,
first constructs αi for each task τi (line 3 to 5). It next as-
signs a task τi to its most-favored processor (line 6 to 9).
Finally, we calculate each Xi’s and Fi’s and construct the
γ list (line 10 to 13). As no load balancing is considered,
some processors may be favored by many tasks and become
overloaded. A couple of solutions will be presented later to
balance loads among processors in order to reduce the total
energy consumption.
Table 1 shows an example of 5 tasks on a 3-processor

system. The ki index of C1, C2, and C3 are 1 × 10−6,
2× 10−6, and 3× 10−6 (mW/Hz3), respectively. The cycle

k1 k2 k3 D
mW/Hz3 1× 10−6 2× 10−6 3× 10−6 0.05 (s)

xi,1 Fi,1 xi,2 Fi,2 xi,3 Fi,3 min(Fi,j)
τ1 10 1× 10−3 30 5.4× 10−2 10 3× 10−3 1× 10−3
τ2 30 2.7× 10−2 10 2× 10−3 40 1.92× 10−1 2× 10−3
τ3 80 5.12× 10−1 50 2.5× 10−1 10 3× 10−3 3× 10−3
τ4 80 5.12× 10−1 20 1.6× 10−2 20 2.4× 10−2 1.6× 10−2
τ5 30 2.7× 10−2 60 4.32× 10−1 70 1.029 2.7× 10−2

total 40 6.4× 10−2 30 5.4× 10−2 10 3× 10−3 48.4 (mJ)

Table 1: A 5-task 3-processor example

Algorithm 1

1: Procedure kX3-Partition()

2: initialize all data structures to ∅;
3: for all τi do

4: construct αi;
5: end for

6: for i = 1 to n do

7: j = car(αi);
8: add τi to Tj;
9: end for

10: for i = 1 to m do

11: calculate Xi and Fi;
12: γ = InsertReverseSorted(γ, i, Fi);
13: end for

counts of τ1 on C1, C2, and C3 are 10, 30, and 10. Ac-
cordingly, F1,1, F1,2, F1,3 are 1 × 10−3, 5.4 × 10−2, and
3 × 10−6. Thus, α1 = (1, 3, 2). Similarly, α5 = (1, 2, 3).
Algorithm 1 assigns τ1 to C1 as it incurs the least F1,j.
In addition, τ2, τ3, τ4, τ5 are assigned to C2, C3, C2, C1,
respectively. This partition results in a total energy con-
sumption of 48.4 mJ when D = 0.05 (second). Finally,
γ = (1, 2, 3) as F1 = 6.4 × 10−2, F2 = 5.4 × 10−2, and
F3 = 3× 10−3.

3 A Greedy-Based Energy-Reduction Algo-
rithm

We present here a greedy-based method to select tasks
for migration. In the following, we first describe an index
to sort tasks in a processor by their potential contribution of
reducing E when being migrated. We next present the core
algorithm and its timing complexity.

bix ,

aX

bX

ba FF

aix ,

bkak

Figure 1: The migration of τi from Ca to Cb

3.1 Migration Order

We migrate τi from its currently-assigned processor to
another processor, if such a migration results in a smaller E .
Let Ca denote the processor τi is currently assigned to. Let
Cb denote the target processor. Without loss of generosity,
we assume that Fa > Fb, as shown in Figure 1. We use
xi,a and xi,b to denote the workload τi incurs on both pro-
cessors. By Eq. (3), a smaller E is achieved by migrating τi
from Ca to Cb if and only if

ka×
(Xa − xi,a)

3

D2
+kb×

(Xb + xi,b)
3

D2
≤ ka×

X3
a

D2
+kb×

X3
b

D2
.

This equation can be simply induced to

ka
kb
≥ (Xb + xi,b)

3 −X3
b

X3
a − (Xa − xi,a)3

. (4)

Let |Ti| denote the number of tasks in Ti. For eachCi, we
define βi = (βi,1, βi,2, . . . , βi,|Ti|) as a list of task numbers
where each task τβi,j ∈ Ti. Initially, becauseCi is the most-
favored processor for τβi,j , i = car(αβi,j) for any j. We sort
βi by its impact on the total energy reduction when a task

migration takes place. In other words, by migrating τβi,j to
its next favored processor, we expect to reduce more on E
than migrating τβi,j+1.
Let Ca denote the most-loaded processor. Following

Eq. (4), we define a dynamic index ∆i for each task τi to
denote the reduction impact on E if τi is migrated from Ca

to its next favored processor Cb,

∆i = ka×(X3
a−(Xa−xi,a)3)−kb×((Xb+xi,b)

3−X3
b).

The larger∆i is, the more energy reduction it brings by mi-
grating τi to its next favored processor. Ideally, we can sort
βa by each task’s∆i in descending order. However,Xa and
Xb change after each migration. Accordingly, maintaining
a sorted list of βa by ∆i incurs significant run-time com-
putational overhead to update each task’s∆i and re-sort βa
after each migration. To reduce this overhead, we define a
static index δi,

δi =
ka × xi,a
kb × xi,b

(5)

to replace ∆i, as ∆i grows positively with ka and xi,a and
negatively with kb and xi,b. Because δi is defined by con-
stants only, its run-time computational overhead is signifi-
cantly reduced. Instead of maintaining βa by ∆i, we sort
βa by δi in descending order. That is,

δβa,j ≥ δβa,j+1, for j = 1 to |Ta| − 1. (6)

βa now defines the migration order of tasks on Ca.

3.2 The Greedy-Based Algorithm

Algorithm 2 summarizes theGreedy-Basedmethod. We
first call kX3-Partition to partition tasks and construct α
and γ lists (line 2). We next calculate δi by Eq. (5) for
each τi and construct βi by Eq. (6) for each Ci (line 3 to
8). The task-migration process always takes place on the
most-loaded processor (i.e., the first entry of γ) (line 9 and
line 24). Let Ci be the most-loaded processor. For tasks
scheduled on Ci, we follow the order given in βi to migrate
tasks. Let τj denote the task with the largest δj (line 11) and
Ck denote its next favored processor (line 12). If τj satisfies
Eq. (4), we simply callMigrateTask, defined in Algorithm
3, to migrate τj fromCi toCk (line 14). Otherwise, we skip
Ck and try to migrate τj to it next favored processor (line
16 to 19). If no target processor is available, we simply skip
τj and pick the next task in βi for migration (line 21). Fi-
nally, when no task can be migrated out of the most-loaded
processor, this algorithm stops (line 10).
We use the schedule given in Table 1 to illustrate how

Greedy-Balanced works. Initially, γ = (1, 2, 3) indicates
thatC1 is the most-loaded processor. For tasks scheduled on
C1, because δ1 = 1/3 and δ5 = 1/4, we migrate τ1 fromC1
to its next favored processor C3. The updated γ list shows

Algorithm 2

1: Procedure Greedy-Based()
2: kX3-Partition(); // initial task partition
3: for all τi do
4: δi = CalculateDelta(car(αi), cadr(αi)); // by Eq. (5)
5: end for
6: for all Ci do
7: construct βi by Eq. (6);
8: end for
9: i = car(γ); // the most-loaded processor

10: while βi �= ∅ do
11: j = car(βi); // migrating τj out
12: k = cadr(αj); // a possible target processor
13: if (τj satisfies Eq. (4)) then
14: MigrateTask(Ci, τj, Ck);
15: else
16: αj = cons(car(αj), cddr(αj)); // removing Ck from αj

17: if (cdr(αj) �= ∅) then
18: δj = CalculateDelta(car(αj), cadr(αj)); // by Eq. (5)
19: βi = InsertSorted(cdr(βi), δj);
20: else
21: βi = cdr(βi); // skipping τj and considering the next task
22: end if
23: end if
24: i = car(γ); // the most-loaded processor
25: end while

that C2 becomes the most-loaded processor. However, be-
cause both τ2 and τ4 cannot satisfy Eq. (4), our migration
process stops here. Table 2 shows the final schedule of this
example. The total energy consumption becomes 42 mJ, re-
duced from the original 48.4 mJ. Finally, we determine the
processor speeds of C1, C2, and C3 at 600, 600, and 400
Hz, respectively.
We use a binary heap to construct eachα, β, and γ list, as

most references to these lists are limited within the first and
the second elements. Inserting or deleting an element into a
binary heap of n elements takes O(logn) time. In addition,
referencing an element by car() or cadr() is done in constant
time. For kX3-Partition, we take O(nm logm) to con-
struct all α lists and take O(m logm) to construct γ. Thus,
kX3-Partition is bounded byO(nm logm+m logm). For
Greedy-Based, we take O(n logn) to construct all β lists.
Because there are at most n tasks to be migrated, each
migration may target at m different processors, and each
migration incurs a constant number of heap insertions and
deletions, we bound Greedy-Based by O(nm logn).

4 A DP-Based Energy-Reduction Algorithm

The Greedy-Based algorithm follows its β list to mi-
grate tasks. When a task’s migration fails to reduce E , the
migration process of this processor stops. In other words,
Greedy-Based migrates one task at a time and its migra-
tion order is strictly limited by its β list. We remove this

k1 k2 k3 D
mW/Hz3 1× 10−6 2× 10−6 3× 10−6 0.05(s)

xi,1 Fi,1 xi,2 Fi,2 xi,3 Fi,3
τ1 10 1× 10−3 30 5.4× 10−2 10 3× 10−3 P3
τ2 30 2.7× 10−2 10 2× 10−3 40 1.92× 10−1 P2
τ3 80 5.12× 10−1 50 2.5× 10−1 10 3× 10−3 P3
τ4 80 5.12× 10−1 20 1.6× 10−2 20 2.4× 10−2 P2
τ5 30 2.7× 10−2 60 4.32× 10−1 70 1.029 P1

total 30 2.7× 10−2 30 5.4× 10−2 20 2.4× 10−2
600Hz 216mW 600Hz 432mW 400Hz 192mW 42 (mJ)

Table 2: The greedy-based energy-reduction for the example shown in Table 1

restriction here and select a group of tasks on the same pro-
cessor for migration. We avoid redundant computations by
a dynamic-programming method.

4.1 The Recursive Formula

Let Ca denote the most-loaded processor. Let Z = |Ta|
denote the number of tasks initially assigned to Ca by kX3-
Partition. Xa is used to denote the sum of cycle counts of
all tasks in Ta. In addition, we construct βa as described
in Section 3.1 to sort tasks in Ta by their δi’s defined in
Eq. (5). LetA denote the maximum amount of reduction in
E by migrating a group of tasks out ofCa. To determine this
group of tasks, we further define M [k, g] as the maximum
amount of reduction by migrating a group of tasks, each
of which is one of the first k tasks in βa and the sum of
cycle counts of all migrated tasks is less than or equal to g.
Obviously, we have

A = max
0≤g≤Xa

{M [Z, g]}. (7)

In addition, we have an initial setting of M [0, g] = 0 for
g = 0 toXa.
Because each migration changes the workload of both

the source and the target processors, we define H[k, g]
to record the workload of each processor after the group
of tasks selected in M [k, g] are migrated. We represent
H[k, g] as a list of m entries and H[k, g][i] denotes its i-th
entry, the workload of Ci. Let Xi denote the initial work-
load of Ci after kX3-Partition. We have,

H[0, g] = {X1,X2, . . . ,Xm}, for g = 0 toXa.

The k-th task in βa may or may not be selected to be
migrated in M [k, g]. For simplicity, we use η to denote
βa,k. When τη is not selected, we haveM [k, g] = M [k −
1, g]. Otherwise, when τη is migrated, we have

M [k, g] =M [k−1, g−xη,a]+EnergyDelta(H[k−1, g−xη,a], η),

Algorithm 3

1: Procedure MigrateTask(Ci, τj, Ck)

2: αj = cdr(αj); βi = cdr(βi);
3: δj = CalculateDelta(car(αj), cadr(αj));
4: βk = InsertSorted(βk, δj);
5: Xi = Xi − xj,i; update Fi;
6: Xk = Xk + xj,k; update Fk;
7: γ = ReverseSorted(γ);

where EnergyDelta(H[k, g], η) denotes the amount of re-
duction in E by migrating τη out of Ca at the workload of
H[k, g]. In summary, we defineM [k, g] by

M [k, g] = max

 M [k − 1, g],
M [k − 1, g − xη,a]+
EnergyDelta(H[k − 1, g − xη,a], η)

 .

(8)
The EnergyDelta algorithm is shown in Algorithm 4.

We first determine the energy reduction by migrating τη out
of Ca (line 3). We next calculate the increase of energy in
its target processor (line 10), obtained by the next element
in αη . If we do not have any reduction in E (line 11), we
continue to the next processor in αη (line 6). This algorithm
stops either when we locate a target processor that results in
a positive reduction in E or when we reach the end of αη.
Finally, we need to document the change of processor

workloads in H[k, g]. If τη is not selected to be migrated
inM [k, g], we haveH[k, g] = H[k − 1, g]. Otherwise, we
first make a copy ofH[k− 1, g− xη,a] toH[k, g]. We next
change two entries inH[k, g] by

H[k, g][a] = H[k, g][a]− xη,a;
H[k, g][b] = H[k, g][b] + xη,b;

(9)

where b is the target processor determined in EnergyDelta.

Algorithm 4

1: Procedure EnergyDelta(L, η)
2: a = car(αη); p = αη;
3: Minus = kaL[a]3 − ka(L[a] − xη,a)

3;
4: R = 0;
5: while R ≤ 0 do

6: if ((p = cdr(p)) == NULL) then

7: break;
8: end if

9: b = car(p);
10: Plus = kb(L[b] + xη,b)

3 − kbL[b]3;
11: R = Minus − Plus;
12: end while

13: return R;

Algorithm 5

1: Procedure MaxReduction(a)
2: for g = 0 . . . Xa do

3: M [0, g] = 0; H[0, g] = {X1, X2, . . . , Xm};
4: end for

5: for k = 1 . . . Z do

6: for g = 0 . . . Xa do

7: η = βa,k;
8: if (g < xη,a ‖ (M [k−1, g−xη,a]+EnergyDelta(H[k−1, g−xη,a], η) < M [k−1, g]))

then

9: M [k, g] = M [k − 1, g]; H[k, g] = H[k − 1, g];
10: else

11: M [k, g] = M [k − 1, g − xη,a] + EnergyDelta(H[k − 1, g − xη,a], η);
12: H[k, g] = H[k − 1, g − xη,a];
13: H[k, g][a] = H[k, g][a] − xη,a; H[k, g][b] = H[k, g][b] + xη,b;
14: end if

15: end for

16: end for

17: A = 0;
18: for g = 0 . . . Xa do

19: A = max(A, M [Z, g]);
20: end for

21: RETURN A;

4.2 The DP-Based Algorithm

Algorithm 5 implements the recursive formula described
in Section 4.1 to determine the group of tasks that should
be migrated out of the most-loaded processor Ca for the
maximum reduction on E . First, we initialize M [0, g] and
H[0, g] for g = 0 to Xa (line 2 to 4). We next construct the
rest M and H matrices in a dynamic-programming man-
ner. The values ofM [k, g] and H[k, g] depend on whether
βa,k is selected for migration, as shown in Eq. (8). If it is
not selected, we simply make a copy of M [k − 1, g] and
H[k − 1, g] (line 9). Otherwise, we update them by includ-
ing the task of βa,k in the migration list (line 11 to 13). Fi-
nally, we determine A by the maximum ofM [Z, g] for any
possible g (line 18 to 20). The group of tasks that result in
A presents an optimal solution for maximizing the energy
reduction under the migration order of βa.
Each invocation of MaxReduction reduces the work-

k1 k2 D
mW/Hz3 2× 10−6 1× 10−6 0.01(s)

xi,1 Fi,1 xi,2 Fi,2 min(Fi,j)

τ1 3 5.4× 10−5 5 1.25× 10−4 5.4× 10−5
τ2 1 2× 10−6 2 8× 10−6 2× 10−6
τ3 1 2× 10−6 2 8× 10−6 2× 10−6
total 5 2.5× 10−4 0 0 2.5 (mJ)

500Hz 250mW 0Hz 0mW

Table 3: A 3-task 2-processor task set

k

 g
0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 0 0 1.09 1.09 1.09

2 0 1.14 1.14 1.14 1.09 1.09

3 0 1.14 1.32 1.32 1.32 1.09

Figure 2: TheM matrix of C1

load of the most-loaded processor but also increases the
workload of other processors. When the time complexity
is not a concern, we can keep applyingMaxReduction on
any loaded-processor until no further energy reduction is
available or below a certain threshold. We call it the Fully-
Balanced algorithm that may require an unbounded num-
ber of calls on MaxReduction. To bound its complexity,
we propose another algorithm calledDP-Based that applies
MaxReduction on each processor only once, starting with
the most-loaded processor Ca. After Ca is done with its
energy reduction, DP-Based removes it from its selection
list and continues to the next most-loaded processor. LetX
denote the maximum possible load of a processor,

X = max{
nX
i=1

xi,1,
nX
i=1

xi,2, . . . ,
nX
i=1

xi,m}.

We bound the complexity of MaxReduction by O(nX)
and DP-Based by O(nmX).
Table 3 shows an example of 3 tasks on a 2-processor

system. The kX3-Partition algorithm initially assigns all
three tasks to C1 and takes 2.5 mJ to finish all tasks by
its deadline D = 0.01 second. We apply MaxReduction
on C1 to migrate tasks to C2. MaxReduction constructs
the M and H matrices of C1 as shown in Figures 2 and
3. The values listed in Figure 2 are in the units of 10−4.
The largest entry in M is M [3, 4], which is the maximum
value ofM [2, 4] andM [2, 3] + EnergyDelta(H[2, 3], τ3).
By migrating τ2 and τ3 to C2, we minimize the total energy
consumption to 1.18 mJ. The speeds of C1 andC2 are set at
300 Hz and 400 Hz, respectively.

Processor Min k(mW/Hz3) Max k(mW/Hz3)
ARM92x 1.5026× 10−5 3.1855× 10−5
ARM10x 3.0469× 10−6 3.4466× 10−6
ARM11x 4.0718× 10−7 1.1478× 10−6
TMS320Cx 3.2277× 10−9 5.2083× 10−7
TMS320Dx 1.1250× 10−8 3.5095× 10−8

Table 4: The k range in each processor model

task number 6 8 10 12 14 16
2 processors 3 3 3 3 3 3
4 processors 5 5 5 6 6 5
6 processors 7 8 9 8 9 11
8 processors 10 11 12 14 13 12

Table 5: MaxReduction calls by FB

k

g
0 1 2 3 4 5

0
X1=5

X2=

X1=5

X2=

X1=5

X2=

X1=5

X2=

X1=5

X2=

X1=5

X2=

1
X1=5

X2=

X1=5

X2=0

X1=5

X2=0

X1=2

X2=5

X1=2

X2=5

X1=2

X2=5

2
X1=5

X2=

X1=4

X2=2

X1=4

X2=2

X1=4

X2=2

X1=2

X2=5

X1=2

X2=5

3
X1=5

X2=

X1=4

X2=2

X1=3

X2=4

X1=3

X2=4

X1=3

X2=4

X1=2

X2=5

Figure 3: TheH matrix of C1

5 Experimental Results

We conducted a series of simulations to demonstrate
the effectiveness of our algorithms in delivering the op-
timal energy-saving performance. There are nearly 30
processors modeled in our simulations. These proces-
sors include general-purpose embedded processors, such as
ARM9, ARM10, and ARM11, and DSP processors, such
as TMS320C and TMS320D. The adjusted switched capac-
itance of each processor is obtained from the official web
site of ARM and TI and is summarized in Table 4. We con-
ducted our simulations on an Intel Xeon server with 1GB
memory. We evaluate our algorithms on a simulated HeMP
system consisting of 2, 4, 6, and 8 processors, each of which
is randomly selected from the list of modeled processors.
We vary the workload by changing the number of tasks and
each task has an execution cycle count between 1,000 and
3,000. For each configuration, we ran simulations for 30
times and took the average value for comparison.
We use kX3 to denote the kX3-Partition algorithm. We

use List to denote a commonly-used HoMP low-power
scheduling algorithm that dispatches a task to an least-
loaded processor [11, 5]. There are 3 energy-reduction algo-
rithms: Greedy denotes the Greedy-Based algorithm, DP
denotes theDP-Based algorithm, and FB denotes the Fully-
Balanced algorithm. All results are compared to the opti-
mal value that is obtained by exhaustively iterating through
all possible task-to-processor assignments and finding the
minimum energy consumption. Because the number of it-

erations grows exponentially with the number of tasks and
processors, we cannot obtain the optimal value at the con-
figurations of 16 tasks on 6 processors and 12 or more tasks
on 8 processors. For example, the configuration of 16 tasks
and 8 processors will take approximately 10 years to finish
all iterations. Instead, we use a method of linear regression
to obtain these impossible values.
Figure 4 shows the experimental results. Because het-

erogeneous performance among different processors is not
considered, List delivers the worst performance in all con-
figurations. At the configuration of 6 tasks on 8 processors,
its energy consumption is 30 times of the optimal value. The
combination of (List + DP) significantly reduces its en-
ergy consumption. In comparison, the combination of (kX3
+ DP) requires considerably less energy than the previous
combination. This result well demonstrates the importance
of initial task assignments and the effectiveness of our local-
optimal partition.
(kX3 + DP) delivers better performance than (kX3 +

Greedy) because DP consider all tasks while Greedy
considers only one task for each migration. The difference
between (kX3 + DP) and (kX3 + FB) is at their number
of MaxReduction calls. DP calls MaxReduction on each
processor once while FB iteratively calls MaxReduction
on any most-loaded processor until no reduction is made.
Table 5 shows the number of calls by (kX3 + FB). Both
combinations deliver almost identical performance at all
configurations even though (kX3 + DP) requires less calls
on MaxReduction. Finally, both combinations deliver the
near-optimal energy-saving performance at most configura-
tions. The only exceptions are at the configurations where
we can only obtain approximate optimal values through lin-
ear regressions. These experimental results show that, at
its polynomial-time complexity, (kX3 + DP) still yields the
near-optimal result for the HeMP single-level voltage setup
problem.

6 Conclusions and Future Work

Heterogeneous multi-processor (HeMP) systems are
adopted by low-power embedded systems to host differ-
ent categories of applications. A real-time scheduling algo-
rithm is required to minimize the total energy consumption
and complete all tasks before their deadline. In this paper,

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

6 8 10 12 14 16

task number

kX +FB kX +DP kX +Greedy List+DP List33 3

(a) two processors

0

1

2

3

4

5

6

7

8

6 8 10 12 14 16

task number

kX +FB kX +DP kX +Greedy List+DP List33 3

(b) four processors

19

33 3

(c) six processors

3 33

30

(d) eight processors

Figure 4: The total energy consumption being normalized to the optimal value

we provide a near-optimal solution for the HeMP single-
level voltage setup problem in which we determine an op-
timal speed for each processor to achieve this goal. Our
workload consists of a set of frame-based tasks, each of
which is independent and non-preemptible. Initially, each
task is assigned to a processor in a local-optimal manner.
We next provide a couple of polynomial-time solutions to
reduce energy. The first solution is based on a greedy-based
algorithm to consider one task at a time. The second solu-
tion is based on a dynamic-programming algorithm to con-
sider all tasks of a processor during one migration. Finally,
we determine a processor’s speed by its final workload and
the common deadline.
A series of simulations were conducted to demonstrate

the effectiveness of our algorithms. We modeled more
than a couple dozens of off-the-shelf embedded proces-
sors including ARM and TI DSP processors. We com-
pared our algorithms with a commonly-used homogeneous
multi-processor (HoMP) scheduling algorithm and the op-
timal solution. The optimal solution is implemented as an
exhaustive iteration of all possible task-to-processor assign-
ments. Using the same energy-reduction method, the local-
optimal partition consumes significantly less energy than
the HoMP scheduling algorithm. Compared to the optimal

solution, the combination of the local-optimal partition and
the dynamic-programming method delivers almost identi-
cal performance at all measurable configurations. The ex-
perimental results demonstrate that our work succeeds to
provide a near-optimal solution for the HeMP single-level
voltage setup problem at its polynomial-time complexity.
For the voltage setup problem, existing work focused on

a one-processor system and has provided a couple of solu-
tions for both the single-level and the multi-level problems.
Our work is the first one that addresses the multi-processor
voltage setup problem. We started with the HeMP single-
level problem in this paper. Currently, we are extending
our discussion to solve the HeMP multi-level problem. The
HoMP voltage setup problem could be eventually solved in
a similar way.

7 Acknowledgment

This work was supported in part by Ministry of Eco-
nomic Affairs, R.O.C., under Grant MOEA 95-EC-17-A-
04-S1-044 and under Grant MOEA 95-EC-17-A-01-S1-
038. It was also support by National Science Council (NSC)
under contract NSC 95-2221-E-007-049-MY3.

References

[1] J. H. Anderson and S. K. Baruah. Energy-efficient synthe-
sis of periodic task systems upon identical multiprocessor
platforms. In ICDCS ’04: Proceedings of the 24th Interna-
tional Conference on Distributed Computing Systems, pages
428–435, 2004.

[2] J. H. Anderson and A. Srinivasan. Early-release fair schedul-
ing. In The 12th Euromicro Conference on Real-Time Sys-
tems, pages 35–43, June 2000.

[3] H. Aydin, R. Melhem, D. Mosse, and P. Meja-Alvarez.
Power-aware scheduling for periodic real-time tasks. IEEE
Transactions on Computers, 53(5):584–600, May 2004.

[4] J.-J. Chen and T.-W. Kuo. Multiprocessor energy-efficient
scheduling for real-time tasks with different power char-
acteristics. In ICPP ’05: Proceedings of the 2005 Inter-
national Conference on Parallel Processing, pages 13–20,
2005.

[5] A. Gerasoulis and T. Yang. On the granularity and cluster-
ing of directed acyclic task graphs. IEEE Transactions on
Parallel and Distributed Systems, 4(6):686–701, 1993.

[6] J.-J. Han and Q.-H. Li. Dynamic power-aware scheduling
algorithms for real-time task sets with fault-tolerance in par-
allel and distributed computing environment. In IPDPS ’05:
Proceedings of the 19th IEEE International Parallel and
Distributed Processing Symposium, 2005.

[7] H.-R. Hsu, J.-J. Chen, and T.-W. Kuo. Multiprocessor syn-
thesis for periodic hard real-time tasks under a given energy
constraint. In DATE ’06: Proceedings of the Conference on
Design, Automation and Test in Europe, pages 1061–1066,
2006.

[8] S. Hua and G. Qu. Voltage setup problem for embedded
systems with multiple voltages. IEEE Transactions on Very
Large Scale Integration Systems, 13(7):869–872, 2005.

[9] C.-H. Lee and K. G. Shin. On-line dynamic voltage scaling
for hard real-time systems using the edf algorithm. In Pro-
ceedings of the 25th IEEE Real-Time Systems Symposium,
December 2004.

[10] F. Liberato, S. Lauzac, R. Melhem, and D. Mosse. Fault
tolerant real-time global scheduling on multiprocessors. In
Proceedings of the 11th Euromicro Conference on Real-
Time Systems, pages 252–259, 1999.

[11] C. McCreary, A. A. Khan, J. J. Thompson, and M. E. McAr-
dle. A comparison of heuristics for scheduling dags on mul-
tiprocessors. In Proceedings of the 8th International Sym-
posium on Parallel Processing, pages 446–451, 1994.

[12] O. Paker, J. Sparsal, N. Haandbzk, M. Isage, and M. Isage.
A low-power heterogeneous multiprocessor architecture for
audio signal processing. Journal of VLSI Signal Processing
System, 37(1):95–110, 2004.

[13] J. Seo and N. D. Dutt. A generalized technique for energy-
efficient operating voltage set-up in dynamic voltage scaled
processors. In ASP-DAC ’05: Proceedings of the 2005
Conference on Asia South Pacific Design Automation, pages
836–841, 2005.

[14] J.-H. Sohn, J.-H. Woo, J. Yoo, and H.-J. Yoo. Design and
test of fixed-point multimedia co-processor for mobile ap-
plications. In DATE ’06: Proceedings of the Conference

on Design, Automation and Test in Europe, pages 249–253,
2006.

[15] M. T. Strik, A. H. Timmer, J. L. Meerbergen, and G.-J. Root-
selaar. Heterogeneous multiprocessor for the management
of real-time video and graphics streams. IEEE Journal of
Solid-State Circuit, 35(11):1722–1731, 2000.

[16] Y. Yu and V. K. Prasanna. Resource allocation for inde-
pendent real-time tasks in heterogeneous systems for energy
minimization. Journal of Information Sciece and Engineer-
ing, 19(3):433–449, 2003.

